Accessibility statement

 

MSc by Research in Biomedical Science

This one-year research programme provides an opportunity for graduates with an interest in biomedical science to complete a masters level course during which they carry out a research project in their specific area of interest working under the supervision of an academic member of staff.

This is not a taught course and does not require completion of specific taught modules. The MSc by Research is often a popular choice for those wanting a full-time research experience and can provide a valuable stepping stone to those wishing to embark on a PhD programme.

Studying across a range of disciplines you will have access to tailored YBRI training activities focussed on the biomedical sciences and the core York Biomedical Research Institute (YBRI) themes:

  • Immunology, haematology and infection
  • Molecular and cellular medicine
  • Neuroscience

Overview

  • Degree awarded: MSc by Research in Biomedical Science
  • Entry requirements: We require applicants to hold or expect to gain an upper second class honours degree (or equivalent) in a related subject area for entry into this Masters programme.
  • Funding: We welcome applications at any time from those who are able to fund their own studies.  Information on funding for postgraduate courses.
  • Projects: A description of potential project areas and supervisors can be found by scrolling down to the bottom of this page.
  • How to apply: Once you have chosen your subject area, make a note of it and the name of the supervisor.  You may email the supervisor for more information before you apply, but this is not necessary. Please follow our step-by-step guidance to submit your application.  You will need the following documents ready to upload:
    • Your academic transcript/s
    • A short personal statement to explain your background, research interests and why the project/s you have selected appeal to you
    • Your language certificate (if appropriate)
    • Your CV (curriculum vitae). The CV should be approximately 2-pages long and should include:
      • Your contact details
      • Your education, degrees held or ongoing, including modules covered
      • Further details or technical/laboratory experience (for example, research projects you have been involved in)
      • Any previous work experience or training courses
      • Any seminar or poster presentations, conferences attended
      • Any scientific publications
      • Any other relevant information
      • Contact details for two independent academic references
      • You may also want to include a short statement about yourself and/or hobbies and interests
    • Apply Now
  • Contact us: If you have any questions, please contact biomed-sciences-phd@york.ac.uk

English Language

If English isn't your first language you may need to provide evidence of your English language ability. For more information see our Postgraduate English language requirements.

Programme description

York’s MSc by Research in Biomedical Science aims to bring students from all over the world to our first-class research facilities. Over a one-year period you will develop and execute  research in your chosen field.

Areas of research fall within, but are not limited to, the diverse biomedical portfolio of our academic staff, neuroscience, molecular and cellular medicine, immunology, haematology and infection.

Working under the supervision of world-leading, research-active supervisors, you will be encouraged to contribute  to the development of new techniques, ideas or approaches as you pursue research in biomedical science at an advanced level.

The MSc by Research in Biomedical Science is a joint venture between the departments of Biology, Chemistry and Hull York Medical School (HYMS), as partners in the York Biomedical Research Institute (YBRI).

Special features

Training and cohort-building programme: A dedicated Biomedical Science training and cohort-building programme will draw on the training offered by the collaborating departments, whilst offering the students on the programme additional training and opportunities to promote collaboration and networking across the programme.

Cohort activities will include: a monthly journal club, an annual research symposium, and other cross-departmental YBRI seminars and events.

Mentoring: All new research students are offered mentorship from within the existing research student community. For those new to York, mentors work in the same research area. Those who have previously studied at York will be offered a mentor working in a different research area. The mentor partnership is a means to explore options and understand more about working as a research student at the University of York.

MSc by Research Biomedical Science Supervisors

Please see potential project areas and supervisors listed below.

Immunology, haematology and infection

SupervisorDepartmentResearch Interests
Prof Fred Antson Chemistry  Protein-nucleic acid interactions 
Dr Christoph Baumann Biology  A variety of cellular processes, including transcription, replication and recombination, involve simultaneous melting and unwinding of the two DNA strands, and translocation of the strands within a DNA-bound protein complex. 
Dr Jamie Blaza Chemistry   
Dr Dave Boucher Biology Inflammasome and protease signalling  
Dr Katherine Bridge Biology  Understanding and targeting the hypoxic response in acute myeloid leukaemia (AML) 
Prof James Chong Biology  Anaerobic applied systems biology 
Prof Anne-Kathrin Duhme-Klair Chemistry  Metal ions in biology and medicine 
Dr Paul Fogg Biology  Horizontal Gene Transfer (HGT), which is a fundamental and powerful process for the exchange of genes between bacteria. 
Dr Ville Friman Biology  Ecology and evolution of antibiotic resistance. Use of phage therapy to treat bacterial infections. Cystic fibrosis lung microbiomes. 
Dr James Hewitson  Biology Mammalian immune responses to parasitic worm infections.
Prof Ian Hitchcock Biology My group have identified a key interaction between a cell surface receptor and a mutated protein that is essential for myeloproliferative neoplasms (MPN) development.
Dr Daniel Jeffares  Biology Population and comparative genomics. Incuding quantative genetics, landscape genetics and the evolution of drug resistance. 
Prof Paul Kaye HYMS The immunopathology of leishmaniasis, with emphasis both on exploring opportunities for developing novel host-directed therapies and also for gaining new insight into myeloid cell function. 
Dr David Kent  Biology The biology of adult blood stem cells and the process by which single blood stem cells are subverted to drive blood cancers such as leukaemia.
Dr Ioannis Kourtzelis  HYMS  The study of mechanisms that orchestrate the onset and resolution of sterile and pathogen-induced inflammation.
Prof Charles Lacey  HYMS A multi-arm HPV vaccine study including evaluating one dose regimes in schoolgirls in Tanzania.
Dr Dimitris Lagos  HYMS The overarching working hypothesis of our work is that modulation of immune responses is a key function of non-coding RNAs in mammals and that coordination of the machineries that control non-coding and coding RNA metabolism is required for optimal mammalian immunity. 
Prof Mark Leake  Biology & Physics     
Prof Jeremy Mottram Biology Molecular genetics, cell biology and biochemistry of Leishmania, the parasitic protozoan that causes the neglected tropical disease leishmaniasis 
Dr Elmarie Myburgh  HYMS My research focusses on the complex interplay between pathogens and their hosts, with a particular interest in the kinetoplastids Leishmania and African trypanosomes.
Dr Michael Plevin  Biology  Biomolecular recognition and the structural and chemical features that define interaction surfaces of proteins and nucleic acids. 
Dr Nathalie Signoret  HYMS Chemokines and their receptors have emerged as essential controls for the trafficking and activation of immune cells, in both homeostatic and inflammatory conditions. Our research aims to define how these molecules influence immune responses and establish the mechanisms by which they exert their activity.
Prof Gavin Thomas  Biology The Thomas group has two main interests that are linked by the bacterium Escherichia coli. We are interested in the mechanisms used by different bacteria, mainly huma
Prof Reidun Twarock  Biology & Maths  The structure and assembly of viruses. Viruses have a protein shell that encapsulates and hence provides protection for the viral genome. 
Dr Marjan Van der Woude  HYMS  We are interested in molecular strategies at both the single cell level and population level that enable a bacterial pathogen's success. Our main focus is cell surface structures and modulation and gene regulation in E. coli and Salmonella spp. 
Dr Pegine Walrad  Biology  Kinetoplastid parasites which cause human disease worldwide; afflicting the poorest of society. 
Prof Tony Wilkinson Chemistry Structure function analysis of proteins relevant to (i) disease processes and drug discovery in parasites and (ii) cell fate and virulence in spore-forming bacteria
Prof Gavin Wright Biology & HYMS The Wright Laboratory is interested in identifying new therapeutic targets for both genetic and infectious diseases by using systematic large-scale protein-based approaches to discover extracellular receptor-ligand interactions that are essential for cellular recognition processes.

Molecular and cellular medicine

SupervisorDepartmentResearch Interests
Dr Gonzalo Blanco Biology Understanding the mechanisms underlying muscle plasticity
Dr Will Brackenbury Biology Ion channels, membrane excitability and cancer
Prof Nia Bryant Biology Control of Intracellular Membrane Traffic
Prof Marek Brzozowski Chemistry Structural endocrinology; Membrane proteins; Development of methods for protein crystallisation
Prof Dawn Coverley Biology Structure, function and maintenance of the mammalian cell nucleus
Prof Gideon Davies Chemistry Structural enzymology and carbohydrate chemistry
Dr Martin Fascione Chemistry Chemical glycobiology and glycomedicine
Prof Paul Genever Biology Stem cells and regenerative medicine. Repair and regeneration of skeletal tissues
Dr Andrew Holding Biology How cells respond to steroid hormones, both in cancer and in healthy tissues, with a focus on breast cancer
Prof Neil Hunt Chemistry Physical chemistry 
Dr Chris MacDonald Biology  
Dr Betsy Pownall Biology Embryonic development orchestrates the proliferation and differentiation of many hundreds of cell types that will interact to form tissues, underpinning organ and organismal function 
Prof Jenny Southgate Biology Human epithelial tissue homeostasis and regulation of differentiation versus regeneration in health and disease, including cancer 
Dr Chris Spicer Chemsitry Bioconjugation and biomaterials for tissue engineering. We are particularly interested in developing new methods to functionalise materials with proteins in a controlled and specific way 
Dr Lianne Willems Chemistry Chemical Biology of Carbohydrates and Carbohydrate-Processing Enzymes 

Neuroscience

SupervisorDepartmentResearch Interests
Dr Heidi Baseler HYMS To understand the neural mechanisms specialised for processing central and peripheral vision, and how these mechanisms respond to sensory loss (visual or auditory)
Dr Sangeeta Chawla Biology Transcriptional regulation of neuronal plasticity-associated and antioxidant genes
Dr Han-Jou Chen Biology Why do proteins aggregate and how that contributes to neurodegenerative diseases?
Prof Simon Duckett Chemistry Organometallic chemistry and reaction mechanisms
Dr Gareth Evans Biology Protein kinase signalling in neuronal development and neurological disorders
Dr Darren Goffin Biology Research is focused on understanding the pathogenesis of autism spectrum disorders using electrophysiological and molecular biology techniques
Dr Aneurin Kennerley Chemistry Neuroimaging
Dr Sean Sweeney Biology Min neurons, the endosome regulates signals controlling synapse growth. Appropriate regulation of synaptic growth is a key mechanism in refining the fidelity of synaptic communication