Science Education & Society - EDU00057H
- Department: Education
- Credit value: 20 credits
- Credit level: H
-
Academic year of delivery: 2026-27
- See module specification for other years: 2025-26
Module summary
This module looks at the role of science within educational processes, and at the relationships between science, education and society more generally. We will examine the aims and purposes of science education, and explore issues concerning school and university science education, and engagement with science beyond the classroom. We will analyse responses to the challenges facing science education, and possible ways of improving its effectiveness.
Module will run
| Occurrence | Teaching period |
|---|---|
| A | Semester 1 2026-27 |
Module aims
From genetic and reproductive technologies to human spaceflight, or to dealing with the consequences of climate change, science and technology permeate our lives in a variety of ways. Governments see science and technology as central to economic development and national prosperity yet the links between science and corporate interests leave some wary of the products of science. This complex set of influences raises many questions about the relationship between science and society, which have significant implications for formal and informal education. This module looks at the role of science within educational processes, and at the relationships between science, education and society more generally. We will examine the aims and purposes of science education, and explore issues concerning school and university science education, and engagement with science beyond the classroom. We will analyse responses to the challenges facing science education, and possible ways of improving its effectiveness.
Module learning outcomes
After completing the module, students will:
• have a better
understanding of the arguments for giving science a prominent place in
the formal curriculum, and for seeking to promote scientific literacy
and public understanding of science
• know how science is
included in the national curriculum in England, and some of the
influences which have led to this position
• have an
understanding of some key issues concerning the image of science among
learners, and the response of learners to science
• be able to
discuss some of the key issues associated with the teaching and
learning of science
• be able to engage critically with a range
of sources dealing with formal and informal science education.
Students will be expected to locate and read with understanding a range of written sources. They will gain practice in locating information and publications relevant to a specific topic or issue, extracting key points from articles, identifying arguments and supporting evidence, and comparing and contrasting different viewpoints and conclusions. They will develop their skills of oral and written communication and may be invited to make short presentations to the whole group. Students will also develop their IT skills by accessing and sharing information through the VLE (Yorkshare).
Module content
This module will cover the following key themes:
What is science education for?
Students will make distinctions between science and other disciplines, in particular in terms of how scientific knowledge is created and the role of empirical observation and theory in the furthering of scientific knowledge. We will examine the purpose of science education and look at how the answer to this question shapes our views of what ought to happen in science lessons.
Science around us
Students will examine the pervasive presence of science in our lives, and particularly of cutting- edge science research as represented in the media. We will examine how the relationship between the worlds of science and mass media impact on the general public and review the ways in which the education system can encourage critical engagement with science in the media.
Scientific literacy
Students will examine what is meant by scientific literacy, and different visions of scientific literacy. We will consider the implications of this for what is, and what should be, taught in school science.
Science in informal settings
Students will explore different contexts for science learning, and will consider the role of the informal sector in engagement with science, factors influencing the effectiveness of science education beyond the classroom, and the related evidence.
Learning theory and science
Why is science difficult to learn? Students will examine the contribution that theories of learning can make to answering this question, and different models of instruction, including transmissive and constructivist approaches.
School science
Students will understand the key issues in the teaching of science to young people aged 5-18. We will consider the role of practical work and the debate surrounding process- and content-led approaches. We will examine research on young people’s attitudes towards science, and issues relating to teacher recruitment and retention.
Tertiary science
Key issues relating to the teaching and learning of science at the tertiary level will be introduced, for example in the context of undergraduate courses. We will explore some key research findings related to science education at this educational level, for example those relating to the effectiveness of various instructional approaches.
Widening participation in science
This class we will examine who participates in science and consider what has been done, and what should be done to increase the participation of under-represented groups in learning and/or practicing science.
Indicative assessment
| Task | % of module mark |
|---|---|
| Essay/coursework | 100.0 |
Special assessment rules
None
Indicative reassessment
| Task | % of module mark |
|---|---|
| Essay/coursework | 100.0 |
Module feedback
The feedback is returned to students in line with university policy. Please check the Guide to Assessment, Standards, Marking and Feedback for more information
Indicative reading
The full reading list is available on EARL. Some indicative reading is provided below.
Braund, M. R. and Reiss, M. J. (1998). Learning science outside the classroom. London: RoutledgeFalmer.
Chalmers, A. F. (1982). What is this thing called Science? Milton Keynes: Open University Press.
Corrigan, D. D., Dillon, J., and Gunstone, R. (2007). The re-emergence of values in science education. Rotterdam: Sense Publishers.
Driver, R. (1986). Students’ thinking and the learning of science: A constructivist view. School Science Review, 67, 443–456.
Haynes, R. (2003). From Alchemy to Artificial Intelligence:
Stereotypes of the Scientist in Western Literature. Public
Understanding of Science, 12, 243–253. doi:10.1177/0963662503123003
Jenkins, E. W. (2005). Important but not for me: Students’ attitudes towards secondary school science in England. Research in Science & Technological Education, 23(1), 41–57.
Jenkins, E. W. (2010). How might research inform scientific literacy in schools? / Edgar Jenkins. Education in Science., 239, 26–27.
Mortimer, E. F., & Scott, P. (2003). Teaching science, learning science. In Meaning making in secondary science classrooms / Eduardo Mortimer and Phil Scott. (p. x, 141 p.). Maidenhead¿:: Open University Press.
Osborne, J., Dillon, Justin, & Ebrary, Inc. (2010). Good practice in science teaching : What research has to say (2nd ed.). Maidenhead ; New York: Open University Press.
Thomas and Durant. (1987). Why should we promote the public
understanding of science? Scientific Literacy Papers: A Journal of
Research in Science, Education and Research. Retrieved from
https://contentstore.cla.co.uk/secure/link?id=11bf7e23-0110-e811-80cd-005056af4099
Wellington, J. J., & Wellington, J. J. (1989). What is “scientific
method” and can it be taught? In Skills and processes in science
education¿: a critical analysis / edited by Jerry Wellington. (p. x,
152 p.¿:). London¿;: Routledge.
Carl Wieman. (2007). Why
not try a scientific approach to science education? Change, 5.
The following journals are a good source of up-to-date research in science education:
International Journal of Science Education
Journal of Research in Science Teaching
School Science Review
Science Education
Studies in Science Education