The Immunology, haematology and infection (IHI) theme builds on a history of internationally-leading immunology and infection research at York.Over the last decade, IHI has made significant contributions in the areas of:

  • Neglected Tropical Diseases; from fundamental research to treatment prevention
  • Fundamental immunology with practical applications through cross-disciplinary research in haematology, skin and infection
  • Haematological malignancies; combining clinical, experimental, translational (treatment) and epidemiological haematology in a single space

Research within this theme ranges from fundamental insights into disease mechanisms, through to vaccine clinical trials and epidemiology.  Areas of particular strength are; Experimental and population haematology, Parasitology, Immunopathology, pathogen structure and assembly, and pathogenesis and its clinical epidemiology.

Experimental and population haematology

Experimental and population haematology at York offers a unique space to perform world-class haematological research. Combining clinical, experimental, translational (treatment) and epidemiological haematology in one space.

Experimental haematology

Many cancers are caused by mutations in genes that result in uncontrolled cell growth. Experimental haematology spans research into single molecules, for example, understanding the mechanisms of oncogenic driver mutations in myeloproliferative neoplasm (MPN) development (Hitchcock). MPNs are a group of blood cancers characterised by the overproduction of red blood cells and/or platelets, and is the most common myeloid cancer.  To the transcription factor HIF (Hypoxia Inducible Factor), a master regulator of gene expression whose deregulation occurs with high frequency in solid tumours and haematological malignancies (Bridge).

A single stem cell can give rise to any of the highly specialised cell types of a given tissue whilst also having the capacity to make a new stem cell. If the process is dysregulated in some way, the overproduction of stem cells can lead to progression of cancer. Understanding the molecular regulators of normal blood stem cells and the clonal evolution of cancers from single cells (Kent) is contributing to our knowledge of how blood cancers such as leukaemia progress.

Population haematology

The Epidemiology and Cancer Statistics Group (ECSG) is a multi-disciplinary team of researchers. Major research themes include cancer epidemiology, in particular the determinants, prognosis and treatment of haematological malignancy, as well as cancer in children and young adults (Roman, Smith, Crouch). They co-established the Haematological Malignancy Research Network (HMRN) with the Haematological Malignancy Diagnostic Service (HMDS) at St. James Hospital in Leeds. The group analyses clinical samples and data as part of clinical trials spanning the entire spectrum of haematological disorders. Working in collaboration with clinical colleagues they then use the data to inform future decision making, improving diagnosis and prognosis of patients with haematological malignancies.

Contact us

York Biomedical Research Institute

ybri@york.ac.uk
+44 (0)1904 328845
B/H/002, Department of Biology, Wentworth Way, University of York, York, YO10 5NG
Twitter

Parasitology

York is an international leader in Neglected Tropical Disease (NTD) research. With a critical mass of scientists producing world-class research across the full spectrum of parasitology, from basic biology, host-parasite interactions, therapeutic interventions and prevention strategies in the form of vaccine development. These focus specifically on Leishmania, African trypanosomes and Schistosomiasis.

Leishmaniasis research at York is focused on researching the biology of the Leishmania parasite (Mottram, Walrad, Jeffares, Wilkinson, Wilson L), its interaction with the host (Myburgh, Jeffares) and novel therapies to treat leishmaniasis (Kaye).  Our research has global reach and impact, with collaborators in Uganda, Kenya, Sudan, Ethiopia, Tanzania, Egypt, Brazil, India and Sri Lanka. There are also extensive links within the UK.  NTD researchers from YBRI lead several large collaborative networks including the UK:Brazil Joint Centre Partnership in Leishmaniasis (JCPiL), a global pathology network (LeishPathNet), and a project to develop a human challenge model for Leishmania (LeishChallenge), as well as contributing to a Global Network for NTDs focused on drug discovery. More details can be found at Leish@york.

African trypanosomes research is centred on how the parasite is able to alter the identity of proteins displayed to the host immune system (Faria), identifying new therapeutic targets for drug and vaccine development and molecules involved in Plasmodium erythrocyte invasion (Wright).

Schistosomiasis research is focused on the immune response and regulation (Crosnier) to the parasite infection and the resulting changes in haematopoietic stem cells (HSC) (Hewitson).

Immunopathology

Fundamental immunology research has a particular focus on myeloid cell development and function, specifically macrophage function (Kourtzelis), the inflammasome (Boucher) and long non-coding RNAs in immune cell function (Lagos, Plevin)

Immunity to infection is an important area of research at York and underpins many research areas.  There is a focus on the parasites; Leishmania (Kaye), Schistosomes (Hewitson), African trypanosomes (Faria) and the viruses; SARS-CoV-2 through the UK Coronavirus Immunology Consortium(UK-CIC) (Kaye, Lagos, Signoret), Human Papillomavirus (Lacey) and sexual and reproductive health (Mason-Jones). 

YBRI is currently developing its research into immunohaematology, focusing on the interplay between immunity and blood and infection and bone marrow dysfunction.

Pathogen structure and assembly

Areas within the IHI theme are increasingly supported by structural biology (YSBL) including crystallography for the analysis of proteins that contribute to virulence and represent drug targets (Wilkinson), recoding events in viral gene expression (Hill) and viral invasion (Davies). Cryo-EM is used to study bacterial bioenergetics and identify new drugs for drug resistant tuberculosis (Blaza). Biophysical techniques are used to study multi-domain proteins involved in regulation and signalling in humans and human diseases (Plevin).

During the SARS-CoV-2 pandemic  YSBL purified and characterised the SARS-Cov-2 nucleocapsid protein (Antson) for the development of diagnostics and therapies. Mathematical modelling of the structure and assembly of viruses is also a major area of research at YBRI (Twarock).

Pathogenesis and its clinical epidemiology

The success of a bacterial species depends on its ability to grow and survive in a changing and potentially hostile environment. This requires adaptation at both the single cell and population level. There is a particular interest in understanding the basic aspects of how the success of populations of bacterial pathogens is underpinned by phenotypic heterogeneity (van der Woude); eco-evolutionary dynamics of species interactions in communities (Friman). How bacterial pathogens scavenge the important host-derived molecule sialic acid (Thomas); and how a microbe interacts with biotic (host tissue/biofilm) and abiotic (surgical implants) surfaces (Baumann).

Due to an increase in bacterial resistance to antibiotics, there is an urgent need for novel ways of combating bacterial infections. Research at York covers topics such as how the human gut microbiome reacts to oral versus intravenous antibiotic treatments (Chong). Horizontal Gene Transfer (HGT), which is a fundamental and powerful process for the exchange of genes between bacteria and is a great concern if these genes encode virulence factors or antibiotic resistance (Fogg), chemokine activity in Sepsis (Signoret) and the development of new antimicrobials (Duhme-Klair).

Clinical research focuses on the epidemiology and clinical care of severe infections, common in the NHS (Barlow), dermatology challenges such as pathogenic infection, acne and acne related scarring (Leyton); and epidemiological surveillance modelling of SARS-CoV-2 at the Uganda Virus Institute (Newton).  There is a particular focus within the NHS on the effects of combining antibiotic therapy on antibiotic resistant bacteria (Barlow).  

To combat antimicrobial resistance, biosensors are being developed to study bacteria and their susceptibility to antimicrobials  with the aim of producing point-of-care healthcare technology devices (Patil, Krauss, Johnson).  Find out more about our Biomedical technologies here.

Research snapshots

Contact us

York Biomedical Research Institute

ybri@york.ac.uk
+44 (0)1904 328845
B/H/002, Department of Biology, Wentworth Way, University of York, York, YO10 5NG
Twitter