Accessibility statement

(TR) Statistical Mechanics & Solid State II - PHY00070H

« Back to module search

  • Department: Physics
  • Module co-ordinator: Dr. Paul Davies
  • Credit value: 20 credits
  • Credit level: H
  • Academic year of delivery: 2024-25
    • See module specification for other years: 2023-24

Module summary

N/A - transition module

Related modules

Pre-requisites:  Thermodynamics and Solid State I, Maths II, Quantum II or equivalents

Module will run

Occurrence Teaching period
A Semester 2 2024-25

Module aims

Statistical Mechanics

In Statistical Mechanics we will develop formalisms of equilibrium statistical mechanics from fundamental considerations of the microscopic states available to the system, and relate statistical mechanics to the classical thermodynamical descriptions of heat, work, temperature and entropy. Statistical mechanics will be used to derive formulae for the internal energy, entropy, specific heat, free energy and related properties of classical and quantum-mechanical systems, and to apply these formulae to a variety of realistic examples.

Solid State II

This is a prerequisite for the MPhys modules Nanomaterials and Light and Matter. If we want to understand physical properties such as electrical and thermal conductivity, magnetism or reflectivity and absorption, it is necessary to study the electronic structure and transport properties of electrons in solids. Starting with the classical free electron gas approximation we will develop the concepts of the Fermi gas and nearly free electron theory making use of the quantum mechanical description of electrons in a periodic potential. This leads to the band structure model, which will allow us to describe material systems such as semiconductors and metals. These concepts will then be used to obtain insight into the origin of magnetism and optical properties of materials.

Module learning outcomes

Statistical Mechanics

  • Discuss, at the level of detail given in the lectures, how the results of statistical mechanics may be derived from fundamental statistical considerations and how they are related to classical thermodynamics;

  • Apply the definitions and results of statistical mechanics to deduce physical properties of the systems studied in the lectures and other systems of similar complexity, drawing in part on your knowledge of the microstates of simple systems from core courses in quantum mechanics and solid state physics.

Solid State II

  • Understand the different models involved describing the interaction between electrons and electrons as well between electrons and crystal lattice and the underlying physical principles.

  • Explain the concept of the free electron approximation in metals.

  • Describe the interaction of free electrons with a constant electric and a constant magnetic field.

  • Calculate the density of states based on the Fermi statistics.

  • Determine the electronic contribution to the heat capacity.

  • Distinguish direct and indirect band gap semiconductors.

  • Describe the different mechanisms of conductivity in semiconductors.

  • Explain the principles of semiconductor devices such as diodes and transistors.

  • Distinguish the different types of magnetic properties in solids.

  • Understand the principles of superconductivity

Module content

Statistical Mechanics

Microstates: microstates (quantum states) and macrostates of a system, degeneracy W, density of states, illustration for a set of N harmonic oscillators, principle of equal equilibrium probability of an isolated system, term “microcanonical ensemble” [1 lecture]

Thermal equilibrium, temperature: statistical nature of equilibrium illustrated for 2 sets of N harmonic oscillators, definition of temperature, Boltzmann distribution, partition function Z, term “canonical ensemble” [2]

Entropy: general statistical definition of entropy S, law of increase of entropy, entropy of isolated system in internal equilibrium (“microcanonical ensemble”), entropy of system in thermal equilibrium with a heat bath (“canonical ensemble”), Helmholtz free energy F; equivalence of classical and statistical entropy [2.5]

Elementary applications: Vacancies in solids; two-level systems (including magnetic susceptibility of dilute paramagnetic salt), simple harmonic oscillator (partition function, heat capacity). [2]

Vibrational heat capacity of solids: Quantisation of phonon modes, labelling of modes using wavevector k; Einstein and Debye models [2]

Ideal gas: Partition function of monatomic gas, classical gas law, Maxwell-Boltzmann speed distribution, molecular gases (rotation and vibration), classical limit of occupation numbers [2]

Systems with variable number of particles: Grand canonical ensemble, chemical potential, Gibbs distribution [1.5]

Identical particles: Fermions and bosons, Fermi and Bose distributions, Bose-Einstein condensation, with applications to free-electron metals and nuclear physics (fermions), and liquid 4He and superconductivity (bosons) [3]

Black body radiation: Energy density, pressure [1]

The classical limit: Phase space, classical equipartition theorem [1]

Comprehensive lecture notes should be taken down from the blackboard during lectures, and will be supplemented by a small number of handouts. These handouts, together with audio recordings of lectures, interactive apps, a record of problems set, and similar information, will also be made available through the VLE.

Solid State II

Recap of the Fermi-gas model

  • Free electron gas approximation (Drude – d.c. and a.c. response)

  • Fermi-Dirac statistics, Fermi-sphere, Fermi-distribution, density of electronic states, Energy dispersion

  • Heat capacity and electrical conductivity of the Fermi-gas

  • Interactions with constant electric/magnetic fields.

Nearly Free electron model

  • Perturbation Theory

  • Electrons in a periodic potential

  • Reduced Zone scheme, Extended Zone scheme

  • Tight Binding Model

  • Band structure and band gaps

  • Fermi surfaces and Brilliouin zones

  • Effective electron mass approximation

  • Measuring the Fermi surface. de-Haas van Alphen effect and ARPES

  • Failures of the Band-theory of Metals and Insulators


  • Direct and indirect band gaps

  • Intrinsic and doped semiconductors

  • Cyclotron Resonance

  • Impact of temperature on charge density and conductivity

  • The p-n junction

Dielectric and optical properties

  • Optical transitions in direct and indirect semiconductors

  • Plasma Frequency

  • Reflectivity and absorption of metals

Magnetic properties

  • Para-, dia-, ferro- and antiferromagnetism

  • Ising Model of Ferromagnetism

  • Hubbard Model of Itinerant Magnetism and the Stoner Criteria


  • London Equations

  • Meissner effect

  • BCS-theory


Task Length % of module mark
Closed/in-person Exam (Centrally scheduled)
(TR) Statistical Mechanics & Solid State II
3 hours 80
Physics Practice Questions
N/A 20

Special assessment rules



Task Length % of module mark
Closed/in-person Exam (Centrally scheduled)
(TR) Statistical Mechanics & Solid State II
3 hours 80

Module feedback

'Feedback’ at a university level can be understood as any part of the learning process which is designed to guide your progress through your degree programme. We aim to help you reflect on your own learning and help you feel more clear about your progress through clarifying what is expected of you in both formative and summative assessments.

A comprehensive guide to feedback and to forms of feedback is available in the Guide to Assessment Standards, Marking and Feedback. This can be found at:

The School of Physics, Engineering & Technology aims to provide some form of feedback on all formative and summative assessments that are carried out during the degree programme. In general, feedback on any written work/assignments undertaken will be sufficient so as to indicate the nature of the changes needed in order to improve the work. Students are provided with their examination results within 25 working days of the end of any given examination period. The School will also endeavour to return all coursework feedback within 25 working days of the submission deadline. The School would normally expect to adhere to the times given, however, it is possible that exceptional circumstances may delay feedback. The School will endeavour to keep such delays to a minimum. Please note that any marks released are subject to ratification by the Board of Examiners and Senate. Meetings at the start/end of each semester provide you with an opportunity to discuss and reflect with your supervisor on your overall performance to date.

Our policy on how you receive feedback for formative and summative purposes is contained in our Physics at York Taught Student Handbook

Indicative reading

Statistical Mechanics

Waldram JR: The theory of thermodynamics (Cambridge University Press)***

Bowley R and Sánchez M: Introductory statistical mechanics (Oxford University Press)***

Glazer M and Wark J: Statistical Mechanics: A Survival Guide (Oxford University Press)***

Mandl F: Statistical physics (Wiley)**

Reif F: Fundamentals of statistical and thermal physics (McGraw-Hill)**

Blundell SJ and KM: Concepts in Thermal Physics (Oxford University Press)*

Swendsen RJ: An Introduction to Statistical Mechanics and Thermodynamics (Oxford University Press 2012)*

Solid State II

C. Kittel: Introduction to Solid State Physics (Wiley and Sons)

N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publishing)

H. Ibach and H. Lüth: Solid-State Physics – An Introduction to Principles of Materials Science (Springer-Verlag)

The information on this page is indicative of the module that is currently on offer. The University is constantly exploring ways to enhance and improve its degree programmes and therefore reserves the right to make variations to the content and method of delivery of modules, and to discontinue modules, if such action is reasonably considered to be necessary by the University. Where appropriate, the University will notify and consult with affected students in advance about any changes that are required in line with the University's policy on the Approval of Modifications to Existing Taught Programmes of Study.