Accessibility statement

Robot Kinematics and Dynamics - ELE00150M

« Back to module search

  • Department: Electronic Engineering
  • Module co-ordinator: Dr. Hadi El Daou
  • Credit value: 20 credits
  • Credit level: M
  • Academic year of delivery: 2023-24
    • See module specification for other years: 2024-25

Module summary

This module introduces students to Computer-Aided Design (CAD) fundamentals, and instructs students on how to formulate and solve kinematics and dynamics models for robots and other mechanical systems with a particular focus on robotic manipulation and interaction with objects. It enables students to design and construct mechanical systems that function under programmed mechatronic control to perform complex manipulation tasks.

Module will run

Occurrence Teaching period
A Semester 2 2023-24

Module aims

Subject content aims:

  • to provide technical skills in the design and construction of multiple degree of freedom robots

  • to provide technical skills in the programming of kinematic and dynamic control

  • to provide an understanding of the limitations of physical modelling and solution of robots

Graduate skills aims:

  • To provide a context for the application of taught knowledge in an engineering setting

  • To demonstrate the appreciation of scientific and engineering methods and techniques

Module learning outcomes

Subject content learning outcomes:

After successful completion of this module, students will:

  • Be able to describe modelling of mobile robots and robot manipulators.

  • Be able to control a robot arm, being aware of the kinematic and dynamic aspects.

  • Be able to perform grasping and placing operations with sensor feedback for control.

Graduate skills learning outcomes:

After successful completion of this module, students will:

  • Be able to express basic robotics concepts concisely and accurately and comment on their applications and limitations.

  • Be able to select, adapt, and apply a range of mechatronics technologies for the design, development, and control of advanced robots.


Task Length % of module mark
N/A 80
Oral presentation/seminar/exam
Oral presentation/seminar/exam
N/A 20

Special assessment rules


Additional assessment information

The coursework builds on content from the practicals, so by completing the labs, students will gain the skills and experience necessary to do the coursework. The coursework is broken down into four phases of practical work derived from skills developed in the laboratory that are assessed through both review of the program code submitted by students and commented appropriately for their robots, and through critical observation of the quality and performance of their robots while completing the tasks set for them in the laboratory. A fifth phase of work requires the students to present the design and construction work they have done, explain the problems they have solved, and critically reason about the quality of their results to their supervisors and peers, followed by the demonstration of their knowledge in a question and answer session.


Task Length % of module mark
N/A 80
Oral presentation/seminar/exam
Oral presentation/seminar/exam
N/A 20

Module feedback

'Feedback’ at a university level can be understood as any part of the learning process which is designed to guide your progress through your degree programme. We aim to help you reflect on your own learning and help you feel more clear about your progress through clarifying what is expected of you in both formative and summative assessments. A comprehensive guide to feedback and to forms of feedback is available in the Guide to Assessment Standards, Marking and Feedback.

The School of PET aims to provide some form of feedback on all formative and summative assessments that are carried out during the degree programme. In general, feedback on any written work/assignments undertaken will be sufficient so as to indicate the nature of the changes needed in order to improve the work. The School will endeavour to return all exam feedback within the timescale set out in the University's Policy on Assessment Feedback Turnaround Time. The School would normally expect to adhere to the times given, however, it is possible that exceptional circumstances may delay feedback. The School will endeavour to keep such delays to a minimum. Please note that any marks released are subject to ratification by the Board of Examiners and Senate. Meetings at the start/end of each term provide you with an opportunity to discuss and reflect with your supervisor on your overall performance to date.

Formative Feedback:

Lab work with spoken feedback and problem-solving, and immediate help given by lab demonstrators during lab sessions.

Workshops held every week that allow students to ask questions and get immediate feedback on their progress in lecture study and coursework.

Summative Feedback:

Feedback forms with a detailed breakdown of grades provided at the assessment of coursework which occurs at the end of term, returned to the students within standard university guidelines with grades.

Indicative reading

Fundamentals for control of robotic manipulators, Koivo, John Wiley, 1989.

The information on this page is indicative of the module that is currently on offer. The University is constantly exploring ways to enhance and improve its degree programmes and therefore reserves the right to make variations to the content and method of delivery of modules, and to discontinue modules, if such action is reasonably considered to be necessary by the University. Where appropriate, the University will notify and consult with affected students in advance about any changes that are required in line with the University's policy on the Approval of Modifications to Existing Taught Programmes of Study.