Accessibility statement

Nanoscale - PHY00062H

« Back to module search

  • Department: Physics
  • Module co-ordinator: Dr. Steve Tear
  • Credit value: 10 credits
  • Credit level: H
  • Academic year of delivery: 2020-21

Related modules

Co-requisite modules

  • None

Prohibited combinations

  • None

Additional information

Please note, students wishing to take this module should have take Thermodynamics and Solid State II - or an appropriate equivalent.

Module will run

Occurrence Teaching cycle
A Autumn Term 2020-21

Module aims

Analysing the Nanoscale course presents an overview to the current interest and challenges in the burgeoning area of nanoscience and nanotechnology, and introduces you to some of the state-of-the-art techniques required to characterise materials on the nanoscale. Nanoscience and nanotechnology is defined as relating to the study and creation of structures which have dimensions of less than 100 nanometres. This course will focus on two main themes:

(i) understanding some of the properties of solid materials when dimensions are reduced to nanometre length scales; and

(ii) the principles underlying, and application of, some key characterisation and analysis instruments and techniques which enable the study of solid materials on the nano to atomic scale.

Module learning outcomes

At the end of this module successful students will be able to:

  • Discuss some of the motivations, benefits and challenges which arise when the dimensions of structures become <100nm.
  • Describe the role and significance of crystalline surfaces and interfaces in nanostructures. Explain the use and merits of electrons to probe surfaces.
  • Explain, and have some quantitative understanding of, some of the basic elastic and inelastic interactions of energetic electrons with solids.
  • Explain the principal operation of the SEM, and the physics, some quantitatively, underpinning the SEM.
  • Outline the advantages and limitations of SEM for surfaces and nanostructures analysis.
  • Explain the principal operation of the instruments and different imaging modes of STM and AFM, and the physics, some quantitatively, underpinning the STM and AFM.
  • Outline the advantages and limitations of STM & AFM for surfaces and nanostructures analysis.
  • Describe some applications of STM, AFM and SEM analysis to materials surfaces.
  • Discuss the use of spectroscopic techniques, Auger electron, electron energy loss, X-ray photoelectron spectroscopy, and X-ray microanalysis to study surfaces, their merits and limitations.
  • Explain why surface and nanoparticle properties can be significantly different to the bulk and in some cases in what way.
  • Describe the processes of interface formation and epitaxial growth at an atomistic level.
  • Explain the principal operation of the TEM and STEM, and the physics, some quantitatively, underpinning the TEM/STEM, and have some quantitative understanding of the imaging modes
  • Discuss the advantages and limitations of TEM/STEM for nanostructure analysis.
  • Describe some applications of TEM in the analysis of nanostructures.

Module content


1. Introduction to nanotechnology

  • An overview of nanotechnology.
  • Several examples given to illustrate the broad nature of nanotechnology. The benefits and the challenges in materials and electronics as dimensions get smaller.

2. Fundamental & technological interest in surfaces and interfaces

  • Motivation for studying surfaces and interfaces. Relationship to nanotechnology.
  • Crystal surfaces, nanoparticles and their properties, microstructure.
    • Role of surfaces in heterogeneous interface formation. Ultra high vacuum

3. Sensitivity of different probes for nanoscale analysis of solid materials

  • Overview of limitations and advantages of different probes for nanoscale analysis: atoms, ions, photons, and electrons
  • Interaction and detection of scattered electrons from solids: elastic and inelastic mean free path, attenuation length, elastic scattering cross section, stopping power.

4. Spectroscopy

  • Spectroscopic techniques: electron spectroscopy, loss spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, x-ray microanalysis
  • Examples of applications

5. Imaging and analysing surfaces: the SEM

  • Scanning electron microscopy: principles of instrument, secondary electrons, backscattered electrons, imaging modes,
  • Interaction volume and dependence on incident electron energy.
  • Sampling volume and dependence of electron detection energy.
  • Limitations and advantages of SEM. Spatial resolution.
  • X-ray microanalysis in the SEM: principles, spatial resolution, thin-film analysis.
  • Examples of applications

6. Imaging and analysing surfaces: the STM

  • Scanning tunnelling microscopy: principles, imagine modes, true local probe for analysis of nanostructures with atomic resolution. Pros and cons.
  • Scanning tunnelling spectroscopy: relationship to local density of states.
  • Examples of application to semiconductor and metallic surfaces.

7. Imaging and analysing surfaces: the AFM

  • Principles of AFM: imaging modes: contact, intermittent and non-contact. Atomic resolution in non-contact modes. Discussion of other scanning probe techniques, e.g. magnetic force microscope, force probes
  • Examples of applications: insulator surface, biophysics

8. Imaging and analysing nanoparticles and interfaces: the TEM and STEM

  • Principles of TEM and STEM instruments: imaging modes, spectroscopy, specimen requirements
  • Limitations and advantages of TEM/STEM for nanostructure analysis, spatial resolution, aberration correction.
  • X-ray microanalysis in the TEM/STEM
  • Examples of applications


Task Length % of module mark
24 hour open exam
N/A 86
Nanoscale PPQs
N/A 14

Special assessment rules



Task Length % of module mark
24 hour open exam
N/A 86

Module feedback

Exams - You will receive exam marks from eVision. Detailed model answers will be provided on the internet. You should discuss your performance with your supervisor.

Advice on academic progress - Individual meetings with supervisor will take place where you can discuss your academic progress in detail.

Assignments - Feedback on assignments will be returned within four weeks of the assignment deadline.

Indicative reading

Peter J. Goodhew, John Humphreys, Richard Beanland: Electron microscopy and analysis. Taylor & Francis, 3rd edn. **

M Prutton: Introduction to Surface Physics. OUP **

Charles P. Poole, Jr., Frank J. Owens: Introduction to nanotechnology. Wiley.*

Ashcroft N W & Mermin N D: Solid state physics (Saunders College) **

The information on this page is indicative of the module that is currently on offer. The University is constantly exploring ways to enhance and improve its degree programmes and therefore reserves the right to make variations to the content and method of delivery of modules, and to discontinue modules, if such action is reasonably considered to be necessary by the University. Where appropriate, the University will notify and consult with affected students in advance about any changes that are required in line with the University's policy on the Approval of Modifications to Existing Taught Programmes of Study.

Coronavirus (COVID-19): changes to courses

The 2020/21 academic year will start in September. We aim to deliver as much face-to-face teaching as we can, supported by high quality online alternatives where we must.

Find details of the measures we're planning to protect our community.

Course changes for new students