Gathering empirical evidence relying on our strong expertise in panel data, time series econometrics and forecasting.
Panel Data Econometrics
Burridge, P., Iacone, F., and Lazarová, Š. (2015). Spatial effects in a common trend model of US city-level CPI. Regional Science and Urban Economics, 54, 87-98. Paper
Chen, J. (2019). Estimating latent group structure in time-varying coefficient panel data models. The Econometrics Journal, 22(3), pp.223-240.
Chen, J., Gao, J., and Li, D. (2013). Estimation in partially linear single-index panel data models with fixed effects. Journal of Business & Economic Statistics, 31(3), 315-330. Paper
Chen, J., Gao, J., and Li, D. (2013). Estimation in single-index panel data models with heterogeneous link functions. Econometric Reviews, 32(8), 928-955. Paper
Chen, J., Li, D. and Xia, Y. (2019). Estimation of a rank-reduced functional-coefficient panel data model with serial correlation. Journal of Multivariate Analysis, 173, pp.456-479.
Chen, J., Shin, Y. and Zheng, C. (2021). Estimation and inference in heterogeneous spatial panels with a multifactor error structure. Journal of Econometrics.
Cho, J.S., Greenwood‐Nimmo, M. and Shin, Y. (2021). Recent developments of the autoregressive distributed lag modelling framework. Journal of Economic Surveys.
Coroneo, L., Jackson, L.E. and Owyang, M.T. (2020). International stock comovements with endogenous clusters. Journal of Economic Dynamics and Control, 116, p.103904.
Dang, V. A., Kim, M., and Shin, Y. (2015). In search of robust methods for dynamic panel data models in empirical corporate finance. Journal of Banking & Finance, 53, 84-98. Paper
Dang, V. A., Kim, M., and Shin, Y. (2014). Asymmetric adjustment toward optimal capital structure: Evidence from a crisis. International Review of Financial Analysis, 33, 226-242. Paper
Greenwood-Nimmo, M., Nguyen, V.H. and Shin, Y., 2021. Measuring the connectedness of the global economy. International Journal of Forecasting, 37(2), pp.899-919.
Halunga, A.G., Orme, C.D. and Yamagata, T. (2017). A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models. Journal of Econometrics, 198(2), pp.209-230.
Kapetanios, G., Mitchell, J., and Shin, Y. (2014). A nonlinear panel data model of cross-sectional dependence. Journal of Econometrics, 179(2), 134-157. Paper
Kapetanios, G., Serlenga, L. and Shin, Y. (2021). Estimation and inference for multi-dimensional heterogeneous panel datasets with hierarchical multi-factor error structure. Journal of Econometrics, 220(2), pp.504-531.
Mastromarco, C., Serlenga, L., and Shin, Y. (2016). Modelling Technical Efficiency in Cross Sectionally Dependent Stochastic Frontier Panels. Journal of Applied Econometrics, 31(1), 281-297. Paper
Norkutė, M., Sarafidis, V., Yamagata, T. and Cui, G. (2021). Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure. Journal of Econometrics, 220(2), pp.416-446.
Omay, T., Hasanov, M. and Shin, Y. (2018). Testing for unit roots in dynamic panels with smooth breaks and cross-sectionally dependent errors. Computational Economics, 52(1), pp.167-193.
Orme, C. D., and Yamagata, T. (2014). A Heteroskedasticity-Robust F-Test Statistic for Individual Effects. Econometric Reviews, 33(5-6), 431-471. Paper
Park, H. and Shin, Y. (2018). The effects of oil price on the Korean economy: A global VAR approach. Emerging Markets Finance and Trade, 54(5), pp.981-991.
Pesaran, M. H., Smith, L. V., and Yamagata, T. (2013). Panel unit root tests in the presence of a multifactor error structure. Journal of Econometrics, 175(2), 94-115. Paper
Seo, M. H., and Shin, Y. (2016). Dynamic panels with threshold effect and endogeneity. Journal of Econometrics, 195(2), 169-186. Paper
Serlenga, L. and Shin, Y. (2021). Gravity models of interprovincial migration flows in Canada with hierarchical multifactor structure. Empirical Economics, 60(1), pp.365-390.
Smith, L. V., Tarui, N. and Yamagata, T. (2021). Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions. Energy Economics, 97, p.105170.
Time Series Econometrics and Forecasting
Chaudhuri, K., Kim, M., and Shin, Y. (2016). Forecasting distributions of inflation rates: the functional auto‐regressive approach. Journal of the Royal Statistical Society: Series A (Statistics in Society), 179(1), 65-102. Paper
Chaudhuri, K., Greenwood‐Nimmo, M., Kim, M., and Shin, Y. (2013). On the Asymmetric U‐Shaped Relationship between Inflation, Inflation Uncertainty, and Relative Price Skewness in the UK. Journal of Money, Credit and Banking, 45(7), 1431-1449. Paper
Chen, S., Härdle, W.K. and Wang, W. (2022). The common and specific components of inflation expectations across European countries. Empirical Economics, 62(2), pp.553-580.
Chen, J., Gao, J., Li, D., and Lin, Z. (2015). Specification testing in nonstationary time series models. The Econometrics Journal, 18(1), 117-136. Paper
Chen, L., Wang, W. and Wu, W.B. (2021). Inference of breakpoints in high-dimensional time series. Journal of the American Statistical Association, pp.1-13.
Cho, J. S., Kim, T. H., and Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modelling framework. Journal of Econometrics, 188(1), 281-300. Paper
Cornea-Madeira, A. (2016). The Explicit Formula for the Hodrick-Prescott Filter in a Finite Sample. Review of economics and statistics, 99(2), 314-318. Paper
Cornea-Madeira, A., Hommes, C. and Massaro, D. (2019). Behavioural heterogeneity in US inflation dynamics. Journal of Business & Economic Statistics, 37(2), pp.288-300.Paper
Coroneo, L. and Iacone, F. (2020). Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics. Journal of Applied Econometrics, 35(4), pp.391-409. Paper
Coroneo, L., Iacone, F., Paccagnini, A. and Monteiro, P.S. (2022). Testing the predictive accuracy of COVID-19 forecasts. International Journal of Forecasting, pp.1-58.
Dees, S., Hashem Pesaran, M., Vanessa Smith, L., and Smith, R. P. (2014). Constructing Multi‐Country Rational Expectations Models. Oxford Bulletin of Economics and Statistics, 76(6), 812-840. Paper
Goliński, A. and Spencer, P. (2021). Modelling the Covid‐19 epidemic using time series econometrics. Health Economics, 30(11), pp.2808-2828.
Goliński, A., & Zaffaroni, P. (2016). Long memory affine term structure models. Journal of Econometrics, 191(1), 33-56. Paper
Greenwood-Nimmo, M., and Shin, Y. (2013). Taxation and the asymmetric adjustment of selected retail energy prices in the UK. Economics Letters, 121(3), 411-416. Paper
Hualde, J., and Iacone, F. (2017). Revisiting inflation in the euro area allowing for long memory. Economics Letters, 156, 145-150. Paper
Hualde, J., and Iacone, F. (2017). Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes. Economics Letters, 150, 39-43. Paper
Hualde, J., and Iacone, F. (2015). Small‐b and Fixed‐b Asymptotics for Weighted Covariance Estimation in Fractional Cointegration. Journal of Time Series Analysis, 36(4), 528-540. Paper
Iacone, F., Leybourne, S. J., and Taylor, A. R. (2013). Testing for a break in trend when the order of integration is unknown. Journal of Econometrics, 176(1), 30-45. Paper
Iacone, F., Leybourne, S. J., and Taylor, A. R. (2013). On the behaviour of fixed-b trend break tests under fractional integration. Econometric Theory, 29(2), 393-418. Paper
Iacone, F., Leybourne, S. J., and Robert Taylor, A. M. (2017). Testing for a Change in Mean under Fractional Integration. Journal of Time Series Econometrics, 9(1). Paper
Park, H., and Shin, Y. (2017). Exploring international linkages using generalised connectedness measures: The case of Korea. International Review of Economics & Finance, 50, 49-64. Paper
Polito, V. and Spencer, P. (2016). Optimal Control of Heteroscedastic Macroeconomic Models. Journal of Applied Econometrics, 31(7), pp.1430-1444.Paper
Thornton, M.A. (2019). Exact discrete representations of linear continuous time models with mixed frequency data. Journal of Time Series Analysis, 40(6), pp.951-967.
Thornton, M. A. (2014). The aggregation of dynamic relationships caused by incomplete information. Journal of Econometrics, 178, 342-351. Paper
Thornton, M. A. (2013). Removing seasonality under a changing regime: Filtering new car sales. Computational Statistics & Data Analysis, 58, 4-14. Paper
Thornton, M. A., and Chambers, M. J. (2017). Continuous time ARMA processes: discrete time representation and likelihood evaluation. Journal of Economic Dynamics and Control, 79, 48-65. Paper
Thornton, M. A., and Chambers, M. J. (2016). The exact discretisation of CARMA models with applications in finance. Journal of Empirical Finance, 38, 739-761. Paper
Thornton, M. A., and Chambers, M. J. (2013). Continuous‐time autoregressive moving average processes in discrete time: representation and embeddability. Journal of Time Series Analysis, 34(5), 552-561. Paper
Wickens, M., and Polito, V. (2014). How useful are DSGE macroeconomic models for forecasting? Open Economies Review, 25(1), 171-193. Paper
Nonparametric and Semiparametric Methods
Boldea, O., Cornea-Madeira, A. and Hall, A.R. (2019). Bootstrapping structural change tests. Journal of Econometrics, 213(2), pp.359-397.Paper
Chen, J., Li, D., Linton, O. and Lu, Z. (2018). Semiparametric ultra-high dimensional model averaging of nonlinear dynamic time series. Journal of the American Statistical Association, 113(522), pp.919-932. Paper
Chen, J., Li, D. and Linton, O. (2019). A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables. Journal of Econometrics, 212(1), pp.155-176.
Chen, J., Li, D., Linton, O., & Lu, Z. (2016). Semiparametric dynamic portfolio choice with multiple conditioning variables. Journal of Econometrics, 194(2), 309-318. Paper
Chen, J., Li, D., Liang, H., & Wang, S. (2015). Semiparametric GEE analysis in partially linear single-index models for longitudinal data. The Annals of Statistics, 43(4), 1682-1715. Paper
Chen, J., Li, D., Wei, L. and Zhang, W. (2021). Nonparametric homogeneity pursuit in functional-coefficient models. Journal of Nonparametric Statistics, 33(3-4), pp.387-416.
Chen, L., Wang, W. and Wu, W.B. (2021). Dynamic semiparametric factor model with structural breaks. Journal of Business & Economic Statistics, 39(3), pp.757-771.
Härdle, W.K., Okhrin, Y. and Wang, W. (2015). Uniform confidence bands for pricing kernels. Journal of Financial Econometrics, 13(2), pp.376-413.
Härdle, W.K., Wang, W. and Yu, L. (2016). Tenet: Tail-event driven network risk. Journal of Econometrics, 192(2), pp.499-513.
Iacone, F. and Lazarová, Š. (2019). Semiparametric detection of changes in long range dependence. Journal of Time Series Analysis, 40(5), pp.693-706.
Iacone, F., Nielsen, M.Ø. and Taylor, A.R. (2021). Semiparametric tests for the order of integration in the possible presence of level breaks. Journal of Business & Economic Statistics, pp.1-17.
Estimation theory and inference
Abadir, K.M. and Cornea-Madeira, A. (2019). Link of moments before and after transformations, with an application to resampling from fat-tailed distributions. Econometric Theory, 35(3), pp.630-652. Paper
Ando, T., Greenwood-Nimmo, M. and Shin, Y. (2022). Quantile Connectedness: Modelling Tail Behaviour in the Topology of Financial Networks. Management Science.
Bailey, N., Pesaran, M.H. and Smith, L. V. (2019). A multiple testing approach to the regularisation of large sample correlation matrices. Journal of Econometrics, 208(2), pp.507-534.Paper
Boldea, O., Cornea-Madeira, A. and Hall, A.R. (2019). Bootstrapping structural change tests. Journal of Econometrics, 213(2), pp.359-397.
Cai, C.X., Kim, M., Shin, Y. and Zhang, Q. (2019). FARVaR: Functional Autoregressive Value-at-Risk. Journal of Financial Econometrics, 17(2), pp.284-337.
Chambers, M.J., McCrorie, J.R. and Thornton, M.A.(2018). Continuous time modelling based on an exact discrete time representation. In Continuous time modelling in the behavioural and related sciences (pp. 317-357). Springer, Cham.
Cho, J.S., Greenwood‐Nimmo, M. and Shin, Y. (2021). Recent developments of the autoregressive distributed lag modelling framework. Journal of Economic Surveys.
Chen, J. (2019). Estimating latent group structure in time-varying coefficient panel data models. The Econometrics Journal, 22(3), pp.223-240.
Chen, J., Li, D. and Linton, O. (2019). A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables. Journal of Econometrics, 212(1), pp.155-176.
Chen, J., Li, D. and Xia, Y. (2019). Estimation of a rank-reduced functional-coefficient panel data model with serial correlation. Journal of Multivariate Analysis, 173, pp.456-479.
Chen, J., Li, D., Wei, L. and Zhang, W. (2021). Nonparametric homogeneity pursuit in functional-coefficient models. Journal of Nonparametric Statistics, 33(3-4), pp.387-416.
Chen, J., Shin, Y. and Zheng, C. (2021). Estimation and inference in heterogeneous spatial panels with a multifactor error structure. Journal of Econometrics.
Chen, L., Wang, W. and Wu, W.B. (2021). Inference of breakpoints in high-dimensional time series. Journal of the American Statistical Association, pp.1-13.
Chernozhukov, V., Härdle, W.K., Huang, C. and Wang, W. (2021). Lasso-driven inference in time and space. The Annals of Statistics, 49(3), pp.1702-1735.
Cho, J. S., Kim, T. H., and Shin, Y. (2015). Quantile cointegration in the autoregressive distributed-lag modelling framework. Journal of Econometrics, 188(1), 281-300. Paper
Choi, I., Lin, R. and Shin, Y. (2021). Canonical correlation-based model selection for the multilevel factors. Journal of Econometrics.
Cornea-Madeira, A., & Davidson, R. (2015). A parametric bootstrap for heavy-tailed distributions. Econometric Theory, 31(3), 449-470. Paper
Dang, V. A., Kim, M., and Shin, Y. (2015). In search of robust methods for dynamic panel data models in empirical corporate finance. Journal of Banking and Finance, 53, 84-98. Paper
Norkutė, M., Sarafidis, V., Yamagata, T. and Cui, G. (2021). Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure. Journal of Econometrics, 220(2), pp.416-446.
Orme, C. D., and Yamagata, T. (2014). A Heteroskedasticity-Robust F-Test Statistic for Individual Effects. Econometric Reviews, 33(5-6), 431-471. Paper
Pesaran, M. H., Smith, L. V., and Yamagata, T. (2013). Panel unit root tests in the presence of a multifactor error structure. Journal of Econometrics, 175(2), 94-115. Paper
Uematsu, Y. and Yamagata, T. (2022). Estimation of sparsity-induced weak factor models. Journal of Business & Economic Statistics, pp.1-15.
Uematsu, Y. and Yamagata, T. (2021). Inference in sparsity-induced weak factor models. Journal of Business & Economic Statistics, pp.1-34.
Zhu, X., Wang, W., Wang, H. and Härdle, W.K. (2019). Network quantile autoregression. Journal of Econometrics, 212(1), pp.345-358.