Dr Jason Lynam

01904 322534
Email: jason.lynam@york.ac.uk

Transition Metal Organometallic Chemistry

Outer-sphere Electrophilic Fluorination of Organometallic Compounds

The formation of carbon-fluorine bonds is crucial the synthesis of a vast number of pharmaceuticals and agrochemicals. Given that there are very few naturally occurring compounds with C-F bonds, highly selective and simple methods are required to introduce fluorine atoms into organic molecules. In collaboration with Dr John Slattery we have developed an entirely new mechanic pathway to achieve this goal. As shown below, the reaction of simple half-sandwhich ruthenium complexes with eletrophilic fluorinainte agents results in direct C-F bond formation, circumventing the formation of metal-fluorine bonds which often occurs in related transition metal-catalysed reactions.

 OSEF graphic

This has, in turn, permitted us to develop the synthetic of the first stable fluorinated alkyne in which the ruthenium essentially acts as sterically demanind protecting group.

 

Lead References Lucy M. Milner, Natalie E. Pridmore, Adrian C. Whitwood, Jason M. Lynam and John M. Slattery, J. Am. Chem. Soc. 2015, 137, 10753; Lucy M. Milner, Lewis M. Hall, Natalie E. Pridmore, Matthew K. Skeats, Adrian C. Whitwood, Jason M. Lynam and John M. Slattery, Dalton Trans., 2016, 45, 1717, Lewis M. Hall, David P. Tew, Natalie E. Pridmore, Adrian C. Whitwood, Jason M. Lynam, John M. Slattery, Angew. Chemie Int. Ed. 2017, 56, 7551.

 

New Catalysts for the Activation of Pyridine using Pyridylidene Intermediates

We have recently developed new methods for the direct C-H functionalisation of pyridine and its derivatives. Using half-sandwich ruthenium complexes, such as 1 we have demonstrated that it is possible to formally insert an alkyne into the C-H bond of pydridine (Scheme 1).1 The key mechanistic step in this process revolves around the formation of a remarkable class of ligands, pyridylidenes, which are an interesting class of metal carbene complexes. We have been able to isolate complexes containing these ligands (2) and (in collaboration with Dr John Slattery) used density functional theory to show that pyridylidene ligands are indeed key intermediates in the C-H bond activation and C-C bond formation steps. 

 

 Scheme1

Furthermore, this study has allowed us to develop a one-pot protocol for this reaction which uses a commercially availabe ruthenium precursor and has allowed for facile evaluation of the factor affecting the efficeny of this reaction.  

Lead References David G Johnson, Jason M Lynam, Neetisha S Mistry, John M Slattery, Robert J Thatcher, and Adrian C Whitwood, J. Am. Chem. Soc., 2013, 135, 2222. Jason M. Lynam, Lucy M. Milner, Neetisha S. Mistry, John M. Slattery, Sally R. Warrington and Adrian C. Whitwood, Dalton Trans., 2014, 43, 4565

Transition Metal Vinylidene Chemistry

A further area of research is focused around the organometallic chemistry of the transition metal elements and in particular, the understanding the chemistry of alkynes within the coordination sphere of metals. The overall aim of this research is to utilise the reactivity of transition metal complexes to perform complex organic transformation in a selective manner. One example of this research is shown in Scheme 2. We have examined the conversion of the rhodium alkyne complex 3 into the resulting alkynyl hydride 4 and ultimately the vinylidene complex 5. Importantly, we were able to perform a kinetic analysis on the data (Figure 2) and demonstrate that 3 and 4 are in equilibrium and the formation of 5 is essentially irreversible. Central to this approach is a colloboration with Dr John Slattery in which the synergic relationship between experimental and theoretical studies may be used to gain valuble mechanistic insight. 

scheme 2
Scheme 2

figure 2
Figure 2

We have also investigated the role which a coordinate acetate ligand may affect the chemistry of transition metal alkyne and vinylidene ligand. A study of the system based on [Ru(κ2-OAc)2(PPh3)2] demonstrated that the reaction with alkynes proceeds far more rapidly than the corresponding chloride derivatives. The princple reason for the acceleration is the coordinated acetate ligand acting to both deprotonate and repronate the coordinated alkyne. This Ligand-Assisted Proton Shuttle (LAPS) process signficnaly lowers the barrier to the formation of the vinylidene complex (Figure 3). The [Ru(κ2-OAc)2(PPh3)2] fragment is also an excellent reporter for the electronic properties of a number of ligands and we have employed the changes in the spectroscopic and metric properties of this complex to evaluate the donor/acceptor properties of a range of ligands.6

LAPS

                                                     Scheme 3

In collaboration with Dr Natalie Fey (Univeristy of Bristol) we have also demonstrated how it is possible to use computational methods to evaluate the key factors involved in the stabilisation of transition metal vinylidene compelxes when compared to their alkyne tautomers. By calucalting the strucutres and energies of a wide number of different metal complexes, alkynes and different ligand combiations it is possible to extrapolate the key factors needed to stabilise each tautomer. 

Lead References Bernhard Breit, Urs Gellrich, Timothy Li, Jason M. Lynam, Lucy M. Milner, Natalie E. Pridmore, John M. Slattery and Adrian C. Whitwood, Dalton Trans., 2014, 43, 11277. Oliver J. S. Pickup , Iman Khazal , Elizabeth J. Smith , Adrian C. Whitwood , and Jason M. Lynam, Keshan Bolaky , Timothy C. King, Benjamin W. Rawe, and Natalie Fey Organometallics, 2014, 33, 1751. 

CO-Releasing Molecules (CO-RMs)

There has been considerable recent interest in the beneficial effects of CO in biological systems. In particular, at low concentrations, CO has been shown to be a vasorelaxant and it also exhibits anti-inflammatory properties. CO gas does not, however, provide a long-term therapeutic solution to exploiting these beneficial properties. Therefore, in collaboration with Professor Ian Fairlamb we are investigating a range of metal carbonyl compounds designed to liberate CO under biological conditions. These have primarily focused on preparation of new metal carbonyls which contain bio-compatible ligands and on attempting to find the factors which affect CO-release from metal complexes in biological systems.

‌Lead References Jonathan S. Ward, Jason M. Lynam, James Moir, Ian J. S. Fairlamb, Chem. Eur J., 2014, 20, 15061; Jason M. Lynam, Jonathan S Ward, Joshua T W Bray, Benjamin J. Aucott, Conrad Wagner, Natalie E Pridmore, Adrian C Whitwood, James W B Moir and Ian J S Fairlamb, Eur. J. Inorg. Chem., 2016, 5044; Jonathan S. Ward, Rebecca Morgan, Jason M. Lynam, Ian J. S. Fairlamb and James W. B. Moir, Med Chem. Comm., 2017, 8, 346.