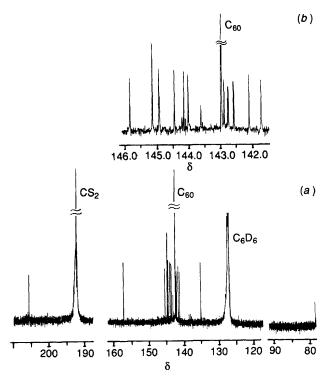
Transition Metal-carbonyl, -hydrido and - η -Cyclopentadienyl Derivatives of the Fullerene C_{60}


Richard E. Douthwaite, Malcolm L. H. Green,* Adam H. H. Stephens and John F. C. Turner Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR

Monoadduct derivatives of the fullerene C_{60} , namely $[Fe(CO)_4(\eta^2-C_{60})]$, $[Mo(\eta-C_5H_4R)_2(\eta^2-C_{60})]$ (R = H, Buⁿ), $[Ta(\eta^2-C_5H_5)_2(\eta^2-C_{60})H]$ and $[Rh(Ph_3P)_2(CO)(\eta^2-C_{60})H]$, are described.

The recent availability of gram quantities of the fullerene C_{60} has facilitated the study of the reactivity of this intriguing molecule. We have set out to develop the organometallic chemistry of fullerenes. The organometallic compounds $[C_{60}\{M(PEt_3)_2\}_n]$ (n=1 or 6, and M=Ni, Pd, Pt), $[M(PPh_3)_2(\eta^2-C_{60})]$ (M=Ni, Pd, Pt), $[Ir(CO)(PPh_3)_2(\eta^2-C_{60})Cl]$, $[Ir(\eta^5-C_9H_7)(CO)(\eta^2-C_{60})]$, $[C_{60}\{OsO_4(4-Bu^tC_5H_4N)_2\}_n]$ $(n=1 \text{ or } 2)^{6.7}$ have been described previously. Here we report new organometallic C_{60} derivatives of iron, molybdenum, tantalum and rhodium.

Addition of a deep-purple solution of C_{60} in benzene to a suspension of $[Fe_2(CO)_9]$ in benzene at room temp. for 1 h causes a steady colour change to deep red. After removal of the solvent and washing with pentane, a dark-red microcrystalline compound $[Fe(CO)_4(\eta^2-C_{60})]$ 1 was isolated in high yield. The compound 1 is soluble in toluene, benzene, CS_2 and CH_2Cl_2 . These solutions are thermally unstable at room temp. and liberate C_{60} over periods of up to 24 h. Compound 1 and all the other new compounds described in this work were fully characterized by spectroscopic and analytical data.† The ^{13}C

NMR spectrum of 1 is given in Fig. 1 and shows one resonance assignable to the carbonyl groups and a further 17 peaks assignable to the C_{60} moiety. The solution IR spectrum of 1

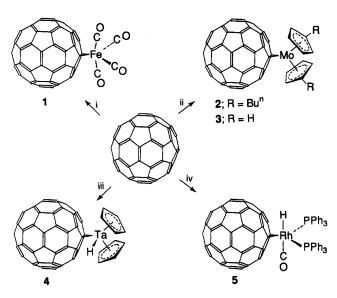


Fig. 1 (a) 13 C NMR spectrum of 1 in CS₂ + C₆D₆ with Cr(acac)₃ (Hacac = pentane-2,4-dione) added as a relaxant; (b) expansion in the region δ 141–147

[†] Selected spectroscopic and analytical data: Satisfactory elemental analysis has been obtained for all the new compounds. 1, IR (CS₂) v_{CO}/cm^{-1} 2096, 2033, 2005, 1974; ¹³C NMR (CS₂ + C₆D₆) δ 136–158 (C. 16 C. right) 70 (c. 13 cm/s cm/s cC) δ (CS₂ + C₆D₆) δ 106–158

⁽s, 16 C_{60} signals), 79 (s, sp³ carbons C_{60}), 206 (s, Fe(CO)₄). 2, ¹H NMR (CS₂ + C_6D_6) δ 0.9 (t, 3 H, CH₂CH₂CH₂CH₃), 1.4 (m, 2 H, CH₂CH₂CH₂CH₃), 1.6 (m, 2 H, CH₂CH₂CH₂CH₃), 2.3 (t, 2 H, CH₂CH₂CH₂CH₃), 4.7 (apparent t, 2 H, BuⁿC₅H₄), 5.2 (apparent t, 2 H, BuⁿC₅H₄); ¹³C NMR (CS₂ + C_6D_6) δ 15 (s, CH₂CH₂CH₂CH₃), 24 (s, CH₂CH₂CH₂CH₃), 31 (s, CH₂CH₂CH₂CH₃), 35 (s, CH₂CH₂CH₂CH₃), 93, 94 (s, BuⁿCC₄H₄), 105 (BuⁿCC₄H₄), 135–170 (s, 17 C_{60} signals).

^{5,} IR (nujol mull) v/cm $^{-1}$ 1986 (CO), 2056 (RhH); 1 H NMR (C_6D_6) δ 7.6, 6.9 (br, 30 H, PPh₃), -9.1 (t, 1 H, RhH); 13 C NMR (C_6D_6) δ 128, 129, 130, 133 (s, PPh₃) 141–145 (br, C_{60}); 31 P NMR (C_6D_6) δ 36 (d, PPh₃).

Scheme 1 Reagents and conditions: i, Fe₂(CO)₉ (1 equiv.) in benzene, room temp., (>80%); ii, [Mo(η -RC₅H₄)₂H₂] (1 equiv.) in toluene, room temp., (>80%); iii, [Ta(η -C₅H₅)₂H₃] (1 equiv.) in benzene, room temp., (>90%); iv, Rh(PPh₃)₃(CO)H (1 equiv.) in toluene, room temp., (>95%)

shows four bands in the carbonyl stretching region. These data are entirely consistent with a molecule possessing $C_{2\nu}$ symmetry, with C_{60} occupying an equatorial position at the iron centre and with the carbonyls undergoing rapid exchange on the NMR timescale between axial and equatorial positions. The C_{60} moiety in 1 is easily displaced and addition of YPh₃ (Y = P, As, Sb) to 1 gives C_{60} , Fe(CO)₄YPh₃ and Fe(CO)₃(YPh₃)₂ over a period of approximately 2 h.

Treatment of a solution of C_{60} in toluene at room temp. with the dihydride $[Mo(\eta-C_5H_4Bu^n)_2H_2]$ for 24 h gives a deep emerald-green solution from which the green compound $[Mo(\eta-C_5H_4Bu^n)_2(C_{60})]$ 2 may be isolated in near quantitative yield. The data of 2† are entirely consistent with the structure proposed in Scheme 1. Thus, the ^{13}C NMR spectrum of 2 shows 17 resonances assignable to the C_{60} moiety and a further 7 resonances due to the $C_5H_4Bu^n$ ligands. The compound 2 is slightly soluble in hexane, moderately soluble in benzene and toluene and very soluble in C_2 . Solutions in tetrahydrofuran decompose with release of C_{60} over a period of hours. Treatment of C_{60} with $[Mo(\eta-C_5H_5)_2H_2]$ gives the analogue of 2, namely $[Mo(\eta-C_5H_5)_2(\eta^2-C_{60})]$ 3, which is markedly less soluble than 2 and dissolves only very slightly in toluene.

Treatment of C_{60} with a solution of $[Ta(\eta-C_5H_5)_2H_3]$ in benzene at room temp. over 12 h causes the precipitation of $[Ta(\eta-C_5H_5)_2(\eta^2-C_{60})H]$ 4 as a brown microcrystalline solid in near quantitative yield. The IR spectrum of 4 shows a band (1791 cm⁻¹) assignable to the tantalum-hydrogen stretch and the band characteristic for C_{60} at 527 cm⁻¹ becomes a doublet in 4 (518 and 529 cm⁻¹) as expected for a lower symmetry C_{60} group. Compound 4 is only slightly soluble in benzene and toluene. The solid state ¹³C NMR of 4 shows a broad featureless band centred at δ 146 assignable to the C_{60} fragment and a peak at δ 99 assignable to the cyclopentadienyl ligands. Hydrogen was presumed to be liberated as H_2 , although no gas evolution was observed during the formation of 2, 3 or 4.

On addition of 1 equiv. of [Rh(PPh₃)₃(CO)H] in toluene to C₆₀, also in toluene, an emerald-green solution develops instantaneously. Subsequent removal of solvent, extraction with tetrahydrofuran and precipitation with diethyl ether yields a dark-green powder of [Rh(PPh₃)₂(CO)(η²-C₆₀)H] 5 in high yield. The IR spectrum of 5 exhibits one carbonyl stretch (1986 cm⁻¹) and one rhodium-hydride stretch (2056 cm⁻¹), both of which are shifted to higher wavenumbers in comparison with the corresponding bands in [Rh(PPh₃)₃(CO)H]. The bands characteristic for C_{60} are observed at 516 and 525 cm⁻¹. The ¹H NMR spectrum of 5 shows 2 broad peaks assignable to the phenyl groups at δ 6.95 and 7.61 and a triplet at δ -9.09 $[^2J(^{31}P^{-1}H) = 9 \text{ Hz}]$ assigned to the hydride ligand. The value of this coupling constant is indicative of a cis arrangement of the tertiary phosphine and hydride ligands around the rhodium. No resolvable coupling between the hydride ligand and the rhodium was observed. The ³¹P NMR spectrum of 5 shows a doublet at $\delta \ 36 \ [^{1}J(^{103}Rh-^{31}P) = 140 \ Hz]$. The ^{13}C NMR spectrum of 5 shows bands characteristic for the triphenyl phosphine ligands and a broad signal at δ 141–145, which may be assigned to a fluxional C₆₀ group. No signal was observed for the CO ligand. It is interesting that the C₆₀ molecule does not insert into the Rh-H bond. Also, we have found that 5 is an effective catalyst for the hydroformylation of ethene and propene.8

In conclusion, we have demonstrated that C_{60} is a highly reactive molecule towards a variety of organometallic reagents and have reported the first examples of C_{60} derivatives of a simple transition metal carbonyl, metallocenes and transition metal hydrido derivatives. The reactions and proposed structures are shown in Scheme 1.

We are grateful to Dr R. Claridge for help in acquiring the ¹³C NMR spectrum of 1. We also wish to thank the SERC for studentships to R. E. D., A. H. H. S. and J. F. C. T.

Received, 21st June 1993; Com., 3/03574C

References

- R. Taylor, J. P. Hare, A. K. Abdul-Sada and H. W. Kroto, J. Chem. Soc., Chem. Commun., 1990, 1423; W. Krätschmer, L. D. Lamb, K. Fostiropoulous and D. R. Muffman, Nature, 1990, 347, 354.
- P. J. Fagan, J. C. Calabrese and B. Malone, Acc. Chem. Res., 1992, 25, 134.
- 3 P. J. Fagan, J. C. Calabrese and B. Malone, Science, 1991, 252, 1160.
- 4 A. L. Balch, V. J. Catalano and J. W. Lee, *Inorg. Chem.*, 1991, 30, 3980.
- 5 R. S. Koefed, M. F. Hudgens and J. R. Shapley, J. Am. Chem. Soc., 1991, 113, 8957.
- 6 J. M. Hawkins, A. Meyer, T. A. Lewis, S. Loren and F. J. Hollander, Science, 1991, 252, 312.
- 7 J. M. Hawkins, A. Meyer, T. A. Lewis, U. Bunz, R. Nunlist, G. E. Ball, T. W. Ebbesen and K. Tanigaki, J. Am. Chem. Soc., 1992, 114, 7954.
- 8 J. B. Claridge, R. E. Douthwaite, M. L. H. Green, R. M. Lago, S. C. Tsang and A. P. E. York, presented in part at the Fullerenes 1993 Colloquium, Santa Barbara, USA and submitted to J. Mol. Catal.