

Can Cost-effectiveness Analysis Address Vertical Equity Concerns?

Mira Johri Jeffrey S Hoch Greg S Zaric Ahmed Bayoumi

Financial Acknowledgements

- MJ received support from a Career Scientist Award from the Canadian Institute of Health Research.
- JSH received support from a Career Scientist Award from the Ontario Ministry of Health and Long Term Care.
- GSZ received support from the Natural Sciences and Engineering Research Council of Canada.
- AMB received support from a Career Scientist Award from the Ontario HIV Treatment Network.

Main messages

- Policy makers are interested in vertical equity
- Not many CEAs/HTAs incorporate vertical equity concerns
- Special weights are needed to do this
- NBRF automatically creates these weights

Introduction

- Decisions using economic evaluations involve comparing the incremental cost-effectiveness ratio (ICER) to societal willingness to pay (λ).
- Traditionally, analyses have used a single value of λ; however, decision makers may wish to use λ values that vary across groups.
 - Social justice concerns about equity or fairness
 - E.g., UK

Objectives

• We illustrate how analyses can use λ 's that are group-specific using the net benefit regression framework (NBRF)¹.

$$\begin{aligned} &- \text{E.g., } \lambda_{\text{age} \geq 65} \neq \lambda_{\text{age} < 65} \text{ or } \lambda_{\dagger} \neq \lambda_{\dagger} \\ &- \text{Or, } \lambda_{\dagger} \neq \lambda_{\ddagger} \neq \lambda_{\$} \neq \lambda_{\$} \neq \lambda_{\textcircled{S}} \neq \lambda_{\textcircled{S}} ? \end{aligned}$$

- NBRF produces the correct weights
 - The weights are equivalent to those made using another formula.

For more information about the net benefit regression framework₆ see reference #1; for more on the net benefit, see refs #2 and #3.

Our Assumptions

- Decision makers (DMs) want different λ 's.
- DMs are constrained \Rightarrow can't discriminate.
 - DMs must decide about funding the intervention in its entirety (ie, unable to fund the program for only some groups).
- Analysts should provide results to assist DMs in making optimal societal decisions.

Example							
	Group A	Group B	Overall				
	(n=100)	(n=100)	(n=200)				
Extra Cost (∆C)	\$20,000	\$20,000	\$20,000				
Extra Effect (∆E)	1 / 7 QALYs	3 / 7 QALYs	2 / 7 QALYs				
ICER (∆C/∆E)	\$140k / QALY	\$47k / QALY	\$70k / QALY				

Example, continued

	Group A	Group B	Overall
	(n=100)	(n=100)	(n=200)
ICER	\$140k / QALY	\$47k / QALY	\$70k / QALY
$(\Delta C/\Delta E)$			
λ (Best	\$20,000	\$100,000	?
<u>INB</u> (λ·ΔΕ –ΔC)	-\$17,143	\$22,857	\$2857
			9

Observations from example

- IF we assume "overall" $\lambda = \frac{1}{2} \lambda_A + \frac{1}{2} \lambda_B$
 - "overall" $\lambda = \frac{1}{2} (\$20,000) + \frac{1}{2} (\$100,000) = \$60,000$
 - SO overall, ICER = \$70,000 > \$60,000 = λ .
- ERROR! Since
 - ICER and INB yield different conclusions!
 - "overall" ICER > \$60k <u>and</u> "overall" NB > 0.
 - Key message: Even with equal n,
 - "overall" λ ? $\frac{1}{2} \lambda_A$ + $\frac{1}{2} \lambda_B$

Observations with equal n

- "Overall" ICER is an average of ICER_A and ICER_B with weights $\Delta E_A / \Delta E$ and $\Delta E_B / \Delta E$.
 - "Overall" INB is an average of INB_{A} and INB_{B} with weights $1\!\!\!/_2$ and $1\!\!\!/_2$.
- The correct "overall" λ uses group ΔE weights:

•
$$\Delta E_A / \Delta E = \frac{1}{4}, \ \Delta E_B / \Delta E = \frac{3}{4},$$

- + λ_{A} = \$20K / QALY, λ_{B} = \$100K / QALY
- $-\frac{1}{4} \cdot \$20k / QALY + \frac{3}{4} \cdot \$100k / QALY$
- = \$80,000 / QALY, the equity-adjusted λ

Lessons learned

- An "Overall" ICER and INB can be made from group-specific ICERs and INBs.
- The "Overall" stat should be compared to an equity-adjusted λ reflecting how society values:
 - The total gained (ΔE), <u>and</u>
 - The distribution of the gain ($\Delta E = \Delta E_A + \Delta E_B$)

The general case

- In general, to create an equity-adjusted "overall" lambda, calculate $\sum_{g=1}^{G} I_{g} q_{g}$
- Where $\theta_g =$

$$\left(\frac{\boldsymbol{w}_{g}^{TX} \overline{\boldsymbol{E}}_{g}^{TX} - \boldsymbol{w}_{g}^{UC} \overline{\boldsymbol{E}}_{g}^{UC}}{\Delta E}\right)$$

- ω_g^t is the % of treatment t subjects who belong to patient group g.
- The NBRF gives equivalent weights

The Net Benefit Regression Framework (NBRF)

- The Net Benefit Regression Framework
 - $-NB_i = \beta_0 + \beta_1 \cdot TX_i$
 - In general: $NB_i = \lambda e_i c_i$
 - With groups: NB_i = $\lambda_g e_i c_i$
- In this example, g = A and B

$$-\lambda_{A} = $20,000$$

 $-\lambda_{\rm B} =$ \$100,000

Data analysis: NB = β_0 + 2857·TX

Obs	Group	ТХ	λ (wtp)	Effect	Cost	NB
1			\$20,000	2 / 7	\$5,000	\$714
2		0	\$20,000	3 / 7	\$20,000	-\$11,429
3	A		\$20,000	4 / 7	\$15,000	-\$3,571
4			\$20,000	3 / 7	\$25,000	-\$16,428
5		1	\$20,000	4 / 7	\$40,000	-\$28,571
6			\$20,000	5 / 7	\$35,000	-\$20,714
7			\$100,000	0 / 7	\$5,000	-\$5,000
8		0	\$100,000	1 / 7	\$20,000	-\$5,714
9	В		\$100,000	2 / 7	\$15,000	\$13,571
10			\$100,000	3 / 7	\$25,000	\$17,857
11		1	\$100,000	4 / 7	\$40,000	\$17,143
12			\$100,000	5/7	\$35,000	\$36,429 1

Summary

- The "Overall" ICER or NB can be made from combining the patient subgroups' stats.
 - Potential challenges involve:
 - Using the "correct" lambda
 - Using the "correct" weighting scheme
 - $-\omega$ weights can be intricate with many groups or \neq N
- A verdict of "cost-effectiveness" depends on the DM's values of extra health benefits accruing to different patient groups.
- The NBRF is a person-level regression that allows for any λ for any person.

Conclusion

• With the NBRF it is easy to

- Transparently derive and apply the correct societal equity-adjusted λ that incorporates group-specific equity and/or fairness concerns into economic evaluation.

References

Net Benefit Regression Framework

Hoch J, Briggs A, Willan A. "Something old, something new, something borrowed, something BLUE: A framework for the marriage of health econometrics and cost-effectiveness analysis," *Health Economics*, 11(5): 415-430, 2002.

Net Benefits

- Stinnett AA, Mullahy J. Net health bene?ts: a new framework for the analysis of uncertainty in costeffectiveness analysis. Med Decision Making 1998; 18 (Special Issue on Pharmacoeconomics): S68–S80.
- Tambour M, Zethraeus N, Johannesson M. A note on con? dence intervals in cost-effectiveness analysis. Int J Technol Assessment Health Care 1998; 14(3): 467–471.