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Abstract

Clearinghouse models of online pricing� such as Varian (1980), Rosenthal (1980), Narasimhan

(1988), and Baye-Morgan (2001)� view a price comparison site as an �information clearing-

house� where price-sensitive shoppers obtain price and product information to make online

purchases. These models predict a discontinuous jump in a �rm�s demand when it succeeds

in charging the lowest price in the market. These models also predict that the responsiveness

of a �rm�s demand to a change in its price depends on the number of rivals. Using a unique

�rm-level dataset from Kelkoo.com (Yahoo!�s European price comparison site), we examine

these predictions by providing estimates of the demand for PDAs. Our results indicate that

both the number of competing sellers and the �rm�s rank in the list of prices are important

determinants of an online retailer�s demand. We �nd that an online monopolist faces an elas-

ticity of demand of about �2, while sellers competing against 10 other sellers face an elasticity

of about �6. We also �nd empirical evidence of a 60% jump in a �rm�s demand as its price

declines from the second-lowest to the lowest price. Our estimates suggest that about 13% of

the consumers at Kelkoo are �shoppers�who purchase from the seller o¤ering the lowest price.

JEL Classi�cation Numbers: D4, D8, M3, L14
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1 Introduction

Estimating a �rm�s demand in the online marketplace� particularly at price comparison

sites such as Shopper.com and Kelkoo.com� fundamentally di¤ers from demand at most

physical marketplaces. One of the key di¤erences� �rst noted by Baye and Morgan (2001)

but certainly anticipated by the early works of Varian (1980), Rosenthal (1980), Shilony

(1977), and Narasimhan (1988)� stems from the fact that consumers in online markets

typically obtain a complete list of prices charged by di¤erent sellers before making their

purchase decisions. As a consequence, these models predict that a �rm enjoys a discontinuous

jump in demand when it succeeds in charging the lowest price because it instantly attracts

the price-sensitive �shopper� segment of the market. Moreover, unlike traditional retail

markets where �rms like Wal Mart compete and there is little turnover in the identity of

the �rm charging the lowest price, the identity of the low-price seller frequently changes in

online markets (Baye, Morgan, and Scholten, 2004b; Ellison and Ellison, 2004).

The online marketplace also di¤ers from its physical cousin in its rapid turnover in the

number of competing sellers. In conventional retail markets, the �rms competing for cus-

tomers in (say) Walnut Creek, California change infrequently owing to the barriers to entry

and exit associated with setting up a physical retail location. In the online world, change

comes faster. This is particularly true in the marketplace de�ned by a price comparison site.

Here, the number of �rms listing prices for a given product changes almost daily (see Baye,

Morgan, and Scholten 2004a). Indeed, as pointed out by Baye and Morgan (2001), this

variation in the degree of rivalry of a given online market is essential for �rms to avoid pure

Bertrand competition and for the information �gatekeeper�� the entity running the price

comparison site� to pro�tably operate. Thus, in online markets, it is especially important

to account for changes in the degree of rivalry; standard oligopoly models predict that the

greater the number of rivals, the more elastic is a �rm�s demand.

A third way online markets di¤er from conventional markets is in the changing �locations�

of �rms. In conventional retail markets, the physical real estate a retailer occupies changes

infrequently, and the �value-added�by its physical location is di¢ cult to disentangle from its

other characteristics. In contrast, �virtual�real estate in the online world changes rapidly.
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For instance, in purchasing �adwords� (advertising space at the side of search queries on

Google�s site), retailers realize the advantage conferred to being the �rst listing on the

page� and bid aggressively to obtain such a position. At any moment, a retailer can �nd

itself displaced from this �prime�real estate to a less favorable screen location.

The rapidly changing nature of the online marketplace� the numbers of competing �rms,

identities of the low-price �rms, and �rms�screen locations� presents both a challenge and

an opportunity in estimating �rm-level demand in online markets. The challenge is that if

one fails to properly account for these factors, one obtains biased parameter estimates. The

opportunities stem from the dynamic nature of the data. Variation in the identity of the low

priced �rm enables us to disentangle the demand jump from other determinants of demand.

Variation in the number of competitors permits us to identify the marginal impact of the

number of rivals on a �rm�s demand elasticity (and hence its markup). Finally, variation in

screen locations allows us to identify of the value of the virtual real estate separately from

other �rm characteristics.

Before summarizing how we seek to overcome these challenges and take advantage of

the opportunities described above, it is important to point out a �nal challenge typically

faced by researchers estimating demand in online markets� the absence of actual data on

sales. The ideal dataset would consist of matched observations on the set of alternatives

presented to consumers using a price comparison site, consumer clickthroughs, and �nal

purchase decisions. Unfortunately, the principal-agent problem between the owners of price-

comparison sites and e-retailers means that matched data generally do not exist. While each

�rm has private information about its own sales, it lacks the information enjoyed by the price

comparison site. Price comparison sites, on the other hand, lack information on �rms�sales,

but have a wealth of other information. This includes detailed information about the prices,

clickthroughs and characteristics of all sellers �inside� its market, as well as information

about consumer pageviews and search patterns. While in principle the parties could �solve�

this agency problem by integrating their information technologies across the supply chain,

the norm is for price comparison sites to charge clickthrough-based fees. As a consequence,

researchers are left with the choice between attempting to gain proprietary sales data from

an e-retailer or attempting to obtain proprietary clicks data from a price comparison site.
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Most researchers have opted for clickthrough data; we know of only one study (Ellison and

Ellison, 2004) that is based on actual sales data� from a single �rm in the online market for

computer memory.

This paper addresses these challenges and opportunities. It demonstrates that theoreti-

cal �clearinghouse�models of online competition can be used, in conjunction with existing

pseudo-maximum likelihood techniques speci�cally designed for count data, to obtain con-

sistent estimates of consumer clickthrough behavior. Further, Proposition 1 shows that it

is possible to recover underlying demand parameters (including price elasticities) from these

estimates. We apply these techniques to a unique UK dataset for 18 personal digital as-

sistants (PDAs) obtained from the Yahoo! European price comparison site, Kelkoo.com.

Consistent with what one might conjecture based on the challenges we identi�ed above, we

�nd evidence that it is indeed important to account for the in�uence of shoppers, the number

of rivals, and other determinants of demand (such as screen location) in estimating demand

in online markets.

We �nd that a �rm o¤ering the best price enjoys a 60 percent increase in demand com-

pared to what it would have enjoyed had it not charged the lowest price. Failing to account

for this jump by modeling demand as continuous leads to elasticity estimates that are about

twice as large. Our results also reveal that a �rm�s elasticity of demand (apart from this

jump) is more elastic in online markets where competition is keener. We �nd that a monopoly

seller faces an elasticity of demand of about �2.5, while in the most competitive markets

we analyze (15 sellers), the elasticity of demand for a representative �rm�s product is about

�6.0. We are also able to identify the e¤ect of other determinants of demand� such as screen

location� on �rm demand. Our results imply that, other things equal, a �rm loses about

15% of its business for every competitor listed above it on the screen.

Our results are related to a variety of papers in the literature. As noted earlier, Ellison &

Ellison (2004) use sales data for computer memory chips obtained from a single �rm listing

on Pricewatch.com. The emphasis of their paper is on obfuscation and cross price elasticities

between low and higher qualities of the same product o¤ered by the �rm; however they also

indirectly obtain price elasticity estimates ranging from�25 to�40. In contrast, our analysis

uses data from the complete set of �rms listing prices across a broader selection of products,
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and where obfuscation is not prevalent. Ghose, Smith and Telang (2004) impute the sales

of used books from the website of Amazon.com, which lists price o¤ers for used books from

many alternative and independent retailers. Using a multinomial logit model they estimate

a price elasticity of �4.7, and note that the lowest priced �rms receive disproportionately

higher sales. Chevalier and Goolsbee (2003) rather ingeniously impute price elasticities for

new books at two bookstores (Amazon and Barnes & Noble) using prices and relative sales

rankings obtained directly from the retailers�websites rather than through a price comparison

site (where price sensitivity may be expected to be greater). They estimate price elasticities

of �0.6 for Amazon and�4 for Barnes & Noble, but these estimates do appear to be sensitive

to the particular estimating technique adopted. Using a similar methodology, Ghose, Smith

and Telang (2004) estimate the price elasticity for new books at Amazon to be �1.2.

The remainder of the paper proceeds as follows: The next section describes our data and

provides an overview of the shopping environment at Kelkoo. In Section 3 we present the

theory underlying our estimation methodology. Section 4 provides demand estimates based

on individual as well as pooled products under the assumption that demand is continuous.

These latter estimates are nested as a special case of the discontinuous demand speci�cation,

which is detailed in Section 5. Finally, Section 6 concludes.

2 Data

The proprietary data used in this paper were provided by the UK price comparison site,

Kelkoo.com, which is owned by Yahoo! Within the UK, Kelkoo is the third largest retail

website and attracts over 10 million individual users per month� more than twice that of its

closest rival. Over 1,800 individual retailers� including 18 of the largest 20 online retailers in

the UK� list prices on Kelkoo. According to Yahoo!, Kelkoo is the largest price listing service

in the world, operating in seven other European countries besides the UK. It is recognized

as one of the six most accessed websites in all of Europe.1

Consumers interested in purchasing a broad range of products can access the Kelkoo

site to obtain information about the product and/or to obtain a list of retailers selling the

1 Data taken from Hitwise Statistics and company information provided by Kelkoo.
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product, together with the prices charged and other relevant information such as shipping

charges. Consumers interested in making a purchase must do so from the website of the

speci�c retailer and may easily transfer from the Kelkoo site to a retailer�s site by clicking

on one of the links provided.

Kelkoo�s revenue is generated by charging retailers a fee for each referral made� that is,

each time a consumer transfers from the Kelkoo site to a retailer�s site. The fees charged

vary across products and retailers, but typically range from £ 0.20 to £ 1.00 per lead. Kelkoo

does not charge consumers any fees for using its site.

The products in our dataset consist of 18 of the most popular models of PDAs sold by 19

di¤erent retailers. These include models by Palm, HP, Sony, and Toshiba and span a wide

range in prices. The lowest priced item is the Palm Handspring Treo, which has a median

price of about £ 130, while the highest priced item is the Sony Clie nz90, with a median price

of about £ 537.

Figure 1 shows a typical return from a price search on Kelkoo, which lists twelve retailers

selling the HP iPAQ H5550 PDA. The information displayed includes a brief description of

the product, the names of retailers selling the product, and price information detailed into

item price, shipping charges (�P&P�in Kelkoo�s terminology) and the total price inclusive

of VAT. A consumer interested in purchasing the item may click on the �More� button,

or the retailer�s name or logo, to be transferred directly to the retailer�s website. Figure

1 illustrates the heterogeneity in the types of retailers using the site and the wide range

of prices charged for an identical product. Some retailers, such as Comet and PC World,

are �bricks-and-clicks�retailers who have physical stores in addition to an online presence.

Others, such as Amazon and Dell, are well-known pure e-retailers, while �rms such as Big

Gray Cat are less well-known specialty e-retailers.

Unlike many other price comparison sites, the order in which retailers�prices are dis-

played is unilaterally determined by Kelkoo; screen locations are neither auctioned nor sold

directly to retailers, and are independent of the price charged.2 Consequently, as far as both

consumers and retailers are concerned, the order of price quotations for any speci�c screen

2 Pricewatch.com, the price comparison site used by the e-retailer from whom Ellison and Ellison (2004)
obtained sales data, lists retailers in order of price. Thus, the exercise of identifying screen location e¤ects
is not possible with their data.
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appears random. Also in contrast to other studies that use price comparison site data, the

complete list of prices is always displayed on a single page in our data. Thus, a change in a

�rm�s screen location is never associated with a consumer having to click to �page two�in

order to view the listing. Finally, we note that Kelkoo veri�es and updates the information

it displays daily.

Kelkoo maintains an information log for each �referral�generated at its site.3 The log

registers the retailer name, product name, price information, time of referral, location of the

retailer on the screen and a cookie-speci�c reference. Kelkoo provided us with information

extracted from their log �les for the 18 PDA models for the period from 18 September 2003

to 6 January 2004, a period which generated over 40% of Kelkoo�s annual tra¢ c.4

This tra¢ c amounted to 39,568 leads generated by 20,509 separate cookies. The majority

(60.1%) of cookies generated only one lead, while a small number of cookies (0.56%) generated

more than ten leads. Following Brynjolfsson, Dick, and Smith (2002), in instances where a

consumer�s cookie generated multiple leads, we use the consumer�s last click as an indicator

of her �nal choice.5 Over the period of our study, there were 6,151 individual product,

retailer and day speci�c price listings across the 18 PDA models. Our analysis is based on

these observations, along with the number of last clicks generated for each PDA during the

day of each listing.

The price used in our analysis is total purchase price� the actual cost to a consumer

(including shipping and taxes) of purchasing a speci�c PDA model. To ensure an �apples

to apples� comparison, we cleaned the data such that our analysis is based on listings of

products that are identical in every respect (including condition).

Table 1 provides descriptive statistics for the data. The PDAs in our sample are somewhat

pricey, and shipping accounts for only a small fraction of the total purchase price. The

average total price of a PDA in our sample is £ 309.04 ($549.49 at exchange rates as of

8/05), of which an average of £ 4.16 is accounted for by shipping charges. The number

3 Throughout the paper we use the terms �referral�, �lead�, and �click�interchangeably.
4 Kelkoo is bound to protect the anonymity of retailers in disclosing information about the referrals they

obtain. So in providing the information from their log �les, the retailers were identi�ed in the dataset by
codes, and by some key characteristics, such as whether they had a brick and mortar presence.

5 We also performed the analysis reported below using all clicks as well as only �rst-clicks data, and the
results are qualitatively similar.
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of sellers for a given product on any given day ranges from 1 to 15, with a mean of 4.

The median number of clicks per day for a �rm selling a speci�c PDA in our sample is

2. Consistent with the pattern observed in many traditional retail environments, referrals

occur disproportionately in the fourth quarter of the year. However, as shown in Figure 2,

online shopping disproportionately occurs on weekdays rather than weekends� opposite the

pattern observed in many traditional retail environments.

Figure 3 suggests that price and screen location play a potentially important role in

determining the business enjoyed by particular online retailers. Consumers appear to be

very sensitive to price, as is evidenced by the dramatic decline in leads enjoyed by �rms

o¤ering less favorable prices. Likewise, consumers tend to frequent �rms that are listed

above others on the screen. While screen location is not determined by price, it is possible

that the results displayed in Figure 3 are the result of correlation between screen location

and price. We deal with this issue formally in Section 4 of the paper.

3 Estimation Methodology

We now describe our methodology for estimating the impact of various explanatory variables

on �rm demand at the Kelkoo site. Given that we observe clicks and not sales, we o¤er

conditions on expected demand which, if satis�ed, allow us to interpret �click elasticities�

as demand elasticities.

3.1 Data Generating Process for Leads

Recall that, to purchase a product, a consumer visiting the Kelkoo site must �rst process the

information contained on the site and decide whether, and on which �rm, to click. Following

this, a consumer clicking through to the merchant�s site obtains additional information about

the desirability of purchasing the product and ultimately decides whether to buy it. Thus,

demand can be decomposed into two parts: the click generating process and the process of

converting leads into sales.

The process of generating leads depends on a number of factors, the most important of

which are highlighted in Figure 4. As the �gure shows, leads depend on the price a �rm
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charges, the number of rival �rms o¤ering the same product and their prices, the identity of

the �rm and its rivals, the date and location of the �rm�s listing on the �page.�Formally, let

X denote this and other information obtained by the consumer directly from the Kelkoo site.

Note that X may include dummy variables to control for product-speci�c characteristics

(some products are more popular and receive more clicks, on average, than others), �rm

characteristics (some �rms may have a brick-and-mortar presence while others do not), and

time e¤ects (�rms may receive fewer clicks on weekends or products may exhibit life-cycle

e¤ects that cause clicks to vary systematically over time). Let the quantity of leads that

�rm i receives, Qi, be drawn from some distribution Fi (�jX) : Thus,

E [QijX] =
Z
qdFi (qjX) (1)

where we use a Lebesque integral to account for the fact that Qi is discrete. Based on the in-

formation in X� and this information alone� a representative consumer can decide to close

his or her window or to click through to a particular merchant. To estimate the parameters

associated with the data generating process for leads, we use a pseudo-maximum likelihood

approach that does not require us to make speci�c assumptions about the underlying dis-

tribution generating Qi; instead, we initially assume the underlying stochastic process has

�nite mean, given by

E [QijX] = exp [X�] (2)

In order to estimate the vector of unknown parameters, �, one must account for the fact

our clicks data consist of integer numbers of clicks. In fact, as shown in Table 1, over 50

percent of the data consist of days in which a �rm selling a particular PDA received two or

fewer clicks. For this reason, analysis of these data requires regression techniques suitable

for count data. Thanks to recent advances in the econometrics of count data, a variety of

estimation techniques are available.

One approach is to make a speci�c distributional assumption regarding the underlying

stochastic process (Poisson or negative binomial, for instance), and use standard maximum

likelihood estimation (MLE) methods to obtain estimates of the underlying parameters, �.

Conditional on the underlying distributional assumption being correct, one obtains consistent

estimates and standard errors and may perform standard hypothesis tests on �. Unfortu-
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nately, even if the mean speci�cation in equation (2) is correct, it is known (see Gourieroux,

et al. (1984a,b); Cameron and Trivedi, 1986) that the resulting maximum likelihood esti-

mates of � and/or the standard errors will be inconsistent if the true stochastic process is

di¤erent from that used to obtain maximum likelihood estimates.

For this reason, we adopt the pseudo-maximum likelihood (PML) approach due to

Gourieroux, et al. (1984a,b) that has received renewed interest due to Cameron and Trivedi

(1998) and Hall and Ziedonis (2001). Roughly, Gourieroux, et al. (1984a) show that so

long as the mean speci�cation in equation (2) is correct, any estimator for � obtained by

maximizing the likelihood function based on the linear exponential class will be consistent

for � even if the underlying distribution is misspeci�ed. Since the Poisson distribution is in

the linear exponential class but the negative binomial and other common speci�cations used

for count data are not (when the parameters of the assumed distribution are unknown), we

use the Poisson-based PML approach to obtain consistent estimates of �.

While the Gourieroux, et al. results imply that the MLE of � based on a Poisson

distribution are consistent even when the underlying data generating process is not Poisson,

the resulting estimates of the variance-covariance matrix are not consistent if the distribution

is not Poisson. Following Hall and Ziedonis (2001), we use robust standard errors to obtain

consistent estimates of the variance-covariance matrix.

To summarize, by using pseudo-maximum likelihood estimates based on a Poisson distri-

butional assumption, we obtain a consistent estimate of � even if the underlying distribution

is not Poisson. By using robust standard errors, we obtain consistent variance estimates. In

contrast, maximum likelihood methods based on a speci�c distributional assumption (such

as the negative binomial) would lead to more e¢ cient estimates if the speci�cation of the

data generating process is correct, but inconsistent estimates if the distribution is not cor-

rect. As discussed below, we also provide MLE estimates based on speci�c distributional

assumptions, including the negative binomial (see Cameron and Trivedi, 1998), as well as

speci�cations that allow for unobserved �rm heterogeneity (using both random and �rm

speci�c e¤ects, as in Hausman, Hall, and Griliches 1984). Our results are robust to these

alternative speci�cations.
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3.2 Relating Leads to Demand

Up to this point, we have described a consistent methodology for estimating parameters

associated with the leads generating process. In this subsection, we o¤er conditions under

which such parameter estimates may be used to recover the elasticity of demand facing

individual �rms operating in the Kelkoo marketplace.

Toward this end, recall the process by which a click leads to a sale shown in Figure

4. After having observed information X at the Kelkoo site, a consumer clicking through

to a �rm�s site receives additional information (denoted Zi) that in�uences the consumer�s

decision to purchase. This information might include the �rm�s attempt at obfuscation along

the lines described by Ellison and Ellison (2004), the visual attractiveness and usability of

the �rm�s site, whether the �rm is o¤ering any guarantees on the product over and above

those provided by the manufacturer, the exact restocking and return policies of the �rm, and

so on. Of course, a consumer�s perceptions of these factors may be colored by the previous

information, X; obtained on the Kelkoo site. To account for the possibility that a consumer

observes Zi�s for all �rms before making a purchase decision, let Z = (Z1; Z2:::Zn) denote the

vector of all such information. In this case, the probability that a click on �rm i is converted

into a sale, given (Z;X) ; is

Pr (saleijZ;X) = Gi (Z;X)

Using equation (2), we may write the expected demand for a given product sold by �rm i,

conditional on (X;Z), as

E [DijX;Z] = Gi (Z;X)� E [QijX]

= Gi (Z;X)� exp [X�]

The multiplicative separability of the probability of conversion, Gi; and the leads generating

process follows naturally from the Kelkoo search and buying environment. Of central interest

is the e¤ect of information obtained from the Kelkoo site (various components of X) on �nal

demand. Suppose one wished to measure the e¤ect on �rm i�s demand of a change in xi

(some component of i�s information posted at Kelkoo). It is useful to rewrite X = (xi; X1)

where X1 represents all components of X other than xi: If xi in�uences �rm i�s leads but
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does not impact its conversion rate for that product, one may recover the �rm�s elasticity of

demand with respect to xi from its elasticity of leads: Formally,

Proposition 1 Suppose that Gi (Z; (xi; X1)) = Gi (Z; (x0i; X1)) for all xi; x
0
i: Then

E [Dijxi; X1; Z]� E [Dijx0i; X1; Z]
E [Dijxi; X1; Z]

=
E [Qijxi; X1]� E [Qijx0i; X1]

E [Qijxi; X1]
;

and furthermore, if demand is di¤erentiable,

@ lnE [DijX;Z]
@ lnxi

=
@ lnE [QijX]
@ lnxi

:

Proof. We �rst prove the result for the di¤erentiable case. Recall that log expected demand

is given by

lnE [DijX;Z] = lnGi (Z;X) + lnE [QijX]

Di¤erentiating with respect to xi yields

@ lnE [DijX;Z]
@ lnxi

=
@ lnGi (Z;X)

@ lnxi
+
@ lnE [QijX]
@ lnxi

and since Gi (Z; (xi; X1)) = Gi (Z; (x0i; X1)) for all xi; x
0
i;
@ lnGi(Z;X)

@ lnxi
= 0: Hence

@ lnE [DijX;Z]
@ lnxi

=
@ lnE [QijX]
@ lnxi

:

Next, we prove the result for the non-di¤erentiable case.

%�E [Dij (xi; X1) ; Z] =
Gi (Z; (xi; X1))E [Qijxi; X1]�Gi (Z; (x0i; X1))E [Qijx0i; X1]

Gi (Z; (xi; X1))E [Qijxi; X1]

=
E [Qijxi; X1]� E [Qijx0i; X1]

E [Qijxi; X1]

where we have again used the fact that Gi (Z; (xi; X1)) = Gi (Z; (x0i; X1)) for all xi; x
0
i:

Notice that the conditions of the Proposition allows �rm i�s conversion rate for product j

to depend on additional information obtained from all �rms�individual websites (Z), as well

as all the other information posted at the Kelkoo site (X1)� including information other

than xi posted by �rm i: Provided that �rm i�s conversion rate is insensitive to xi� that

is, conditional on (xi; X1) being su¢ ciently �favorable� to induce the consumer to click

through to �rm i�s site �rst place, the level of xi does not in�uence the likelihood that the
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clickthrough is converted into a sale� the Proposition shows how to recover the associated

demand parameter from an estimate of the leads generating process.

Two special cases of the proposition are noteworthy. First, when xi is �rm i�s price listed

on the Kelkoo site, one may interpret a �rm�s elasticity of �clicks�with respect to price as

its own price elasticity of demand. Second, when xi is a discrete variable (such as a dummy

variable), one may use estimates based on clicks data to infer the percentage impact of a

discrete change in xi on a �rm�s demand.

Some support for this condition needed to apply Proposition 1 may be found in Brynjolf-

sson and Smith (2000) who show that, despite substantial variation in �rms�prices, screen

locations, and characteristics, conversion rates are insensitive to these di¤erences. Their

results suggest that conversion rates are insensitive to X, and a fortiori, insensitive to any

particular information, xi:

Nonetheless, one might still imagine circumstances where conversion rates depend both

on speci�c information gleaned from the Kelkoo site (xi) and information obtained by clicking

through to �rms�sites (Z) : For instance, suppose that a consumer observes an extremely

low price on the Kelkoo site (xi), and clicks through to that �rm�s site to gather additional

information (Zi). In this case, the low price might induce the consumer to scrutinize the

�rm�s site more carefully than had the �rm been charging a higher price, and thus alter his

or her conversion decision.

It is important to note, however, that even if the condition in Proposition 1 is not satis�ed,

one still obtains consistent estimates of parameters associated with the leads generating

process. Furthermore, it is possible to use these estimates to obtain bounds on demand

parameters. For instance, if one believes that �rm i�s conversion rate is increasing in xi, then

the estimated clickthrough elasticity is a lower bound for the associated demand elasticity

(since in this case, @ lnGi(Z;X)
@ lnxi

+ @ lnE[QijX]
@ lnxi

> @ lnE[QijX]
@ lnxi

).

In the sequel, we assume that the condition in Proposition 1 is satis�ed, so that we may

recover the demand parameters from the estimated clicks parameters. Readers skeptical

about the plausibility of this assumption are advised to interpret our results as estimates

of clicks parameters or as bounds for underlying demand parameters. Even when viewed as

purely estimates of clicks parameters, the results below are of considerable economic interest.
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The business models of many of the most successful online companies, including Google and

Yahoo!, are built on revenues derived from clicks� not from the conversion of clicks into

sales. Understanding the determinants of click behavior in the online marketplace is arguably

as important as understanding demand behavior.

4 Continuous Demand Models

In this section we provide estimates of a representative �rm�s demand under the assumption

that each �rm�s demand is a continuous function of its price. As noted in the introduction,

this is the usual way of estimating demand, and has led to �rm elasticity estimates ranging

from �0.6 (in the relatively concentrated online market for books) to about �40 (in a highly

competitive online market for computer memory). The main message of this section is that

di¤erences in concentration across di¤erent markets for PDAs may help explain variation in

price elasticities.

4.1 Estimates by Product

As a starting point, we pool across �rms (i) and dates (t) ; but estimate separate elasticities

for each of the 18 di¤erent models of PDAs in our data using the pseudo-maximum likelihood

procedure described above. Speci�cally, we assume

E [QijtjXijt] = exp
�
�j ln pijt + jX1;ijt

�
; (3)

where Qijt is the number clicks �rm i received on product j at time t, pijt is the total price

(including VAT and shipping) �rm i charged for product j at time t, and X1;ijt is a vector of

controls. Notice that, under our maintained hypothesis that the conditions in Proposition 1

hold, �j may also be interpreted as the own price elasticity of demand for a representative

seller of a model j PDA. The vector X1;ijt consists of the following controls:

Position on Screen. As we showed earlier in Figure 3, when a �rm�s price is listed

above its rivals, it tends to receive more clicks. Clicks tend to decrease as the position on

the screen gets lower. Hence, we include a linear position on screen variable to capture this
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e¤ect.6

Weekend. As displayed in Figure 2, �rms systematically receive fewer clicks on weekends.

Hence, we include a weekend dummy variable to control for this e¤ect on demand.

Month. We include month dummies to control for seasonal e¤ects on demand.

Table 2 reports the results of the individual product regressions. Notice that 13 of the

estimated own price elasticities in Table 2 are statistically signi�cantly di¤erent from zero

at the 1 percent level, with values ranging from �1.75 (for the Toshiba E770) to �14.691

(for the HP Compaq iPAQ 1940). These estimates vary widely across PDAs. In interpreting

these results, and to better understand the widely di¤erent estimates obtained for di¤erent

models of PDAs, it is important to recognize that these estimates are �rm elasticities �

not market elasticities. One of the key theoretical determinants of a �rm�s price elasticity is

the availability of substitutes� the more sellers o¤ering the same product, the more elastic

is the demand facing a �rm selling that product. For instance, it is well-known that in a

symmetric n-�rm capacity-constrained price-setting environment, the elasticity of demand

facing an individual �rm (EF ) is n times the market elasticity (EM): EF = nEM . If this is

the case and di¤erent numbers of �rms sold di¤erent types of PDAs, the �rm elasticities of

demand would vary widely across PDA models even if the market elasticity of demand were

the same for each model of PDA.

Thus, it seems useful to investigate the relationship between the elasticity estimates

reported in Table 2 and the average number of �rms selling each PDA. This relationship is

plotted in Figure 5. The estimates are divided into those that are not statistically signi�cant

at conventional levels (shown as open circles) and those that are signi�cant at the 1% level

(shown as �lled-in diamonds). As Figure 5 shows, there is a strong negative relationship

between the elasticity estimates for each of the products and the average number of �rms

o¤ering price quotes for the product. This suggests the need to control for the number of

sellers were one to pool across all products.

6 We investigated nonlinear speci�cations of screen location as well and obtained similar results to those
reported here. We chose the linear speci�cation for parsimony.
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4.2 Pooled Estimates

We now report estimates obtained by pooling across �rms (i), dates (t) ; and di¤erent models

of PDAs using our pseudo-maximum likelihood procedure. Here we consider two models: a

baseline model that does not allow elasticities to vary with the number of sellers, and a more

general model that takes into account our preliminary �ndings in the individual product

speci�cations. The baseline model assumes

E [QijtjXijt] = exp [� ln pijt + X1;ijt] : (4)

The controls for this speci�cation include all of those in equation (3) as well as following:

Product. As the previous speci�cation revealed, there are di¤erences in clicks for each

of the di¤erent PDA models. For instance, PDAs di¤er from one another in terms of their

popularity, their operating system, various performance characteristics, add-on software, and

so on. Thus we include product dummies for each of the 18 PDA models.

Product-Month Interactions. In addition, the popularity of a PDA varies depending

on new entrants in the PDA product space. As technology and performance improve with

the introduction of new models, the popularity of an existing PDA can decline� sometimes

dramatically. To control for these e¤ects, we include dummies interacting each of the product

dummies with the month dummies mentioned above. This, in principle, allows PDA �life

cycles�to di¤er during the time horizon of our study.

Bricks and Clicks Retailer. Some of the �rms in our dataset have an established

physical presence in addition to their online presence. Clearly, the reputation as well as the

ease of returns and accumulated brand equity of these retailers may di¤er from pure online

sellers. Thus, we include a dummy variable for whether a particular �rm is a bricks and

clicks retailer.

With these controls in place, we report pseudo-maximum likelihood estimates (Table 3,

Model 1) based on the mean speci�cation in equation (4). The bottom of Table 3 also reports

the results of a likelihood ratio test for overdispersion of the negative binomial (2) type (cf.

Cameron and Trivedi, 1990). This is a test of the null hypothesis that the mean and variance

of the click generating process are equal, as would be the case were the data generating

process truly coming from a Poisson distribution. As the table shows, we overwhelmingly
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reject this hypothesis, indicating that the underlying distribution is not Poisson. As discussed

above, the parameter estimates are nonetheless consistent (provided the mean speci�cation

in equation (4) is correct), but the overdispersion test indicates that Poisson-based maximum

likelihood estimates of their standard errors are not consistent. To obtain consistent variance-

covariance estimates, we employ the standard error correction techniques of Rogers (1993),

Huber (1967) and White (1980,1982).7 The corresponding z-statistics are reported in Table

3.8

The results show a price elasticity of �4.61, which is fairly close to the average over the

individual product elasticities reported in Table 2. More favorable screen positions lead to

increased clicks: All else equal, a �rm that moves up one screen position enjoys an 18.6%

increase in demand. These results con�rm what we saw earlier in Figure 3: There is a strong

tendency for consumers to click on �rms listed at the top of the display screen, all else equal.

This may also explain why search engines that auction screen positions, such as Google,

receive signi�cant premia for positions located near the top of the screen. Interestingly, while

the coe¢ cient associated with being a bricks and clicks retailer has the expected positive

sign (0.262), it is not signi�cant at conventional levels.

To account for a potential relationship between a �rm�s elasticity of demand and the num-

ber of competing sellers in the pooled model, we generalize equation (4) to allow individual

�rm elasticities to depend on the number of sellers as follows:

E [QijtjXijt] = exp [(�0 + (njt � 1) �1) ln pijt + �2njt + X1;ijt] ; (5)

where njt denotes the number of sellers of type j PDA on date t. Notice that, in this

speci�cation, the elasticity of demand facing a representative �rm is given by

�0 + (njt � 1) �1:

Thus, the coe¢ cient of total price (�0) represents the elasticity of demand facing a monopoly

seller, �0 + �1 represents the elasticity of demand in duopoly PDA markets, and more
7 Speci�cally, we use the grouping technique of Rogers (1993) to relax the independence of observations

for a given �rm i across products and time. This allows potential autocorrelation and heteroskedasticity in
the errors.

8 Some researchers have taken the view that the rejection of the null hypothesis of no overdispersion
warrants the use of a negative binomial speci�cation. For this reason, we report ML estimates based on
the negative binomial (2) speci�cation in Table A1. As that table shows, the parameter estimates are very
similar.
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generally, �1 represents the impact on a �rm�s elasticity of demand of facing an additional

competitor. In addition to our earlier controls, we include the following:

The Number of Sellers. Besides the theoretical rationale for permitting a represen-

tative �rm�s elasticity of demand to depend on the number of sellers, one might expect the

number of clicks received by a particular �rm to directly depend on the number of sellers. For

a given consumer base, adding additional sellers would tend to reduce the expected number

of clicks enjoyed by any particular �rm. In addition, one might speculate that consumers are

more likely to click and purchase PDAs that are sold by more �rms, as additional �rms might

stimulate online sales by making the market appear more credible in the eyes of consumers.

As we will see below, our framework permits one to disentangle these two competing e¤ects.

We include a linear term for the number of sellers.9

The resulting estimates are displayed in the Model 2 column of Table 3. As the table

shows, the number of sellers has a signi�cant e¤ect� both in terms of levels as well as on

price elasticities. Controlling for the number of �rms listing prices, we �nd that the price

elasticity of a monopoly seller is �3.761, which implies a gross margin of 26.6%. Adding

a second �rm to the market raises the price elasticity to around �4.049 and cuts the gross

margin to 24.7%. When ten �rms list prices, the estimated elasticity becomes �6.641 or

about 15.1% gross margins. The sign of the coe¢ cient capturing the impact of the number

of sellers on elasticity is also consistent with the simple capacity constrained price setting

model described above.

What is the impact of a change in the number of sellers on a �rm�s overall demand?

As we mentioned above, there is a direct e¤ect as well as an indirect e¤ect from increased

competitiveness. Taking the derivative of equation (5) and evaluating it at the mean of our

data yields

@ lnE [QijtjX]
@njt

j�pijt = �̂1 ln �pijt + �̂2

= �:288� 5:67 + 1:593;

or about �0:04 (p = :0155). It is useful to contrast the magnitude of this �rivalry�e¤ect

with that of a change in a �rm�s screen position. As Table 3 shows, a reduction of one screen

9 We also ran dummy speci�cations for the number of sellers and obtained similar results.
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position decreases the �rm�s demand by 17.5%. Thus, our estimates suggest that the impact

of screen position is more than four times larger than the impact of an additional competitor

appearing on the price comparison site.

4.3 Potential Misspeci�cation

One may have a number of concerns regarding the estimates based on the continuous de-

mand speci�cation in equation (5). As we have emphasized, the pseudo-maximum likelihood

approach is robust against alternative distributional assumptions but not to the misspeci�-

cation of the underlying mean of the stochastic process.

First and foremost, price comparison sites are often used by consumers looking to obtain

a given product at the best price. For instance, Brynjolfsson and Smith (2000) have provided

evidence that 49 percent of consumers using price comparison sites in the U.S. make purchase

decisions based purely on price. The results of Ghose, et al. (2004) seem to indicate a jump

in a �rm�s demand when it sets the lowest price. Moreover, recall that in our data (see Figure

3), 45 percent of the clicks are at the lowest price. These observations, coupled with the

recent literature that rationalizes the observed levels of price dispersion in online markets (see

Baye and Morgan, 2001; Baye, Morgan, and Scholten, 2004a) suggests that a �rm lowering

its price from the second-lowest to the lowest price enjoys a discontinuous jump in demand.

To see the potential rami�cations of this on demand estimation, suppose there is a unit

mass of consumers, half of which are �shoppers�who purchase at the lowest price and the

other half are �loyals�who have a preference for a particular seller. Consumers within each

group have identical demand functions given by D = p��. A �rm that charges the lowest

price in the market enjoys demand from both groups, while a �rm charging a price above

the minimum price in the market sells only to its loyal customers. Figure 6 illustrates the

rami�cations on demand estimation. The slope of the two steep lines through the data are

the same, and represent the true elasticity of demand, ��, for prices above or below the

minimum price. At the minimum price, there is a discontinuous jump in demand owing to

the fact that the �rm attracts all of the shoppers at this price.

The dashed line through the data represents the elasticity estimate that results from

failing to take into account the discontinuous jump in demand that occurs when the �rm
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charges the lowest price. Notice that, by ignoring the jump in demand at the lowest price,

one obtains an estimate of the true elasticity that overstates how responsive consumers are

to a change in price.

In addition to the potential problem caused by using a continuous demand speci�cation

in the presence of �shoppers,� two additional econometric issues are potentially relevant.

First, while there are sound theoretical reasons for elasticities (and per-�rm demand) to

depend on the number of �rms listing prices, the estimates may be biased due to potential

endogeneity. In particular, popular products are likely to (for a given number of �rms) result

in a �rm receiving more clicks, and this may encourage additional �rms to enter the market.

Second, while we have controlled for one �rm characteristic� whether a �rm is a bricks

and clicks retailer� a variety of unobserved �rm characteristics, such as the degree of ac-

cumulated brand equity or di¤erences in consumers�perceptions of �rm quality, could also

potentially bias our results. Thus, it may be important to account for unobserved �rm

characteristics in estimating demand.

We address these and other issues in the next section.

5 Discontinuous Demand Models

We now turn to estimating demand in the presence of a mix of price-sensitive shoppers and

loyals. We �rst sketch the theory underlying the demand estimation. We then describe the

estimating equation and report results. Finally, we examine issues associated with endo-

geneity and unobserved �rm characteristics.

5.1 Theory and Estimation Strategy

Suppose that njt �rms numbered i = 1; 2; :::; njt sell product j at a price comparison site on

date t. Let pijt denote the total price of �rm i in this market. A �rm in this market sells

to two types of consumers: Loyals, who purchase from their preferred �rm, and shoppers,

who always purchase from the �rm charging the lowest price. Because of the extreme price

sensitivity of shoppers, it is useful to de�ne the set of �rms o¤ering the �best�(lowest) price
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for product j at time t as:

Bjt = fi : pijt � pkjt for all k 6= ig :

Let QSijt and Q
L
ijt denote the product j leads �rm i obtains from shoppers and loyals, respec-

tively, when charging the price pijt: Recall that �rm i obtains leads from shoppers only if it

is in the set Bjt; that is, if it o¤ers one of the best prices. Thus, the clicks �rm i obtains

when it charges a price pijt; given the prices charged by other �rms, is

Qijt =

8<: QSijt +Q
L
ijt if i 2 Bjt

QLijt if i =2 Bjt

Thus, �rm i faces a �jump in demand�for product j when it is among those �rms o¤ering

the �best�price for product j on date t.

We utilize the following functional approach that facilitates structural estimation of de-

mand in a clearinghouse model. To account for the discontinuity in demand when the �rm

o¤ers one of the best prices in the market, let Ijt be an indicator function that equals unity

when i 2 Bjt and zero otherwise, and let #Bjt denote the cardinality of Bjt; that is, the

number of �rms o¤ering the best price for product j. Suppose that �rm i �s elasticity when

it sells product j is �jt; so that we may write

Qijt = �
L
ijt (X) p

��jt
ijt + Ij

1

#Bjt
�Sijt (X) p

��jt
ijt

where �Lijt (X) and �
S
ijt (X) represent the non-price determinants of leads (such as screen

location) on loyals and shoppers, respectively. To ease the notational burden, we suppress

the X argument where it is clear. Hence we may rewrite Qijt as:

Qijt =

�
�Lijt +

Ijt
#Bjt

�Sijt

�
p
��jt
ijt

=

�
1 +

Ij
#Bj

�ijt

�
�Lijtp

��jt
ijt

where

�ijt =
�Sijt
�Lijt

:

Taking logs (and noting that ln[1 + �ijt
Ijt
#Bjt

] � �ijt Ijt
#Bjt

) yields

lnQijt = �ijt
Ijt
#Bjt

+ ln�Lijt � �jt ln pijt (6)
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Estimation requires imposing additional structure on the parameters in equation (6). We

assume

�jt = �0 + (njt � 1) �1 (7)

As in the previous section, this parsimonious speci�cation allows a �rm�s elasticity for prod-

uct j to depend on the number of sellers at time t: In addition, we allow di¤erent �rms to

have di¤erent numbers of loyals and shoppers, and also permit the number of each to vary

over time and across products. However, we assume

�Sijt (Xijt) = aS�ijt (Xijt)

�Lijt (Xijt) = aL�ijt (Xijt)

so that the ratio of these two expressions is constant. In particular, this assumption implies

�ijt = � =
aS

aL
: (8)

Under these assumptions, the mean speci�cation is:

E [QijtjX] = exp
�
(�0 + (njt � 1) �1) ln pijt + �2njt + �

Ijt
#Bjt

+ X1;ijt

�
; (9)

where X1;jt is the matrix of controls discussed earlier (position on screen, bricks and clicks

retailer, weekend, month, and product dummies as well as product-month interaction dum-

mies). As above, we may interpret the expression �0 + (njt � 1) �1 as the price elasticity

of a �rm that has njt � 1 rivals. Similarly, we may interpret � as the demand shift from

shoppers; that is, the size of the discontinuous jump in demand a �rm enjoys when it o¤ers

the �best�price. Notice that the continuous demand model is nested in the speci�cation

of equation (9) when � = 0; thus, we may readily test the null hypothesis implied by the

continuous demand speci�cation.

5.2 Discontinuous Demand Estimates

Model 1 in Table 4 reports PML estimates of the parameters in equation (9). Recall that

under the nested model of continuous demand, the coe¢ cient associated with the demand

shift from shoppers (�) is equal to zero. The alternative hypothesis, predicted from the
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clearinghouse literature, is that this coe¢ cient should be positive. The coe¢ cient estimate

for this e¤ect is 0.603. Moreover, we can reject the null hypothesis of the continuous demand

model in favor of the (one-sided) alternative of discontinuous demand at the 1% signi�cance

level. In short, we �nd considerable evidence for a discrete shift in demand when a �rm

o¤ers the lowest price.

Figure 6 suggested that, in the presence of such a jump in demand, the continuous demand

speci�cation would yield more elastic estimates of a �rm�s demand than the discontinuous

speci�cation. The results shown in Model 1 of Table 4 compared to those in Model 2 of

Table 3 are consistent with this observation. Accounting for the discontinuity in demand,

the estimated elasticity for a monopoly seller becomes less elastic� going from �3:761 (in

Model 2 of Table 3) to �2.459 (in Model 1 of Table 4). The di¤erence in the elasticity

estimates is greater for markets with more than one seller: The e¤ect of an additional

rival on the price elasticity is reduced by around 12.5 percent (from �0:288 in Model 2 of

Table 3 to �0:252 in Model 1 of Table 4). We also note that, in contrast to the continuous

demand speci�cation, the e¤ect of a change in the number of �rms on a �rm�s overall demand�
@ lnE [QijtjX] =@njtj�pijt

�
is not statistically di¤erent from zero (p = :4674).

It is of some interest to note the economic relevance of our estimate of the demand shift

from shoppers (� = 0:603). Other things equal, a �rm that sets the lowest price in the

market enjoys a 60.3 percent increase in demand. In contrast, notice that the �position on

screen�coe¢ cient implies that a �rm would have to move up 3 screen positions to generate

the same demand increase that results from setting the lowest price in the market. Also,

note that setting the lowest price in the market entails a demand shift that is about twice

as large as the 32.1 percent shift associated with being a bricks and clicks retailer.

One may use our estimates of � to obtain a very crude estimate of the fraction of con-

sumers using the Kelkoo site who are shoppers. The total number of clicks for product j on

a given date is

njtX
i=1

Qijt =

njtX
i=1

�
�Lijt +

Ijt
#Bjt

�Sijt

�
p
��jt
ijt
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while the corresponding number of clicks stemming from shoppers is
njtX
i=1

QSijt =
1

#Bjt

X
i2Bjt

�Sijtp
��jt
ijt

Hence, shoppers as a fraction of all consumers is given by

S

S + L
=

Pnjt
i=1Q

S
ijtPnjt

i=1Qijt

=
1

#Bjt

P
i2Bjt �

S
ijtp

��jt
ijtPnjt

i=1

�
�Lijt +

Ijt
#Bjt

�Sijt

�
p
��jt
ijt

=
1

#Bjt

P
i2Bjt a

S�ijt (Xijt) p
��jt
ijtPnjt

i=1 a
L�ijt (Xijt) p

��jt
ijt + 1

#Bjt

P
i2Bjt a

S�ijt (Xijt) p
��jt
ijt

Imposing symmetry across �rms (so that all of the above terms are independent of i), one

obtains

S

S + L
=

1

#Bjt

P
i2Bjt a

S�jt (Xjt) p
��jt
jtPnjt

i=1 a
L�jt (Xjt) p

��jt
jt + 1

#Bjt

P
i2Bjt a

S�jt (Xjt) p
��jt
jt

=
aS�jt (Xjt) p

��jt
jt

njtaL�jt (Xjt) p
��jt
jt + aS�jt (Xjt) p

��jt
jt

=
�

njt + �

which implies (given the estimate of � = :603 reported in Model 1 of Table 4 and the mean

number of listings (4:05) in our data) that about 13 percent of consumers at Kelkoo are

shoppers. While the symmetry assumptions used to calculate this crude estimate are at

odds with the data (among other things, the estimates suggest that bricks-and-clicks sellers

receive 32.1 percent more clicks than pure online sellers), it nonetheless illustrates that even

in online markets where nearly 90 percent of the consumers are �loyal�to a particular �rm,

discontinuities arising from shoppers can signi�cantly impact elasticity estimates.

5.3 Potential Misspeci�cation

While the PML approach used to obtain the estimates reported above does not make speci�c

distributional assumptions about the underlying clicks generating process (apart from as-

suming that the conditional mean speci�cation is correct), it is nonetheless useful to compare
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the shape of the empirical distribution with the distribution based on the number of clicks

predicted by the model. As Figure 7 reveals, the distribution of predicted clicks (based on

Model 1 in Table 4) resembles that observed in the data. While this is somewhat reassuring,

it does not rule out the possibility that Model 1 in Table 4 is misspeci�ed due to endogeneity

or unobserved heterogeneity across �rms.

Endogeneity

One concern that might be raised with the preceding analysis is that two of the key

variables of interest� price and the number of listing �rms� might be �endogenous�in the

sense that the regressors may be correlated with omitted variables, thus creating the pos-

sibility of inconsistent parameter estimates. This problem might arise through unobserved

demand shifters such as variations in a product�s popularity. Such changes in popularity

would obviously impact a given �rm�s demand. In addition, changes in popularity would

also be correlated with the number of sellers (an increase in popularity would presumably

induce more sellers to enter) as well as the prices charged for the product (�rms would raise

prices for �hot�products and reduce them for �cold�products).

To be concrete, suppose that the correct clicks generating process is given by:

Qijt = exp

�
(�0 + (njt � 1) �1) ln pijt + �2njt + �

Ijt
#Bjt

+ X1;ijt + popjt

�
+ "ijt (10)

where popjt denotes an unobserved latent variable and "ijt is a zero mean error term. Then,

the correct conditional mean speci�cation is:

E [QijtjXijt; popjt] = exp

�
(�0 + (njt � 1) �1) ln pijt + �2njt + �

Ijt
#Bjt

+ X1;ijt + popjt

�
and hence equation (9) is misspeci�ed. However, the parameter estimates based on equation

(9) remain consistent provided:

E [QijtjXijt; popjt] = E [QijtjXijt] (11)

That is, to the extent that �uctuations in popjt only occur inter-month, any in�uence of popjt

on E [QijtjXijt; popjt] will be absorbed in the product-time interaction dummies contained

in X1;ijt; and equation (11) will hold� the mean speci�cation given in equation (9) will

be correct. If there is intra-month variation in popjt, however, this variation will not be
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absorbed in the product-time interaction dummies. Furthermore, for the reasons described

above, popjt is likely to be correlated with pijt and njt. In this case, equation (11) will not

hold, and the parameter estimates reported above will be inconsistent.

To deal with this potential endogeneity problem, we collected additional data from the

US to serve as a proxy for unobserved demand shifters in the UK (i.e. the variable popjt).

In particular, for each of the PDAs in our UK sample and for each date, we obtained data

on that PDA�s product popularity ranking (for that same day) from Shopper.com� a US

price comparison site.10 The product popularity ranking are integers (1 represents the most

popular product, 2 the second most popular product, and so on), and are constructed by

Shopper.com based on consumer pageviews at its site. It seems plausible that the product

popularity ranking of an identical PDA model in the US on a given date is a valid proxy

for its popularity in the UK for that same date, as it is likely correlated with popjt but

uncorrelated with the other UK regressors included in equation (10) :

Formally, suppose that

popjt = �D
USPOP
jt + �jt

where DUSPOP
jt is a matrix of dummy variables for the popularity of product j at time t from

the US data, � is a vector of parameters associated with each product rank, and �jt is an

error term. Substituting this relation into equation (10) ; one obtains

Qijt = exp

�
(�0 + (njt � 1) �1) ln pijt + �2njt + �

Ijt
#Bjt

+ X1;ijt + �D
USPOP
jt

�
exp [�jt] + "ijt

Assuming �jt is independent of the other regressors, this implies a conditional mean speci�-

cation of

E [QijtjXijt; popjt] = exp

�
(�0 + (njt � 1) �1) ln pijt + �2njt + �

Ijt
#Bjt

+ X1;ijt + �D
USPOP
jt

�
(12)

where we have assumed, without loss of generality, that E [exp [�jt]] = 1.

Under the stated assumptions, pseudo-maximum likelihood estimation of equation (12)

gives consistent parameter estimates. We report the results of this speci�cation as Model

2 in Table 4. As the table shows, controlling for potential endogeneity does little to the

10 The US data is discussed in more detail in Baye, Morgan and Scholten (2004a).
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magnitude or the signi�cance of the coe¢ cient estimates.11

Unobserved Firm Heterogeneity

Another potential shortcoming of the PML approach used in Models 1 and 2 of Table 4 is

that the speci�cation presumes there is no unobserved heterogeneity across �rms. While we

have attempted to control for di¤erences across �rms that stem from their having di¤erent

online and o ine presences, as well as di¤erent screen locations, it is still possible that a

particular �rm�s demand is also driven by unobserved factors. For this reason, we also report

in Table 4 results that allow for the e¤ects of unobserved �rm heterogeneity.

Model 3 in Table 4 reports maximum likelihood estimates of the discontinuous demand

model based on the random e¤ects speci�cation for unobserved �rm heterogeneity pioneered

by Hausman, Hall and Griliches (1984), while Model 4 reports conditional maximum likeli-

hood estimates based on a �xed e¤ects speci�cation for unobserved �rm heterogeneity. Note

that these results require the speci�cation of the actual likelihood function, which we have

take to be Poisson. However, Table A2 in the appendix shows that the results reported in

Table 4 and discussed below are similar if one uses the likelihood function for a negative

binomial (2) speci�cation.

Notice that, in both the random e¤ects (Model 3) and �xed e¤ects (Model 4) speci�ca-

tions, the coe¢ cients of interest are roughly comparable to those obtained ignoring potential

unobserved heterogeneity (Models 1 and 2). As the coe¢ cient on the demand shift from shop-

pers reveals, we still reject the null hypothesis of the continuous demand model in favor of the

discontinuous demand speci�cation. Further, the economic value of the coe¢ cient associated

with the demand shift is largely unchanged by allowing for potential unobserved heterogene-

ity. Likewise, the coe¢ cient associated with the elasticity of demand for a monopoly �rm

remains at about �2:5; similar to the estimate obtained in Model 1.

In contrast, both the e¤ect of a change in the number of rivals on a �rm�s price elas-

ticity as well as the e¤ect of change in screen position on a �rm�s demand are dampened

in Models 3 and 4 compared to Model 1. This suggests that part of the e¤ect that was

previously attributed to changes in screen position or rivalry is more properly accounted for

11 There is some evidence that the US popularity dummies address the endogeneity issues discussed above.
In all speci�cations that include US popularity dummies, we reject the null hypothesis that the coe¢ cients
on DUSPOP

jt are jointly equal to zero (p < 0:001).
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by unobserved �rm heterogeneities. Nonetheless, the coe¢ cients on these variables remain

economically and statistically signi�cant.

6 Conclusions

Using a unique dataset consisting of consumer clickthroughs for 18 PDAs obtained from

the Yahoo! price comparison site, Kelkoo.com, we estimated key demand parameters for

�rms competing in an important UK e-retail market. Taking advantage of pseudo-maximum

likelihood techniques for count data and applying insights from theoretical �clearinghouse�

models of online competition, we provided consistent parameter estimates without mak-

ing strong distributional assumptions about the data generating process. Furthermore, we

showed in Proposition 1 that one may recover key demand parameters when only clicks data

are available.

What do our results suggest about the competitiveness of the UK e-retail market? The

conventional wisdom is that price is paramount in online markets� �rms are forced into

cutthroat competition to attract the business of consumers who only care about price. The-

oretical clearinghouse models take a more nuanced view, suggesting that a �rm�s demand

exhibits a jump when it o¤ers the lowest price and thus succeeds in attracting price sensitive

shoppers. This leads to two questions: Do these price-sensitive shoppers really exist, and, if

so, are there enough of them to be economically relevant?

Our results suggest that the answer to both questions is yes. Using a novel estimation

strategy that allows for the possibility of such a jump, we �nd that the lowest-priced seller of

a PDA enjoys a 60 percent increase in demand compared to the case where its price is not the

lowest in the market. We also showed that a jump of this magnitude arises in clearinghouse

models even when only 13 percent of consumers are price-sensitive �shoppers.�Moreover,

failing to account for such a jump when estimating a �rm�s demand in online markets results

in biased parameter estimates. In the data we analyzed, price elasticity estimates based on

a continuous demand speci�cation were about two times more elastic than those obtained

in a more general speci�cation that allows for a jump in demand.

In addition to price, much of the industrial organization literature has stressed the im-
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portance of market structure� the number of sellers competing in a given market� on com-

petition. Our dataset provided a unique opportunity to examine this question owing to daily

variation in the number of sellers of a given product on the Kelkoo site. We �nd that the

number of rivals o¤ering the same product strongly a¤ects a �rm�s price elasticity. When

a �rm is the sole seller of a product, its price elasticity is �2:459: In contrast, when four

�rms sell the same product (approximately the mean in our data), a �rm�s demand becomes

considerably more elastic at �3:215:

Firms�e¤orts to di¤erentiate themselves from rivals also play an important role in the

UK e-retail markets we examined. For example, a standard prescription in the e-retail

strategy literature is that a �rm can gain a competitive advantage in an online market by

leveraging its o ine presence to vertically di¤erentiate itself from purely online competitors.

The lack of success by Barnes & Noble in pursuing this strategy against Amazon, however,

raises questions about the value of this perceived advantage. Our results suggest that, in

the UK market for PDAs, the �bricks and clicks� advantage is substantial: Other things

equal, bricks and clicks e-retailers enjoy 32.1 percent higher demand than their purely online

competitors. E¤ects of this magnitude should clearly be an important practical consideration

for conventional retailers in the UK looking to pursue a �straddle�strategy of moving into

the online space.

Finally, we �nd that non-pecuniary considerations also play an important role in in�u-

encing a �rm�s demand online. All else equal, a �rm listed �rst on the display screen at

a price comparison site enjoys 17.5 percent higher demand than when it is second on the

list� despite the trivial cost to the consumer (one mouse click) of reordering the list of o¤ers

by price.
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Figure 1: Kelkoo Screenshot



Figure 2: Average Number of Leads by Day of Week
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Figure 3: Histogram of Leads by Price Rank and Screen Location

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10

Price Rank / Screen Location

Pe
rc

en
ta

ge
 o

f L
ea

ds

Price Rank
Screen Location



Figure 4: Factors Influencing Numbers of Leads
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Figure 5: Estimated Demand Elasticity and Number of Sellers
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Figure 6: Misspecification from using Continuous Demand Model in Split Market Setting
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Figure 7: Actual versus Predicted Clicks Frequency
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Variable Mean Standard 
Deviation

First 
Quartile Median Third 

Quartile Maximum Minimum

Clicks 3.33 4.27 0 2 5 36 0
Price 304.88 106.84 229.99 279.98 396.63 601.95 104.57
Shipping 4.16 4.50 0 3.95 5.82 17.63 0
Total Price 309.04 107.01 234.42 283.94 396.63 607.77 108.10
Number of Sellers 4.05 2.93 2 3 6 15 1
Location on Screen 3.40 2.43 1 3 5 15 1
Bricks and Clicks Retailer 0.29
Weekend 0.28
September 0.11
October 0.29
November 0.29
December 0.27
January 0.05

Total Number of Products 18
Total Number of Firms 19
Total Number of Dates 111
Total Number of Observations 6151

Table 1: Descriptive Statistics



Likelihood Specification for Clicks: Poisson PML

Product Log Total 
Price

Position on 
Screen Weekend Month 

Dummies # of Obs.
Average 

Number of 
Sellers

Toshiba E740 WIFI -1.75 0.272 -0.214 4 216 2.093
(8.64)** (3.23)** (2.35)*

HP Compaq IPAQ 1910 -3.281 -0.591 -0.215 2 171 3.012
(5.68)** (4.73)** (2.29)*

HP Compaq IPAQ 1940 -14.691 -0.165 -0.255 4 898 8.942
(20.39)** (13.98)** (4.45)**

HP Compaq IPAQ 2210 -11.725 -0.058 -0.251 1 184 6.652
(10.54)** (2.04)* (2.43)*

HP Compaq IPAQ 3950 1.961 -0.351 -0.152 3 91 1.462
(1.56) (1.02) (0.62)

HP Compaq IPAQ 3970 -1.53 -0.262 -0.12 4 131 1.809
(1.91) (3.10)** (1.14)

HP Compaq IPAQ 5550 -13.712 -0.153 -0.288 4 851 8.055
(22.97)** (13.92)** (5.17)**

Palm m515 -2.503 -0.458 -0.444 2 44 1.091
(3.88)** (0.99) (2.82)**

Sony Clie NX70V -2.455 -0.227 -0.116 3 164 2.354
(9.41)** (2.99)** (0.91)

Sony Clie NX73V -5.941 -0.258 -0.163 4 501 4.928
(10.82)** (7.18)** (1.73)

Sony Clie NZ90 -2.884 -0.144 -0.331 4 151 1.821
(1.51) (0.82) (1.60)

Sony Clie SJ22 -3.263 -0.085 -0.278 4 368 3.728
(8.65)** (3.04)** (3.54)**

Sony Clie SJ33 0.182 -0.215 2 44 1.045
(0.08) (1.51)

Sony Clie TG50 -6.188 -0.049 -0.202 4 428 5.178
(6.28)** (1.22) (1.87)

Handspring Treo 90 -4.375 -0.723 -0.225 2 136 1.985
(1.67) (0.79) (2.92)**

Palm Tungsten T2 -6.096 -0.153 -0.265 4 678 6.587
(11.90)** (6.30)** (3.04)**

Palm Tungsten W -3.902 -0.328 -0.406 4 295 3.115
(4.37)** (4.08)** (2.30)*

Palm Zire 71 -11.115 -0.157 -0.316 4 800 7.978
(11.47)** (7.71)** (3.65)**

Note: Robust z  statistics in parentheses. * Significant at 5%. ** Significant at 1%.

Table 2: Product Specific Demand Estimates



Model 1 Model 2

Likelihood Specification for Clicks Poisson PML Poisson PML

Log Total Price -4.61 -3.761
(8.91)** (7.45)**

Log Total Price x (Number of Sellers − 1) -0.288
(4.14)**

Number of Sellers 1.593
(4.05)**

Position on Screen -0.186 -0.175
(4.54)** (4.47)**

Bricks and Clicks Retailer 0.262 0.236
(1.58) (1.67)

Weekend -0.242 -0.265
(10.82)** (11.46)**

Product Dummies 17 17
Month Dummies 4 4
Product x Month Dummies 55 55
Robust Standard Errors Clustered by Firm Yes Yes

Observations 6151 6151

Overdispersion Test                  Test Statistic 2656.46 2488.77
P-Value 0 0

Table 3: Continuous Demand Specifications

Note: Robust z statistics in parentheses. * Significant at 5%; ** Significant at 1%



Model 1 Model 2 Model 3 Model 4

Likelihood Specification for Clicks Poisson PML Poisson PML Poisson CML Poisson CML

Log Total Price -2.459 -2.386 -2.446 -2.449
(9.11)** (9.64)** (23.78)** (23.75)**

Log Total Price x (Number of Sellers − 1) -0.252 -0.289 -0.175 -0.173
(4.60)** (5.44)** (9.94)** (9.83)**

Demand Shift from Shoppers 0.603 0.591 0.599 0.6
(7.11)** (6.61)** (26.60)** (26.55)**

Number of Sellers 1.415 1.614 0.98 0.97
(4.52)** (5.31)** (9.93)** (9.82)**

Position on Screen -0.175 -0.174 -0.149 -0.149
(4.37)** (4.46)** (21.61)** (21.32)**

Bricks and Clicks Retailer 0.321 0.317 0.367
(2.41)* (2.43)* (-1.87)

Weekend -0.268 -0.272 -0.263 -0.263
(13.79)** (14.24)** (15.44)** (15.43)**

Product Dummies 17 17 17 17
Month Dummies 4 4 4 4
Product x Month Dummies 55 55 55 55
US Product Rank Dummies No 52 52 52
Robust Standard Errors Clustered by Firm Yes Yes No No
Controls for Unobserved Firm Heterogeneity No No 19 19

Random Effects Fixed Effects

Observations 6151 6151 6151 6151

Overdispersion Test                       Test Statistic 1942.27 1822.4 NA NA
P-Value 0 0

Note: z  statistics in parentheses. * Significant at 5%; ** Significant at 1%

Table 4: Discontinuous Demand Specifications



Model 1 Model 2

Likelihood Specification for Clicks Negative Binomial ML Negative Binomial ML

Log Total Price -4.81 -3.696
(10.29)** (8.66)**

Log Total Price x (Number of Sellers − 1) -0.343
(5.54)**

Number of Sellers 1.897
(5.37)**

Position on Screen -0.178 -0.166
(4.70)** (4.46)**

Bricks and Clicks Retailer 0.316 0.272
(2.26)* (2.23)*

Weekend -0.263 -0.288
(11.62)** (13.42)**

Product Dummies 17 17
Month Dummies 4 4
Product x Month Dummies 55 55
Robust Standard Errors Clustered by Firm Yes Yes

Observations 6151 6151

Note: Robust z statistics in parentheses. * Significant at 5%; ** Significant at 1%

Table A1: Continuous Demand - Alternative Specifications



Model 1 Model 2 Model 3 Model 4

Likelihood Specification for Clicks Negative Binomial ML Negative Binomial ML Negative Binomial CML Negative Binomial CML

Log Total Price -2.343 -2.304 -2.334 -2.333
(8.18)** (8.89)** (16.72)** (16.64)**

Log Total Price x (Number of Sellers − 1) -0.314 -0.342 -0.168 -0.165
(5.38)** (5.95)** (7.22)** (7.09)**

Demand Shift from Shoppers 0.619 0.608 0.578 0.579
(8.24)** (7.78)** (18.92)** (18.84)**

Number of Sellers 1.77 1.912 0.932 0.918
(5.30)** (5.82)** (7.15)** (7.02)**

Position on Screen -0.166 -0.165 -0.145 -0.144
(4.31)** (4.35)** (15.93)** (15.57)**

Bricks and Clicks Retailer 0.324 0.319 0.272
(2.66)** (2.64)** (2.81)**

Weekend -0.29 -0.297 -0.247 -0.247
(14.86)** (15.13)** (10.96)** (10.95)**

Product Dummies 17 17 17 17
Month Dummies 4 4 4 4
Product x Month Dummies 55 55 55 55
US Product Rank Dummies No 52 52 52
Robust Standard Errors Clustered by Firm Yes Yes No No
Controls for Unobserved Firm Heterogeneity No No 19 19

Random Effects Fixed Effects

Observations 6151 6151 6151 6151

Table A2: Discontinuous Demand - Alternative Specifications

Note: z  statistics in parentheses. * Significant at 5%; ** Significant at 1%




