Three-Dimensional Simulations of Direct-Drive Implosions on OMEGA

I. V. Igumenshchev

LABORATORY FOR LASER ENERGETICS
University of Rochester
250 East River Road
Rochester, NY 14623-1299

The performance of direct-drive implosion experiments on the OMEGA laser can suffer from low- to high-mode nonuniformities that are introduced by various sources including laser illuminations asymmetries, laser imprint, and target-surface defects. The effects of these nonuniformities were simulated using the 3-D hydrodynamic code ASTER. Simulations find the critical importance of the initial target shell compression stage (before the shell acceleration), at which dominant imprinting modes, determining the subsequent evolution of a target, are developed. Surface defects are predicted to develop holes in implosion shells and to result in injection of the ablator mass inside the hot spot. This injected mass causes an undercompression of targets. ASTER simulations help to improve the performance of OMEGA implosions by identifying and finding ways to mitigate effects of most-damaging nonuniformities.

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.