X-ray phase contrast imaging applied to laser driven shocks

L. Antonelli1,2, F. Barbato3, S. Atzeni1, D. Mancelli4, J. Trela4, G. Boutoux4, D. Mancelli4, G. Zeraouli5, L. Volpe5, C. Brabetz6, V. Bagnoud6, P. Neumayer6, D. Bleiner3, A. Schiavi1 and D. Batani4

1) Dipartimento SBAI, Università degli Studi di Roma ”La Sapienza”, Via Antonio Scarpa 14, 00161, Roma, Italy
2) York Plasma Institute, Department of Physics, University of York, York, YO10
3) Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH8600 Dübendorf, Switzerland
4) Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
5) CLPU, Centro de Láseres Pulsados, Edificio M5. Parque Científico. C/ Adaja, 8. 37185 Villamayor - Salamanca – Spain
6) GSI Helmholtzzentrum für Schwerionenforschung GmbH Planckstraße 1, 64291 Darmstadt, Germany

X-ray phase contrast imaging (XPCI) is an imaging technique based on the phase-shift of an X-ray photon induced by the refractive index. In particular, the phase-shift is related to the real part of the refractive index, while the imaginary part is related to the absorption. A coherent X-ray source such as a synchrotron or X-ray free electron laser are the best choice for XPCI, however, it is possible to use broadband incoherent X-ray sources by limiting the source size and careful positioning of the experiment and detector. The interaction of high power laser with matter produces X-rays according to the intensity, energy and pulse duration. These sources can be used for XPCI. In this poster we present the characterization and the application of XPCI using a laser-produced bremsstrahlung source to a shock. The X-ray source was created by irradiating a 5 μm diameter tungsten wire with a Nd:Glass laser pulse 0.5 ps long and energy of 25 J in first harmonic. This produces a strong bremsstrahlung radiation. We applied this source to XPCI static objects and a laser-driven shock-wave in a plastic target. In both cases the XPCI clearly indicates the presence of density interfaces with 5 μm spatial resolution. This proof-of-principle experiment shows how this technique can be a powerful tool for the study of warm and hot dense matter on large scale high-energy-density facilities.