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Detecting trace constituents of gases via atomic emission spectroscopy has a long history. The advent 
of low temperature atmospheric pressure plasmas opens up the possibility of using emission 
spectroscopy for portable and/or low cost detection in a diverse range of applications from industrial 
leak detection to volatiles and clinical breath analysis. However the nature and quality of the spectra 
from these plasmas, and the use of low resolution portable spectrometers, prevents the direct and 
reliable identification of trace constituents. Therefore we are exploring the use of machine learning 
techniques to develop predictive identification models based on optical emission training samples. Our 
original work involving unsupervised principal component analysis indicated significant cluster 
separation even at sub-ppm levels of e.g. NO impurity gases. Recently we have investigated 
supervised learning using Partial Least Squares Discriminant Analysis (PLS-DA) using a dataset of He-
CH4 spectra where the CH4 concentration varies from 0 – 100 ppm. Methane is a representative 
hydrocarbon gas found in a number of fields from breath analysis to natural gas production and 
research is ongoing into accurate environmental CH4 detectors in the ppm range. 
 
The spectra were obtained from an RF plasma formed in a quartz capillary between two exterior ring 
electrodes. The capillary outlet was a large distance (~100 cm) from the plasma to minimise 
atmospheric impurity back-diffusion and the system was initially conditioned to remove background 
impurities, over 21 days, using a 100% He plasma and exterior IR heating while monitoring spectral 
impurity bands. Spectra were obtained using a Ocean Optics HR4000CG-UV-NIR spectrometer in the 

wavelength range 194 – 1122 nm (interval 0.25 nm), with a slit width of 5 m and a minimum optical 
resolution >0.5 nm. Data is collected in a matrix of 3648 variables (wavelengths) and 523 samples in 
columns, which form 9 CH4 concentration categories (0, 1, 2, 4, 6, 12, 23, 77, 100 ppm).  The time 
duration for recording this data is 9480s. Spectral features corresponding to He, carbon, hydrogen and 
impurities (N, O, OH/H2O) were observed. No peak, except possibly near 516nm (C2 Swan bands), 
can be assigned unambiguously to any particular species. The dominant peaks for 0% CH4 were at 
587.95 nm and 707.08 nm, which can be assigned to He I (587.559 ... 587.596 and 706.5) and their 
intensity varied by ~26% (std. dev). On introduction of CH4, the intensity of these peaks remains 
constant (within 1 std. dev) up to ~23 ppm and falls thereafter. Discrimination of C I (587.734, 588.95, 
706.58, 707.1 ... 707.648) and C II peaks (587.95 ... 588.97, 706.36) is not possible due to the 
spectrometer resolution. A small peak at 778.5 nm, possibly O I (777.54), appeared in all spectra with 
almost constant intensity while other peaks varied arbitrarily with increasing CH4 concentration. 
Analysis of spectra using MassiveOES and Specair provides some indicative information but the low 
spectrometer resolution prevented more detailed modelling.       
 
Predictive models were generated by PLS-DA by splitting the data samples into various training and 
test sets. Two general approaches were explored, namely (i) 2 class and (ii) 8 class. In the former, a 
threshold concentration was set and the model use to predict whether an unknown sample was above 
or below this threshold. For a threshold value of 2 ppm CH4, the model accuracy was > 95% with < 10 
latent variables (LV). In the 8 class model, the accuracy reached > 90% (< 10 LV) after pre-processing 
of spectra to include autoscaling, smoothing and baseline correction. From a computation perspective, 
our OES spectra represent high dimensionality collinear data with a temporal drift and low resolution. 
This presents a serious challenge to developing robust machine learning algorithms. It is necessary to 
gain insight into how algorithms function and their sensitivity to OES features. Variable Importance in 
Projection (VIP) is a technique to determine the relative importance of variables to predictive accuracy. 
In the 8-class model the most important peaks are those with the highest intensities. In the 2-class 
model, a similar picture is observed. However VIP suggests the most important peak is at 336.4 nm. 
The peak intensity is low but increases with CH4 concentration. Species bands near 336 nm include O2 
and N2 impurities as well as C II. The use of VIP and other feature selection methods will allow us to 
reduce the model complexity by removing redundancy and limiting overfitting. We have also explored 
variable reduction, in the 8-class model, by splitting spectra into up to 10 arbitrary wavelength ranges 
and building models based on each spectral subrange. Although the overall accuracy is reduced, we 
observe improved performance for subranges in the near IR region, where the number of peaks is 
limited. For the future development of this technique, we need to develop more targeted algorithms and 
efficient feature selection protocols in order to tackle samples containing more complex molecular 
mixtures, including air and H2O, as well as further reduce the spectrometer resolution.         


