

Large Antisymmetric Interlayer Exchange Coupling

Takeshi SEKI

Institute for Materials Research, Tohoku University, Japan

EPSRC International Network for Spintronics Early Career Researchers symposium on Material Development Towards Energy Efficient Magnetic Memory Dec. 5 – 6, 2022 @ imec, Belgium

Collaborators

Hiroto Masuda

Takeshi Seki Yong-Chang Lau* Koki Takanashi *CAS, China from Oct. 2021

Yuta Yamane

Rajkumar Modak Ken-ichi Uchida

Jun'ichi leda

Shunsuke Fukami

Acknowledgements

Supported by the Grant-in-Aid for Scientific Research (S) (JP18H05246)

Today's Contents

- 1. "Symmetric" interlayer exchange coupling (IEC)
 - ✓ General introduction
 - ✓ Cu Ir alloys
 - ✓ Spin-orbit torque switching
- 2. "Antisymmetric" interlayer exchange coupling
 - ✓ What is antisymmetric IEC?
 - ✓ Large antisymmetric IEC for wedge-shaped film
 - Perpendicular magnetization switching induced by in-plane magnetic field

Interlayer Exchange Coupling (IEC)

Interlayer Exchange Coupling (IEC)

AF-coupling with the $Cu_{95}Ir_5$ interlayer

H. Masuda, TS et al., PRB 101, 224413 (2020).

Cu-Ir alloy as a spin Hall material

Nonmagnetic interlayer simultaneously showing AF-coupling and large SHE

Today's Contents

- 1. "Symmetric" interlayer exchange coupling (IEC)
 - ✓ General introduction
 - ✓ Cu Ir alloys
 - ✓ Spin-orbit torque switching
- 2. "Antisymmetric" interlayer exchange coupling
 - ✓ What is antisymmetric IEC?
 - ✓ Large antisymmetric IEC for wedge-shaped film
 - Perpendicular magnetization switching induced by in-plane magnetic field

Antisymmetric interlayer exchange coupling (IEC)

Symmetric IEC

Antiferromagnetically-coupled metallic superlattice

 $\boldsymbol{E}_{\text{IEC}} = - J_{\text{AF}} \left(\boldsymbol{M}_{1} \cdot \boldsymbol{M}_{2} \right)$

Antiferromagnetic coupling (AFC) is induced at the specific layer thickness.

Antisymmetric IEC

Antisymmetric interlayer exchange coupling (IEC)

D.-S. Han, et al., Nat. Mater. 18, 703-708 (2019).

Problems

- Small $\mu_0 \Delta H_{sw}$ (0.7 mT ~ 1.7 mT)
- Mechanism of the antisymmetric IEC is still under debate and has not been understood well.

Systematic experiments are indispensable.

Purpose of this study

Elucidation of mechanism of the antisymmetric IEC using the double and single wedge-shaped Pt/Co/Ir/Co/Pt


```
14
```

AHE in Double-wedged Pt(2)/Co (t_{Co}) /Ir (t_{Ir}) /Co (0.5)/Pt (2)

AHE in Double-wedged Pt(2)/Co (t_{Co}) /Ir (t_{Ir}) /Co (0.5)/Pt (2)

Previous studies: $\mu_0 \Delta H_{sw,max} = 0.7 \text{ mT} \sim 1.7 \text{ mT}$

AHE in Double-wedged Pt(2)/Co (t_{Co}) /Ir (t_{Ir}) /Co (0.5)/Pt (2)

At present, the ϕ_{AS} behavior is not understood clearly.

The $t_{\rm lr}$ dependence of $\mu_0 \Delta H_{\rm sw,max}$ was analogous to that of $\mu_0 H_{\rm s}$.

Correlation between the antisymmetric IEC and the symmetric IEC

Single-Wedged Sample (SWS) / Non-Wedged Samples(NWS)

✓ Bottom-Co-SWS shows larger $\mu_0 \Delta H_{sw,max}$ compared with Ir-SWS. ✓ $\mu_0 \Delta H_{sw,max}$ for NWS are small and hardly dependent on t_{lr} .

Phenomenological Model

Coupled Landau-Lifshitz-Gilbert (LLG) equations for m_{μ} ($\mu = 1$ and 2)

$$\partial \boldsymbol{m}_{\mu} / \partial t = -\gamma \boldsymbol{m}_{\mu} \times \boldsymbol{h}_{\mu} + \alpha \boldsymbol{m}_{\mu} \times (\partial \boldsymbol{m}_{\mu} / \partial t)$$

Critical field for switching

$$\begin{pmatrix} m_{0}\omega_{h}^{y} - \frac{\omega_{D}}{\omega_{E}}\omega_{h}^{z}, & m_{0}\omega_{h}^{z} + \frac{\omega_{D}}{\omega_{E}}\omega_{h}^{y} \end{pmatrix} = \omega_{K}(\sin^{3}\theta, -\cos^{3}\theta).$$

$$\omega_{h} = \gamma h_{ext}$$

$$\omega_{D} = [(t_{1} + t_{2})/2t_{1}t_{2}](\gamma D_{AIEC}/\mu_{0}M_{S}) \qquad m_{0} = (t_{1} - t_{2})/(t_{1} + t_{2})$$

$$\omega_{E} = [(t_{1} + t_{2})/2t_{1}t_{2}](\gamma K/\mu_{0}M_{S}) \qquad \omega_{K} = [(t_{1} + t_{2})^{2}/2t_{1}t_{2}](\gamma K/\mu_{0}M_{S})$$
(a)
$$\int_{0}^{t} \int_{0}^{t} \int_{0}^{t}$$

Perpendicular magnetization switching induced by *H*_{ip}

Double-wedged sample:

t gradient: $\nabla t_{Co} \sim 1.0$ nm, $\nabla t_{Ir} \sim 1.0$ nm per 9 mm, Device: $t_{Ir} \sim 0.32$ nm, $t_{Co} \sim 0.79$ nm

100

50

0

-50

-100

μ₀H_{ip} (mT)

Artificial 3-D Chiral Magnetic Structure

Large Antisymmetric IEC

Way to manipulate the **3-D** magnetic textures

Summary

Antisymmetric interlayer exchange coupling

- Large $\mu_0 \Delta H_{sw,max}$ in AHE loops was observed for the double-wedged Pt (2)/Co (t_{Co})/Ir (t_{Ir})/Co (0.5)/Pt (2).
- The $t_{\rm lr}$ dependence of $\mu_0 \Delta H_{\rm sw,max}$ indicates the correlation between the antisymmetric IEC and the symmetric IEC.
- The bottom Co wedged layer plays an important role for the large antisymmetric IEC.
- *H*_{ip}-induced perpendicular magnetization switching was demonstrated using the double-wedged sample.

H. Masuda, **TS** et al., PR Appl. **17**, 054036 (2022).

Today's Contents

- 1. "Symmetric" interlayer exchange coupling (IEC)
 - ✓ General introduction
 - ✓ Cu Ir alloys
 - ✓ Spin-orbit torque switching
- 2. "Antisymmetric" interlayer exchange coupling
 - ✓ What is antisymmetric IEC?
 - ✓ Large antisymmetric IEC for wedge-shaped film
 - Perpendicular magnetization switching induced by in-plane magnetic field

Open Position

Postdoctoral Researcher

Experimental study on "creation and control of electron spin wave in a semiconductor with a ferromagnetic metal" for developing "Spin-based wave parallel computing".

Contact: <u>takeshi.seki@tohoku.ac.jp</u>