School of Physics and Astronomy

Faculty of Engineering and Physical Sciences

A Dirac semimetal phase in topological insulator Sb_2Te_3

University of Leeds Satoshi Sasaki Josh Gretton

S.Sasaki@leeds.ac.uk

HENRY ROYCE

Research Interests: Topological Materials Physics

Research achievements

HENRY ROYCE.... INSTITUTE UNIVERSITY OF LEEDS

Bi₂Se₃

(b)

0.5 µm

Material synthesis at Leeds: MBE thin film growth

KAISERSLAUTERI LEEDS Manchester spinted ROYCE INSTITUTE UNIVERSITY OF LEEDS

27.6

nm

20.0

10.0

0.0

00,24

90

 Al_2O_3

00,21

70

Material synthesis at Leeds: Single crystal/Physical vapour growth

HENRY ROYCE INSTITUTE UNIVERSITY OF LEEDS

Source materials Melt growth ($T \le 1100^{\circ}$ C) polycrystalline sample Physical Vapour Transport crystal Growth Single crystal growth Naturally cleave planes (VTG) Ampoule Substrate Source (Van der Waals gap) Bi₂Se₃ crystal T_{high} T_{low} Hot Above Doped-Sb₂Te₃ single crystal SEM image Melt **Below** Cool I Melt (Bi,Sb)₂(Te,Se)₃

Materials synthesis & Characterisation INSTITUTE UNIVERSITY OF LEEDS

TIS $(Bi_{1-x}Sb_x)_2Te_3, Bi_2Te_3, Bi_2Se_3, Bi_2Te_2Se, (Bi_{1-x}Sb_x)_2(Te_{1-y}Se_y)_3, Sb_2Te_3$

TMs \langle TCIs SnTe, Sn_{1-x}In_xTe, (Pb_{1-x}Sn_x)Te, (Pb_{1-x}Sn_x)Se

TSMs GeTe

SnTe

 $2 \mu m$

0.5 µm

Bi₂Se₃

Synthesis methods

Single crystal

Bulk (melt growth) Small-structures (VTG)

Epitaxial film

Thin/ultra-thin film (UHV-MBE)

Characterisation

Crystallinity: XRD

Morphology: XRR, AFM, SEM

<u>Electrodes fabrication</u>: vacuum-cure Ag paint (bulk), lithography in clean room (film)

<u>Magnetoelectric properties</u>: transport, PC spectroscopy, SQUID, scanning Hall probe, MFM

More methods and more functional devices Collaboration

Topological Semimetals

HENRY ROYCE.... INSTITUTE UNIVERSITY OF LEEDS

+1

k

0

Weyl semimetals (WSM)

- Time Reversal Symmetry (TRS) is present. Momentum transform: $k \rightarrow -k$ Weyl Spin transform: $\sigma \rightarrow -\sigma$ points sing of Chern number *C*

the sum of the Chern numbers must be zero

(Nielsen-Ninomiya theorem)

C =

B. Yan et al., Annu. Rev. Condens. Matter Phys. 2017

Topological Semimetals

HENRY ROYCE INSTITUTE UNIVERSITY OF LEEDS

Weyl semimetals (WSM)

- Time Reversal Symmetry (TRS) is present. Momentum transform: $k \rightarrow -k$ Weyl Spin transform: $\sigma \rightarrow -\sigma$ points sing of Chern number C 1

> Monopole (+1) or anti-monopole (-1)

 Spatial Reversal Symmetry (SRS) or Parity symmetry (PS) is present.

Momentum transform: $k \rightarrow -k$

B. Yan et al., Annu. Rev. Condens. Matter Phys. 2017

Topological Semimetals

ROYCE INSTITUTE UNIVERSITY OF LEEDS

With TRS and SRS (PS)

NO topological protection for DPs or DNs

Factors for stabilising the DP(s)

- Single DP at the TRIM at the Brillouin zone boundary
- Nonsymmorphic crystal symmetry • e.g. Bi_3Na (C_3 symmetry), Cd_3As_2 (C_4 symmetry)

Type-I/II Weyl/Dirac semimetals

HENRY ROYCE INSTITUTE UNIVERSITY OF LEEDS

Well-known TI, Sb2Te3

Crystal structure M K 0.0 Dirac surface states Te(1) (eV) Rashba Sb**BVB1** gap Te(2) surface states ш SbVan der Waals Te(1) -0.5 BVB2 Quintuple -1.0 0.5 -0.5 0.0 k_{||} (Å⁻¹) а

Well-known TI, Sb2Te3

Type-I/II Weyl/Dirac semimetals

HENRY ROYCE INSTITUTE UNIVERSITY OF LEEDS

Self-doping Sb₂Te₃

Crystal structure Te(1) Sb Te(2) Van der Waals gap SbTe(1) Quintuple

а

Tellurium-doped $Sb_2Te_x (x \ge 3)$

Shubnikov de Haas oscillations

Lifshitz-Kosevich form

$$\frac{\Delta \rho_{\rm xx}}{\rho_{\rm xx}} \propto \cos 2\pi \left(\frac{F}{B} - \frac{1}{2} + \beta\right)$$

The extremal Fermi surface cross sectional area (CSA)

$$= F \frac{2\pi e}{\hbar}$$

$$k_{\rm F} = \sqrt{{\rm CSA}/\pi}$$

Landau lever fan diagram

If $\beta = \mp (0.5 - \delta)$, e.g., $\delta \approx 1/8$

i.e., $\beta \approx \pm 0.375$, then, the system is <u>nontrivial</u>.

 δ : band curvature correction

Band structure of Sb₂Te₃

UNIVERSITY OF LEEDS

Dirac semimetal phase of Sb_2Te_3

UNIVERSITY OF LEEDS

Bulk Dirac cones (NOT Dirac surface states) can present nontrivial topology!

Conclusions and Summary

- We tuned the chemical potential of single crystal Sb₂Te₃ by Te doping
- Shubnikov de Haas oscillation for single crystal Sb₂Te₃ show beats in Quantum oscillations
- Observation of Dirac semimetal phase in TI, Sb₂Te₃
- Bulk Dirac cones can provide nontrivial topology
- We are happy to collaborate with you; we can provide topological materials thin films and single crystals.

