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ASTC Technology Roadmap
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High data storage potential in Racetrack memory S bR rean
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* The magnetic HDDs have established an areal density ~1.5Tb/in2
*  With HAMR, it could go up to about 4 Tb/in2 .
* |2 platters, achieve about 40 TB in HDDs.

* If one can fabricate nanowires with a width, spacing, DWV width, and domain
length of 10 nm, one can obtain an areal density of ~2.9Tb/in2 .

* No head-media spacing issue in racetrack memory, we can stack layers.

* If 128 layers are stacked in the form factor of 65 mm HDD (2.5 in HDD),
we can achieve ~[45TB.

Thus, a higher storage capacity — rather than a high density
Requirements — is the main advantage of DWV racetrack memory.

* Being able to write information..
* Being able to address and read the information.(TMR head)
 Shifting DW by current induced or field driven.
* Being able to store information.
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Mechanism of Domain wall motion

u Racetrack memory
. One of the candidates for the future memory device.
. Non-volatile memory.

Magnetic
nanowire

Write
part

Shift current MTJ-Read par

Every nanowire in a racetrack memory should have its

reading and writing elements.
The size of the reading and writing element = The size of

the smallest domain.
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CIDWM is attributed to STT or SOT.
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Insulator layer
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Magnetic layer

Heavy metal layer
(Pt) Domain wall
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Challenges

* Fast DW motion.
* DWW stability.
* Controlled motion of DWs are also challenges.
* The domains have to be as small as possible.
* Reducing the overall size of the nanowire devices
* DWWV pinning and operation power consumption.
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Domain wall memory background (FM and AFM DW speed) _JKTOHOKU

RYU et al...IEEE TRANSACTIONS ON MAGNETICS, VOL. 52, NO. 7, JULY 2016.
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* Stray-field interactions limit the bit size.
* Precessional dynamics limit the operating
speeds.
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Yang, See-Hun, et al, Nature nanotechnology 10, no. 3 (2015).
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Lack stray fields, allows for atomically thin domain
walls with a high packing.

Much faster dynamics than ferromagnets, with THZ
switching speeds.

* Manipulating and detecting AFM spin textures is

challenging.



Domain wall memory background (Accurate Control DW Position) /””;X%E‘RQFA%TERN
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Durgesh Kumar, et al., IEEE TRANSACTIONS ON MAGNETICS, VOL. 55,
NO. 3, (2019). Al Bahri, et al. Physical Review Applied 11, no. 2 (2019).
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The artificial pinning, for example, by making 2

notches, is necessary to control precisely the S 15
domain wall position. ol
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* Complicated microfabrication technique. d (nm)

This method is not practical because it is costly to
manufacture and difficult to produce.
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* In ferrimagnets the opposing sublattices can fully compensate one another to
achieve behaviors like those of antiferromagnets.

* They remain individually detectible and addressable if the electronic or
optical properties of the constituent elements are different.

“mmec o



Compensated Ferrimagnetic systems R e

Net magnetization= M, (T)+ M,(T)= M(T)
Net angular momentum= A (T)+ A,(T)=A(T)
At magnetic compensation point (Ty); M(T)=0 and A(T)#0
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At angular momentum compensation point (T,); M(T)#0 and A(T)=0

TM-rich

|
RE-rich

1

M(emu/cm?)

= B

Li

Rare earth concentration at.%

Ty and T, could be also be achieved by tuning the

composition of the systems.
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Ferrimagnets

Miotar(T) = Mga(T) — Mpeco(T) = aga(Te — T)Pgy—apeco(Tc — T)Prog, (Eq. 1)

Mga(0) -
Te =Tuc =Tc [m]ﬂ(ﬁpem bed (Eq.2)

_ MFeCo(O) _ 1 B
Atotal = [_DVFecO(O)](l Tc) reco (EQ. 3)

Tame = Tuc + Tl = (CrEE)M e 761 (Eq. 4)

= g-factors are different.
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* Fast DW motion @ room temperature.
* DWW stability in a wide operating temperature range.
* Controlled motion of DWs are also challenges.
* Reduce Current density.
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Ranjbar.S, et al, Mater. Adv., 2022, 3, 7028—-7036

Elucidation of the mechanism for maintaining ultrafast domain
wall mobility over a wide temperature range
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Current induced domain wall motion

I GdyFeCosg
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20 24 26

Gd concentration (at.%)

28

The maximum DWV velocity vy, = 1500 m/s (>20 Gbps) appears between xyc and Xamc
point for Gd,,FeCo,, with for short pulse duration width of 3ns.
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Pulse duration width dependence on

DW velocity (m/s)
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v The domain wall velocity became slower, when a
short pulse duration width injected into the sample.

v The short pulse duration width of 3ns retains the
sample temperature close to the Tyyc.

v A short pulse current of 3 ns with low input current
density showed a broader and stable peak.



Discussion |

Simulation
With pinning

Simulation

(a) 298K without pinning

(c)

Initial state

30ns

(f)

Final state

DW velocity with a pulse width of 30 ns
is about 60% lower than that with 3 ns.

Vow(30ns)=0-6Vpw(ans)
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~....Spin Hall
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Top view Top view
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Spin current

“—Neel wall

The spin currents flowing from the Pt layer
and the Neel wall were orthogonal to each
other.

SOT was efficiently generated and a high
DW speed was achieved.



Discussion 2
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1 =1.4x10 (A/m2)

A Down-Up 30 ns
O Up-Down
-200 0
H, (mT)

200

The temperature difference between the center of the magnetic wire and the wire

edge has been observed.

The decisive difference is due to DMI, and this difference is thought to come from
the shape of the domain wall driven by current.
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I. Domain walls velocity up to 1500 m/s at | ~ 3;15"0 [ DD ....... DD;
1.7%10'" (A/m?) was found for both edges of g 1000 ey
DWs in GdFeCo nanowire. s s GO SR
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2. The mechanism of difference in DVV speed
was clarified by an experimental observation
of the DW shape with the inclusion of DMI
effects.
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Ranjbar, S., et al. APL Materials 10.9 (2022).

Controlling the multi-bits DWs driven by the electric
current at an ideal position
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Experimental method and Electrical setup for the domain
wall motion measurement.
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Results and discussion
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Results and discussion
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¢ is the angle of the internal DW
magnetization.

The Néel (¢ = 0) or Bloch (¢ =1/2)
configuration, and the precession
induced by SOT, which increases ¢.

By employing the GdFeCo without an
external magnetic field, we can drive
DWs with fast and stable motion.
However, a further detailed examination
of jitter, eye pattern, and the error rate
are required to verify its practical
application.
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I. Here, we have demonstrated fast and
controllable multi-bit domain wall motion
without an external magnetic field in a
Pt/GdFeCo nanowire system.

2. We have demonstrated that the external
magnetic field rotated the angle of the internal
DW magnetization closer (farther) to the

Néel configuration for the front edge (rear
edge) of DW.
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Remain challenges and possible research using ferrimagnets /7%i202KY reen

- Reducing the overall size of the nanowire
devices

. The domains have to be as small as
possible.

- New materials Ferrimagnetic
insulators

- Synthetic ferrimagnets
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M) Check for upaates

Ferrimagnetic spintronics

Se Kwon Kim ', Geoffrey S. D. Beach®?, Kyung-Jin Lee ©'*4%% Teruo Ono %%, Theo Rasing’® and
Hyunsoo Yang ©°

Table 1] List of possible research directions using ferrimagnets

Research directions  Specific topics

New materials Ferrimagnetic insulators

Synthetic ferrimagnets

Non-collinear ferrimagnets

Ferrimagnets with strong spin-orbit coupling
Ferrimagnets with ultrasmall damping
Ferrimagnets with room-temperature
compensation points

Fundamental studies Dynamics of spin textures (DWs, skyrmions,
vortices, Bloch points and stripes) faster than
those in ferromagnets

Spin waves with distinct handedness

Interaction between spin textures and spin waves
Interplay of charge, spin and heat in ferrimagnets
Transport phenomena (spin torque,
magnetoresistance and various Hall effects)
Sperimagnetism

Practical applications Ultrafast magneto-optical recording
Soliton-based racetrack memory
Wave-based computing with spin waves of
distinct handedness

Quantum information processing

Neuromorphic computing
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Nano MDS (Nano Magnetic Domain Scope)
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TMR sensor Resistance
& Ni sensoN measurement
sampl

e
XY table
Item Property
TMR sensor Size : 30 X 30 nm?
Sensitivity : 0.02 mV/mT
Ni sensor Size : 120 X 20 nm?
Frequency ~1GHz (-6dB)
band
XY table Resolution : 1 X 5 nm?
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