

UNDEC

Challenges for Integrating 2D/TI Materials into SOT-MRAM G.Talmelli on behalf of SOT-MRAM team

Email: giacomo.talmelli@imec.be

SOT-MRAM introduction

3-terminal device

- Separate reading and writing paths
 - Writing mechanism: SOT
 - Reading mechanism:TMR
- Faster switching than STT-MRAM
 - High speed (0.1 1 ns)

Main challenge: Decrease of switching current \rightarrow Increase of SOT efficiency

- Solutions are strongly related to material engineering
- SOT efficiency controlled by SOT track (spin generation), Free layer and their interface
 - Usually quantified using SHA (θ_{SH})

064009 (2021)

Proposal: Replacement of heavy metal with topological insulator (TI)

Table with	e 1 Compa other mater	rison of rials	room-temperature	$\sigma_{s,\parallel}$ an	d $ heta_{s,\parallel}$ for	Bi ₂ Se ₃
-						

	(this work)	(ref. 4)	(ref. 6)	(ref. 23)	(ref. 24)
θ	<mark>2.0–3.5</mark>	0.08	0.15	0.24	<mark>0.3</mark>
⁷ S,	1.1–2.0	3.4	0.8		1.8

Very high SOT efficiency demo for Bi₂Se₃

A. Mellnik et al., Nature Lett. 511, 449 (2014)

ເງຍອ

Multiple systems proposed in literature with reported SHA ×10 compared to heavy metals

Challenges for TIs

Requirements for SOT-MRAM

- PMA for Free and Reference layer
 - High TMR and high density
- Sputtering deposition
- 400°C Thermal budget
- Low switching current and power
 - Related to SHA but also SOT track resistivity

Can TI be easily integrated in SOT-MRAM? Can they satisfy all the requirements?

ເງຍອ

Deposition technique Large majority of TI is deposited via MBE

Y. Wang et al., APL 118, 062403 (2021)

First experiments in literature using sputtering

UIIIEC T. Fan et al., Scientific Reports 12:2998 (2022)

 $|\theta_{\rm SH}|$

0.15

0.08

0.4

2.5

3.5

18.6

10.7

Deposition technique Large majority of TI is deposited via MBE

Y. Wang et al., APL 118, 062403 (2021)

First experiments in literature using sputtering

Outline:

- Sputtered Bi₂Se₃ results
- Sputtered Bi_{0.9}Sb_{0.1} results
- Ab-initio simulations

LINEC T. Fan et al., Scientific Reports 12:2998 (2022)

 $|\theta_{\rm SH}|$

0.15

0.08

0.4

2.5

3.5

18.6

10.7

Deposition technique Large majority of TI is deposited via MBE

Y. Wang et al., APL 118, 062403 (2021)

First experiments in literature using sputtering

SOT materials	$ \theta_{\rm SH} $
Ta	0.15
Pt	0.08
W	0.4
(Bi _{0.07} Sb _{0.93}) ₂ Te ₃ (MBE)	2.5
Bi ₂ Se ₃ (MBE)	3.5
Bi _x Sei _{1-x} (sputtered)	18.6
Bi _{0.85} Sb _{0.15} (sputtered)	10.7

Bi_2Se_3 film exploration

Polycrystalline layer

IIIIEC T. Fan et al., Scientific Reports 12:2998 (2022)

Magnetic properties MgO 2nd Harmonic voltage CoFeB 1.7 nm 1.0 --0.05 **WCoFeB** Data -0.5 slope: 0.00372 ΩT Bi₂Se₃ 10 nm Linear fit Kerr signal (a. u.) -0.10 0.5 --1.0 Θ_{T} (m Ω) (MQ) -0.15 -1.5 0.0 Φ_{T} -0.20 Data -2.0 Linear fit -0.5 slope: -1.968E-4 ΩT -0.25 -2.5 $B_{FI} = 1.49 \text{ mT}$ $B_{AD} = 4.76 mT$ In-plane magnetic anisotropy -1.0 --0.30 -3.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.4 -12000 -6000 6000 12000 0.4 0.6 0.8 1.0 12 1.4 1.6 $I/(B_{ext}+B_{dem}+B_{ani})$ (T⁻¹) $I/(B_{ext}) (T^{-1})$ H (Oe)

Parallel resistor model R_{CoFeB} R_{BiSe} $\rho_{BiSe} = 600 \ \mu\Omega.cm$

umec

Spin Hall angle of 1.3 Effective SHA $(J_{total}) = 0.75$

Estimation of current through $Bi_2Se_3 \rightarrow SHA$ All current through $Bi_2Se_3 \rightarrow effective SHA$

8

Perpendicular magnetic anisotropy

Both Ta and TaN spacers lead to PMA... ...but also to negative SHA related to those layers

Thermal budget

300°C annealing

Strong diffusion observed in Bi_2Se_3 due to annealing!

ເງຍອ

Thermal budget

300°C annealing

Can be solved using $\ensuremath{\mathsf{TaN}}$

Strong diffusion observed in Bi_2Se_3 due to annealing! Leads to loss of magnetic properties and delamination, preventing device fabrication

ເກາຍc

BiSe/Pt multilayers and alloys results

- Pt/Co interface leads to PMA
 - Compatible as SOT track/FL in SAF-HFL systems
- Integration of BiSe in 300°C compatible stack
 - Magnetic layers are not changed, only SOT track material
 - Total thickness kept constant to 5 nm

Different choices for integration of BiSe/Pt

S. Couet, VLSI 2021 (2021)

Loss of PMA for BiSe content larger than 20% Adhesion issues happen as well above 25% content

BiSb exploration

Integration with SAF-HFL

Same approach of BiSe case

Total thickness of SOT track kept to 5 nm All samples annealed at 300C

ເກາຍc

– x I, 3

BiSb exploration

Magnetic properties

Same approach of BiSe case

BiSb 5 nm

Thick BiSb

Pt reference -

BiSb incorporation severely damages MTJ magnetic properties

ເກາຍc

In-situ-XRD – temperature dependence

Integrated intensities vs temperature Integrated intensities vs temperature 5.2 20.5978°-39.6068° (raw) Slight decrease of melting T with Pt concentration Integrated intensity 9.6 8.7 8.7 Pt 0.35 nm 4.4 BiSb x 3 () () BiSb 5 nm Pt 0.35 nm Temperature (°C) (corrected) Temperature (°C) (corrected) ⊢ Variation of XRD intensities in function of temperature Variation of XRD intensities in function of temperature Melting BiSb/Pt multilayers චූ 30 Temperature (°C) (corrected) Temperature (°C) (corrected) [Pt] (%) **Melting** T Smaller BiSb peak above 300C?

Melting temperature consistently below 300C

ເງຍອ

Courtesy of K. Opsomer Gent University

Courtesy of K. Opsomer Gent University

In-situ-XRD – time dependence

Recovery after cooldown observed for BiSb multilayers

Is the recovery an indication that we can recover the SOT track after annealing?

Ab-initio simulations for next Bi-alloys

Goal: Increase thermal stability by increasing melting temperature

Two different proposals:

- Alloys containing elements of the same column than Bi in the periodic table
 - Assumption: Same crystalline structure is kept up to 50% of the sites substituted
- Identification of materials with high cohesion energies, without oxygen or sulfur elements, halogens and alkalines
 - From Material project database (Jainet al., APL Materials 1, 011002 (2013))
- DFT simulations considering:
- exchange-correlation GGA-PBEsol
- pseudopotentials "Optimized Norm-Conserving Vanderbilt Pseudopotential"
- No spin and spin-orbit coupling

umec

Computed quantity: cohesive energy

~ Empirical linear relationship between cohesive energy and melting temperature

Courtesy of B.Van Troeye, K. Sankaran, G. Pourtois

 $E_{coh} = N^{(1)}E_{at}^{(1)} + N^{(2)}E_{at}^{(2)} - E^{(1+2)}$

Energy of Energy of crystal

Results

Courtesy of B.Van Troeye, K. Sankaran, G. Pourtois

From computation several interesting materials came out to increase thermal budget Apart from known Tis, other alloys show metallic behavior

ເກາຍc

Switching efficiencies

ເກາຍc

Conclusion

- TIs represent an interesting class of materials for SOT-MRAM thanks to their high SHA but many challenges are left
 - Growth of PMA ferromagnets on high quality TIs deposited via sputtering
 - Bi diffusion due to thermal treatment leading to loss of PMA and delamination
 - High resistivity leading to current shunting and high power consumption
- Similar issues are found both in Bi₂Se₃ and BiSb
 - Polycristalline BiSe/CoFeB still has SHA x3 compared to W/CoFeB
 - Alloying the materials with Pt doesn't solve the challenges

Thanks to

D. Costa, K. Opsomer, B. Van Troeye, W. Janssens, K. Sankaran, G. Pourtois, R. Carpenter and S. Couet

ເງຍອ

embracing a better life