Current-Induced Crystallisation in Heusler Alloy Films for Memory Potentiation in Neuromorphic Computation

W. Frost,¹ K. Elphick,¹ M. Samiepour,¹ Z. Zhou,¹
D. C. Lloyd,¹ T. Seki,² T. Kubota,² R. Ramos,²
E. Saitoh,² K. Takanashi² and <u>A. Hirohata¹</u>

Roadmap on Heusler Alloys

Devices			HDD read heads	All Heusler	junctions
Properties	2002 Large MR	~ 100 % GMR at RT		~ 1000 % TMR	at RT
			RT exchange bias		_
Fundamentals	1983 Half-metallicity	Antiferromagnetism /	ferrimagnetism	RT half-metal Perpendicular anisotropy	licity
1903 Discovery					
Past	Recent	2015	2018	2020	2030

Bright Field TEM (235°C for 3 hours)

Electron diffraction pattern (235°C for 3 hours)

* J. Sagar et al., Appl. Phys. Lett. 105, 032401 (2014).

Initial grain nucleation :

<111>

Co₂Fe(Al,Si) / W / Co₂Fe(Al,Si) trilayers : *

* W. Frost et al., J. Magn. Magn. Mater. 484, 100 (2019).

Co₂Fe(Al,Si) / Ag / Co₂Fe(Al,Si) trilayers : *

- Resistance change after a series of pulse current applications of 500 μ A up to 5 mA for 100 μ s up to 500 μ s in a GMR device of CFAS/Ag/CFAS.
- Assuming the CFAS disc with the diameter of 100 nm and the thickness of 10 nm,
 - Heating required to increase the temperature by 53 K : ~ 3.31×10^{-11} J.
 - Joule heating by an electrical current of 1 μ A at a voltage of 10 μ V for 1 s : ~ 1 \times 10⁻¹¹ J.
 - Current-induced crystallised by 10 steps by a pulsed current of 100 ms or less.

* W. Frost et al., Sci. Rep. 11, 18372 (2021).

High-resolution transmission electron micrographs : *

- Cross-sectional TEM images of the GMR device with 300k and 800k magnification.
- Diffraction pattern confirms Co₂Fe(Al,Si) (220) crystallisation.
- Lattice constant is estimated to be 0.57 nm, which is 96.6% of that estimated by the corresponding XRD.

Current-Induced Crystallisation for Neuromorphic Computing

Co₂Fe(Al,Si) / Ag / Co₂Fe(Al,Si) trilayers : *

- The current-induced crystallisation leads to the reduction in the corresponding resistivity.
- This acts as memory potentiation for an artificial GMR synapse.
- This offers more realistic neuromorphic computation with higher efficiency.
- Further improvement in GMR ratios is necessary.

 $Co_{2}Fe_{0.4}Mn_{0.6}Si$ / $Ag_{0.78}Mg_{0.22}$ / $Co_{2}Fe_{0.4}Mn_{0.6}Si$ junctions :

Current-Induced Crystallisation in Post-Annealed Junction

- Resistance change after a series of pulse current applications of 500 μ A for 100 μ s and 200 μ s in a GMR device of Co₂Fe_{0.4}Mn_{0.6}Si/Ag-Mg/Co₂Fe_{0.4}Mn_{0.6}Si.
- The changes are ~25% as compared with the full current-induced crystallisation for $Co_2FeAI_{0.5}Si_{0.5}/Ag/Co_2FeAI_{0.5}Si_{0.5}$.
- Interfaces may be improved by the current applications.

Current-Induced Crystallisation in Post-Annealed Junction

- Resistance change after a series of pulse current applications of 600 μ A for 100 μ s and 250 μ s in a GMR device of Co₂Fe_{0.4}Mn_{0.6}Si/Ag-Mg/Co₂Fe_{0.4}Mn_{0.6}Si.
- The changes are ~25% as compared with the full current-induced crystallisation for Co₂FeAl_{0.5}Si_{0.5}/Ag/Co₂FeAl_{0.5}Si_{0.5}.
- Interfaces may be improved by the current applications.

Current-Induced Crystallisation

* https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/long-term-synaptic-plasticity

- Machine learning was used to predict new half-metallic Heusler alloys.
- First-principles calculations were performed on selected Heusler alloys, NiCrMnSi and CoIrMnZ (Z = Al, Si, Ga and Ge).
- CoIrMnAl films were successfully crystallised into the Y phase.
- The lattice constants of the films post-annealed at 500~600°C were almost the same with the predicted values.
- The corresponding saturation magnetisation and Curie temperature were ~70% of the predicted values.
- Further materials development using machine learning can demonstrate better properties for greater integration and capacity of storages and memories.

Group Members

Atsufumi Hirohata

Department of Electronic Engineering University of York +44 (0)1904 32 3245 atsufumi.hirohata@york.ac.uk

Development in Spintronics

Electrical spin generation	1957 RKKY	1975 Jullière	1988 GMR 1999 Spin injer	1995 RT-TMR 200 Spin-valve 1996 STT theory 19 ction 2000 Conductance mis	1 Giant TMR theory 2004 Giant 199 STT experiment 2003 Spin or match 2004 LLG er	TMR 2016 Neuromorphi scillator equation	c operation
Spin-orbit effects	1960 DMI theory 1958 SOT theory 1958 Skyrmionl theory	1971 Spin Hall theory		2	2004 Domain motion by a curre 004 Spin Hall experiment 2006 In 20	nt iverse spin Hall 009 Skyrmions	
Electric field application			1989	1990 Spin FET concept FM DMS	2000 Voltage-control FM		
Electromagnetic wave application				1995 Photoexcitation 1998 Spin STM	2002 Spin pumping 2002 FMR	2010 Magnonics	
Spin-band splitting				1993 Spin injection 1999 Spin LED			
Influence of thermal gradient					2008 Spin Seebeck	2017 Spin Nernst	
Geometrical phase	1959 AB effect		1981 AAS effect 1984 Berry phase	1992 Persistent current theory 1999 Ballistic MR			
Mechanical rotation	1015 Barnett effect					2011 Spin mechatronics theory 2016 Hydrodynamic spin cu 2018 MOKE detection	/ Irrent
Materials	1903 Heusler alloy discovery		1983 Half-metallic Heusler allo 1988 DMS	у	2005 Topological insulator		
Products	1956 HDD	1972 MRAM concept		1997 GMR-HDD 1995 GMR sensors	2002 MRAM 2008 T	MR-HDD 20 2016 TMR sensors 2011 Racetrack memory proto	19 STT-MRAM type
	19	970 19	980 19	9 90 1G 2	2G 2G	010 3G 20	20

* A. Hirohata et al., J. Magn. Magn. Mater. 509, 166711 (2020).

Possible Heusler Alloys

н	-		\diamond			Ó											He
Li	Be B C N O F											Ne					
Na	Mg	g								_	AI	Si	Ρ	S	CI	Ar	
K	Ca	Sc	Ti	۷	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Fr Ra																
		11	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		1	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

 $15 \times 30 \times 14 = 6,300$ combinations !

* K. Elphick et al., Sci. Technol. Adv. Mater. 22, 235 (2020).

Machine Learning for Materials Science

Machine learning explosion in materials science : *

^{*} T. Hey et al., Phil. Trans. R. Soc. A 378: 20190054 (2020).

npj Computational Materials

www.nature.com/npjcompumats

REVIEW ARTICLE OPEN Recent advances and applications of machine learning in solidstate materials science_____

Jonathan Schmidt¹, Mário R. G. Marques¹,

Editorial

pubs.acs.org/cm

Discover Materials

Review

Five High-Impact Research Areas in Machine Learning for Materials Science

Big data and machine learning for materials science

Computational Materials Science 193 (2021) 110360

Jose F. Rodrigues Jr¹ · Larisa Florea² · Maria C. F. de Oliveira¹ · Dermot Diamond³ · Osvaldo N. Oliveira Jr⁴

Received: 9 February 2021 / Accepted: 1 April 2021 © The Author(s) 2021 OPEN

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Machine learning in materials science: From explainable predictions to autonomous design

Ghanshyam Pilania

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

* J. Schmidt et al., npj Computational Materials 5, 83 (2019).

Using machine learning, we investigate new ferromagnets :

Data set improvement for cubic and tetragonal crystals :

- Data converges when the final total energy and one before is $< 10^{-4}$ eV.
 - \rightarrow Data convergence / divergence.

Data set improvement for cubic crystals :

- Select converged data only
 - \rightarrow Correlation coefficient improves by 5~10 %.

Descriptors for random forest :

- Predicted magnetic property
 - \rightarrow Default data set.
 - \rightarrow Use a magnetic moment as a descriptor.
 - \rightarrow Use density of states (DOS).
 - \rightarrow Use both DOS and moment.

Convolutional neural network (CNN) :

- Predicted total energy
 - \rightarrow CNN advantageous over random forest.

X.

Similar calculations were performed on CoIrMnZ (Z = AI, Si, Ga and Ge) : *

- VASP used in combination with the projector augmented wave method.
- GGA used as an exchange correlation potential.
 - Energy cutoff : 500 eV for the plane waves.
 - *k*-mesh of $16 \times 16 \times 16$.
 - Energy and the force tolerance : 10 μeV and 10 meV Å^-1, respectively.

* T. Roy et al., J. Magn. Magn. Mater. 498, 166092 (2020).

First Principles Calculations on ColrMnAl

Similar calculations were performed on CoIrMnZ (Z = AI, Si, Ga and Ge) : *

 VASP used in combination with the projector augmented wave method.

Ash

- GGA used as an exchange correlation potential.
 - Energy cutoff : 500 eV for the plane waves.
 - *k*-mesh of $16 \times 16 \times 16$.
 - Energy and the force tolerance : 10 μeV and 10 meV Å^-1, respectively.

c/a

Material	a	μ_{total}	μ _{Co}	μ_{Ir}	μ_{Mn}	μ_Z	Т _С
	(Å)	(μ_B)	(μ _B)	(μ_B)	(μ_B)	(μ_B)	(К)
CoIrMnAl CoIrMnSi CoIrMnGa CoIrMnGe Co ₂ MnSi	5.905 5.860 5.931 5.964 5.630 5.65 ^b	4.03 5.00 4.09 5.00 5.00 5.00 ^c	0.95 1.32 0.97 1.31 1.02	0.16 0.32 0.14 0.29 -	2.95 3.29 3.00 3.32 2.99	-0.02 0.00 -0.07 -0.01 -0.03	584 1020 517 956 1204 985 ^b

* T. Roy et al., J. Magn. Magn. Mater. 498, 166092 (2020).

Calculated density of states (DOS) on CoIrMnZ (Z = AI, Si, Ga and Ge) : *

• Spin-polarised and atom-resolved DOS of CoIrMnZ.

Ash

CoIrMnAl films were sputtered : *

- Base pressure : 2 \times 10 $^{\text{-7}}$ Pa.
- MgO (001) // CoIrMnA (50 nm) / Ta (3 nm) grown at room temperature.
- Co : Ir : Mn : Al = 28.1 : 27.6 : 20.7 : 23.6 (at %) measured by an inductively coupled plasma mass spectrometry.
- Post-annealed at $300 \le T_a \le 600^{\circ}$ C.

* R. Monma et al., J. Alloys Comp. 868, 159175 (2020).

Vibrating sample magnetometry (VSM) measurements : *

- Clear magnetisation hysteretic curves measured at room temperature for the films post-annealed at T_a under an in-plane magnetic field.
 - \rightarrow Possible half-metallicity at room temperature.
- Magnetisation curves also measured at elevating temperatures.

^{*} R. Monma et al., J. Alloys Comp. 868, 159175 (2020).

TEM imaging on CoIrMnAl film :

- $\sim 5~\rm{nm}$ interfacial roughness at the MgO / CoIrMnAl interface possibly due to the damage induced by sputtering.
 - \rightarrow Possible half-metallicity at room temperature.
- Epitaxial growth observed up to ~ 17 nm.

DOS of ColrMnAl and ColrMnSi on MgO

DOS calculated for CoIrMnZ (Z = AI and Si) grown on MgO (001) : *

• Spin-polarised DOS of CoIrMnAl/MgO and CoIrMnSi/MgO interfaces.

Ash

- Both cases confirm the metallic nature of the majority spin channel.
- A band gap is formed in the minority spin channel only for the CoIrMnAl / MgO interface.
 - \rightarrow Half-metallic ferromagnet.

^{*} T. Roy et al., J. Magn. Magn. Mater. 498, 166092 (2020).

Spin Transport at CoIrMnAl and CoIrMnSi / MgO

Spin transmittance was calculated across CoIrMnZ (Z = AI and Si) / MgO (001) : *

and the

• Transmittance in CoIrMnZ / MgO / CoIrMnZ (001) as a function of in-plane wave vectors k_x and k_y at E_F in parallel magnetisation of majority spin electrons.

* T. Roy et al., J. Magn. Magn. Mater. 498, 166092 (2020).

Comparison between TEM images and QSTEM simulations on CoIrMnAl film :

• Fully ordered *Y* phase confirmed in the epitaxially grown region.

$$\begin{array}{c} \bullet & X = Co \\ \bullet & X' = Ir \\ \bullet & Y = Mn \\ \bullet & Z = Al \end{array}$$

Magnetic Random Access Memory

Latest MRAM

To develop a new non-destructive imaging method for spintronic devices :

* https://www.everspin.com/; ** A. Hirohata et al., Nature Commun. 7, 12701 (2016).

Heusler-alloy-based MTJ grown and patterned : *

* The Cr/Au electrode deposited after fabricating the pillar shapes.

- $t_{\rm CFMS} = 5, 30 \, ({\rm nm})$
- T_{anneal} for CFMS = 400°C
- T_{anneal} for all the stacking = 400°C

Two distinctive TMR were obtained :

Impact voltages between 9 and 12 keV used to penetrate 80 nm Au :

Majority of BSE are generated at the Au top layer.

 \rightarrow Any defects in Pd / Co₂(Fe,Mn)Si / MgO / CoFe interfaces ?

BSE Imaging on Magnetic Tunnel Junctions

Subtracted images between 11 and 10.5 keV on 15 x 15 μm pillars :

11keV(Magenta) versus 10.5keV(Green) comparison

11keV(Magenta) versus 10.5keV(Green) comparison

Redeposition ?

EDX Mapping on a High-TMR junction

Energy dispersive X-ray spectroscopy used to identify material distributions:

Base(2)

New ferromagnetic Heusler alloys predicted : *

- Vienna *ab-initio* simulation package(VASP) was used in combination with the projector augmented wave method.
- Generalised gradient approximation (GGA) was used as an exchange correlation potential.
 - Energy cutoff : 500 eV for the plane waves.
 - *k*-mesh of $8 \times 8 \times 8$.
 - Energy and the force tolerance : 10 µeV and 10 meV Å⁻¹, respectively.

XX'YZ	Structure	$\Delta E_{XX'YZ}$ (eV f.u. ⁻¹)	a (Å)	cla
NiCrMnSi	cubic	-1.033	5.710	1.1
	tetragonal	-1.151	5.285	1.270
MnNiCrSi	cubic	-0.974	5.681	
	tetragonal	-1.118	5.213	1.254
MnCrNiSi	cubic	-0.402	5.658	
	tetragonal	-0.794	5.046	1.457

* Y. Onodera et al., Jpn. J. Appl. Phys. 59, 073003 (2020).

Half-metallic ferromagnetic Heusler alloys predicted : *

- Magnetic interactions were calculated using Green's function based on the spin-polarised relativistic Korringa-Kohn-Rostoker method (SPR-KKR).
 - Heisenberg exchange coupling constant within a real space approach.
 - Curie temperature $(T_{\rm C})$ estimated using the Heisenberg exchange coupling constant with mean-field approximation.
- Full-potential method and GGA were used for the self-consistent-field calculations.
 - 824 irreducible k-points for the Brillouin zone integration.
 - Angular momentum expansion up to three used for each atom.
 - 90 energy points on the complex energy path used.

Material	T_c (K)	P (%)	a (nm)	cla	$m_{\rm tot}$ (μ_B /f.u.)
NiCrMnSi	1200	88	0.528	1.27	0.95 (0.13, -1.79, 2.61)
Co ₂ MnSi	1204	100	0.563	1.00	5.00 (1.02, 2.99)

* Y. Onodera et al., Jpn. J. Appl. Phys. 59, 073003 (2020).

Ash

NiCrMnSi films were sputtered : *

- Base pressure : 2 \times 10 $^{\text{-7}}$ Pa.
- MgO (001) // NiCrMnSi (100 nm) / Ta (3 nm) grown at room temperature.
- Ni : Cr : Mn : Si = 25.9 : 29.5 : 23.0 : 21.6 (at %) measured by an inductively coupled plasma mass spectrometry.

^{*} Y. Onodera et al., Jpn. J. Appl. Phys. 59, 073003 (2020).

Transmission electron micrographs (TEM) : *

- The sample deposited at 500°C shows short-range crystallisation phases but polycrystalline nature.
- The sample grown at 700°C shows clear grains.
 - Diffraction spots observed.
 - Multiple crystalline phases with overlapped each other.

(a) $T_{\rm s} = 500 \,^{\circ}{\rm C}$

(b) $T_{\rm s} = 500 \,^{\circ}{\rm C}$

(c) $T_{\rm s} = 700 \,^{\circ}{\rm C}$

(d) $T_{s} = 700 \,^{\circ}\text{C}$

* Y. Onodera *et al., Jpn. J. Appl. Phys.* **59**, 073003 (2020).

Energy dispersive X-ray spectroscopy (EDX) mapping : *

- The sample deposited at 500°C shows homogeneous distribution of all elements throughout the film.
- The sample grown at 700°C shows segregation for Ni and Cr atoms.
 - \rightarrow The Ni-rich Cr-rich phases spatially separated.

* Y. Onodera et al., Jpn. J. Appl. Phys. 59, 073003 (2020).

Magneto-optical Kerr effect (MOKE) measurements : *

- Polar MOKE shows out-of-plane magnetisation curves.
- No ferromagnetism was observed for all the samples.
 - \rightarrow Paramagnetism or antiferromagnetism at room temperature.

20

Layer-by-layer crystallisation on (110) surface :

• 120 mins

^{*} J. Sagar et al., Appl. Phys. Lett. 105, 032401 (2014).

Co₂Fe(Al,Si) / W / Co₂Fe(Al,Si) trilayers : *

- AF coupling is not achieved in CFAS/W/CFAS.
- Low $T_{\rm S}$ film has strong intergranular exchange coupling.
- This gives a highly square, low $H_{\rm C}$ loop.
- Higher $T_S \rightarrow 50\%$ of the reversal is via domain rotation.
- The remainder is via nucleation and domain wall pinning.
- The is similar to CoFe and would be suitable for a GMR device.

* W. Frost et al., J. Magn. Magn. Mater. 484, 100 (2019).

Co₂Fe(Al,Si) / Ag / Co₂Fe(Al,Si) trilayers : *

- A 3 nm layer of Ag provided a loop with two distinct switches dependent on layer thickness.
- A small GMR of 0.025% was observed perpendicular-to-plane for device of (1 x 0.5) µm².
- Switching occurs at the same field as in the M-H loop, confirming layer thickness dependent switching.

^{*} A. Hirohata et al., Materials, **11**, 105 (2018).

Requirements for Spintronic Devices

Resistance-area product (RA) and magnetoresistance (MR) ratios : *

- Giant magnetoresistive (GMR) junctions reuire further increase in their MR ratios.
 - \rightarrow Higher spin polarisation
 - → Smaller temperature dependence
- Magnetic tunnel junctions (MTJs) require further reduction in *RA*.
 - \rightarrow Thinner tunnel barrier
 - → Smaller temperature dependence

* A. Hirohata et al., Materials 11, 105 (2018).

Tunnel magnetoresistance (TMR) ratios : *

- Amorphous barriers achieved TMR ratios of < 100% at room temperature (RT).
- Epitaxial barriers improved TMR ratios up to ~ 600% at RT due to the coherent tunnelling.
- Half-metallic Heusler alloys show similar TMR ratios at RT.

Tunnel magnetoresistance (TMR) ratios : *

- Amorphous barriers follow the empirical law of $T^{3/2}$.
- Epitaxial barriers show faster decrease than the empirical law of $T^{3/2}$.

In $Co_x Mn_{100-x}$ alloys : *

- A body-centred cubic (bcc) phase can be obtained above approximately x = 75.
- By reducing x, the crystalline phase of $Co_x Mn_{100-x}$ becomes face-centred cubic (fcc) or hexagonal closed packing (hcp) below $x = 60 \sim 70$.
- The lattice constant of CoMn was evaluated to be controlled approximately between 0.285 nm and 0.290 nm.
- Enhanced moments in bcc Co_{1-x}Mn_x on MgO(001). **

* J K. Ishida and T. Nishizawa, *Bull. Alloy Phase Diagrams* **11**, 125 (1990); https://sites.google.com/site/catcalcphase/metal/co/co-mn-1

** R.J. Snow et al., J. Magn. Magn. Mater. 419, 490 (2016).

Ultrahigh vacuum sputtering to grow CoMn-based MTJ multilayers : *

- MgO(001) // Cr (40) / Co_xMn_{100-x} (10) / MgO (2.4) / Co_xMn_{100-x} (4) / Co₃Fe(1.5) / IrMn (10) / Ru (5) (thickness in nm).
- Four different compositions of x = 66, 75, 83 and 86 were employed, allowing to control the lattice constants of the bottom and top electrodes precisely.
- Ti and Au top electrodes used for MTJ patterned by photolithography.
- In order to achieve crystalline engineering in MTJ, *in-situ* annealing was carried out after the deposition of the Cr seed layer and Co_xMn_{100-x} electrodes at 700°C and 200°C, respectively.

 $Co_x Mn_{100-x}$ MTJs (x = 66, 75, 83 and 86) :

Conventional four-terminal measurements were used to evaluate TMR ratios :

 By fitting the data with Shang's model, * the TMR ratio are also found to satisfy the following relationship :

$$\begin{aligned} G_{\rm p\,(ap)} &= G_0(T) [1 + (-) P_0^2 m^2(T)] + \\ G_{\rm hop}(T) \end{aligned}$$

where G_0 : mean conductance, P_0 : tunnelling spin polarisation, m: reduced magnetisation, G_{hop} : spin-independent conductance due to the two-step hopping via defect states in a MgO barrier.

$$P_0 = 0.87 (\times 2 \text{ of Fe/MgO/Fe MTJs})$$

 $A = 1.7 \times 10^{-5} \text{ K}^{-3/2}$

 Thus, the temperature dependence of the TMR ratios is mainly induced by

```
spin fluctuation at the CoMn/MgO interfaces
```

```
spin-independent hopping within the MgO barrier.
```


* C. H. Shang et al., Phys. Rev. B 58, R2917 (1998).

 $Co_{86}Mn_{14}$ MTJs (x = 86) :

- The period of the lattice dislocation is calculated to be (8.9 \pm 0.3) nm⁻¹ for TMR ratio = 120%.
- Dark regions near dislocations are not fully crystallised (origin of spin fluctuation).

Typically observed at the bottom CoMn/MgO interface.

 $Co_{75}Mn_{25}$ MTJs (x = 75) :

- The period of the lattice dislocation is calculated to be (11.4 \pm 0.3) nm⁻¹ for TMR ratio = 240%.
- Dark regions near dislocations are not fully crystallised (origin of spin fluctuation).

Typically observed at both CoMn/MgO interface and within the CoMn layer.

 $Co_{75}Mn_{25}$ MTJs (x = 75) :

• There are stretched MgO regions found.

MgO [001]

MgO [100]

MgO substrate/Cr (40)/CoMn (10)/MgO (20)/CoMn (4)/CoFe (1.5)/IrMn (10)/Ru (5) (thickness in nm) :

- Three distinctive regions in the MgO barrier :
 - a : crystallised along the [100] direction.
 - b : crystallised with different orientations (spin-independent hopping).
 - c : partially crystallised (spinindependent hopping).

The lattice constants are calculated by measuring the averaged fringe distance across 20 layers in the corresponding TEM images :

 Apart from the x = 86, the top CoMn lattice constant is about 3.5% larger than the bottom layer across MTJs.

The largest difference is 4.3% in x = 75.

Almost constant lattice constants for the bottom CoMn layers except for that with x = 86.

Dislocations may require to release the strain induced at the bottom CoMn/MgO interface as seen in TEM images.

The number of dislocations almost stays the same except for x = 86.

The lattice constants are calculated by measuring the averaged fringe distance across 20 layers in the corresponding TEM images :

- Apart from x = 86, the MgO lattice constant is almost constant.
- The MgO lattice constant decreases only for x = 86.

This agrees with the increase in the bottom CoMn lattice constant.

This may induce more grains in the MgO barrier.

Total energies of $Co_x Mn_{100-x}$ alloys are calculated as a function of the strain δ for tetragonal distortion :

- The bcc structure corresponds to $\delta = 0$.
- The use of a soft ferromagnetic layer can offer the precise lattice matching of a tunnel barrier with the neighbouring ferromagnets.
- A spinel barrier, of which lattice constant can be precisely controlled by its composition to match with that of the neighbouring ferromagnetic layers.

TMR ratio = 342% at RT for a $Co_2FeAI/MgAI_2O_4/Co_2FeAI$ MTJ. *

 By employing MgAl₂O₄ tunnel barrier, further improvement in a TMR ratio can be expected.

Ab-initio Calculations on CoMn Lattice Softening

60

Tetragonal shear moduli C' of ferromagnetic $Co_x Mn_{100-x}$ alloys as a function of the Co composition x:

- Softening of bcc $Co_x Mn_{100-x}$ becomes prominent near the boundary of the metastable bcc phase.
- Although the expected for stabilise a bo of MTJ.
- This may lea potential of t improvemen magnetic tra

<u>____</u>

Ab-initio Calculations on CoMn Lattice Softening

Percentage change of the elastic modulus M, *i.e.*, the bulk modulus B, shear modulus G and tetragonal shear constant C', with respect to that of Co M_{Co} : $(M - M_{Co}) / M_{Co}$ as a function of Co composition x.

Current-Induced Magnetisation Reversal

Current-Induced Magnetisation Reversal with Spin Wave

Parallel \rightarrow Antiparallel

Antiparallel \rightarrow Parallel

Free Ferromagnet Non-magnet Current Current Pinned Ferromagnet Ferromagnetic Insulator

Heusler-Based Giant Magnetoresistive Junctions

$Co_2Fe_{0.4}Mn_{0.6}Si$ (CFMS) / $Ag_{0.78}Mg_{0.22}$ / CFMS junctions with Fe_2O_3 layers : *

CFMS / Ag_{0.78}Mg_{0.22} / CFMS junctions with Fe₂O₃ layers :

GMR Behaviour 2

CFMS / $Ag_{0.78}Mg_{0.22}$ / CFMS junctions with Fe_2O_3 layers :

<u>k</u>

Current-Induced Magnetisation Reversal : Full AP \rightarrow P

Current-Induced Magnetisation Reversal : Partial AP \rightarrow P

