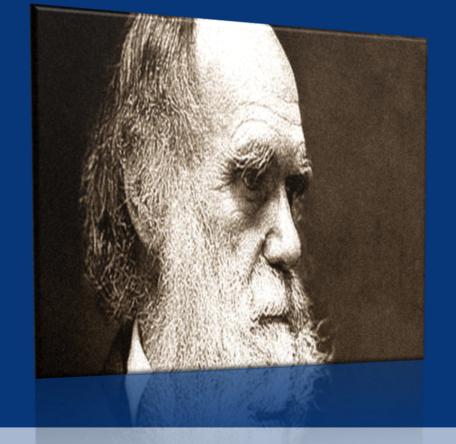


Across language families: Genome mirrors linguistic variation within Europe

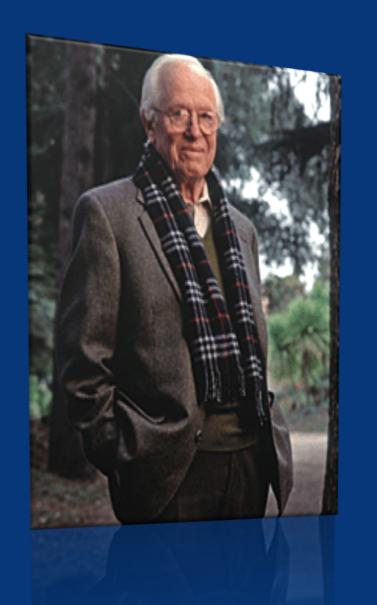
Giuseppe Longobardi, Cristina Guardiano, Andrea Ceolin, Silvia Ghirotto, Guido Barbujani



Darwin's last challenge

If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world; and if all extinct languages, and all intermediate and slowly changing dialects, were to be included, such an arrangement would be the only possible one

Genes mirror geography within Europe


See associated Correspondence: Detours, Nature 455, 861 (October 2008)

John Novembre^{1,2}, Toby Johnson^{4,5,6}, Katarzyna Bryc⁷, Zoltán Kutalik^{4,6}, Adam R. Boyko⁷, Adam Auton⁷, Amit Indap⁷, Karen S. King⁸, Sven Bergmann^{4,6}, Matthew R. Nelson⁸, Matthew Stephens^{2,3} & Carlos D. Bustamante⁷

...among Europeans,
we find a close correspondence between genetic and
geographic distances ...

...a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans

Cavalli Sforza, Menozzi, and Piazza (1994) The History and Geography of Human Genes

We believe that the major breakthrough in the study of human variation has been

the introduction of genetic markers,
which are strictly inherited and
basically immune to the problem of
rapid changes induced
by the environment

Population Genetics as a Model

Biology

Reduction of human *genetic variation* to the complex effects of a **finite** and **universal** set of **discrete biological** options (genetic polymorphisms)

Linguistics

Reduction of the whole space of possible *grammatical variation* to the complex effects of a **finite** and **universal** set of **discrete biological** options (parameters, i.e. syntactic polymorphisms)

options (parameters, i.e. syntactic polymorphisms)

Parametric Comparison Method

Longobardi (2003),

Guardiano and Longobardi (2005),

Longobardi and Guardiano (2009),

Longobardi, Guardiano, et al. (2013)

Parameter values

may appropriately act as comparanda for historical reconstruction

It becomes possible:

- to precisely calculate the syntactic distance between any two languages
- to assess the probabilistic value of such distances

al. (2013)

Longobardi, Guardiano, et

IE parameters: Longobardi et al (2013)

	TABLE A		Sic	Cal	It	Sal	Sp	Fr	Ptg	Rm	Gri	BoG	Grk	E	D	Da	Ice	Nor	Blg	SC	Slo	Po	Rus	Ir	Wel	Far	Ma	Hi	
1		FGP	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
2	± gramm. number +FGP	FGN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2
3	± gramm. gender +FGN	FGG	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	3
4	± NP over D +FGP	NOD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	4
5	± feature spread to N +FGN	FSN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
6	± numb. on N (BNs) +FSN	FNN	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	6
7	± gramm, partial def	DGP	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	- 1	-	- 1	+	+	-	- 1	-	7
8	± gramm. def +DGP	DGR	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	0	0	0	+	+	0	0	0	8
9	± strong person +FGP, +DGR, -NOD	NSD	+	+	+	+	+	+	+	+	+	+	+	-	- 1	-	-	-	+	0	0	0	0	-	- 1	0	0	0	9
10	± free null partitive Q +FNN	DPQ	-	-	- 1	-	- 1	0	- 1	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-	- 1	-	-	-	-	-	10
11	± gramm. dist. artFSN or -FNN or +DGR	DDA	-	-	- 1	-	- 1	-	- 1	-	- 1	-	- 1	-	- 1	-	-	-	- 1	0	0	0	0	-	- 1	0	0	0	11
12	± def-checking N +DGR	DCN	-	-	- 1	-	- 1	-	- 1	+	- 1	-	- 1	-	- 1	+	+	+	+	0	0	0	0	-	-	0	0	0	12
13	± def spread to N +DCN, -NSD	DSN	0	0	0	0	0	0	0	0	0	0	0	0	0	-	+	+	0	0	0	0	0	0	0	0	0	0	13
14	± def on relatives +DGR	DOR	-	-	- 1	-	- 1	-	- 1	-	-	-	- 1	-	-	-	-	-	-	0	0	0	0	-	-	0	0	0	14
15	± D-controlled infl. on N +FSN	DIN	-	-	-	-	- 1	-	- 1	-	-	-	- 1	-	- 1	-	-	-	-	-	-	-	- 1	-	-	-	- 1	-	15
16		CPS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	+		16
17		CGB	-	-	-	-	-	-	-	-	-	-	-	-	-1	-	-	-	-	-	- 1	-	- 1	-	- 1	+	+		17
18	"	CGR	+	+	+	+	+	0	+	+	+	+	+	+	+	+	- 1	+	- 1	0	0	0	0	-	-1	O			18
19		CCN	ò	Ō	ö	Ö	ö	0	ò	o	ò	0	ò	o	Ö	Ö	0	Ö	0	o	ō	o	ŏ	0	0	+	-	_	19
20		DNN	-	-	-	-	+	-	+	ō	-	-	- 1	o	ō	ō	ŏ	ō	ŏ	o	ŏ	o	ŏ	ō	ō	o	0	_	20
21		AST	+	+	+	+	$\dot{+}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	21
22		FFS	÷	+	$\dot{+}$	+	$\dot{+}$	+	$\dot{+}$	+	÷	+	$\dot{+}$	-	$\dot{+}$	+	+	+	÷	+	÷	+	$\dot{+}$	+	- 1	-	÷		22
23		FSP	+	+	$\dot{+}$	+	$\dot{+}$	+	$\dot{+}$	+	$\dot{+}$	+	\div	_	- 1	+	+	+	÷	+	$\dot{+}$	+	$\dot{+}$	-	-	-	÷		23
24	± D-controlled infl. on A -NSD, +FFS	ADI	ō	0	ō	0	-	0	ō	o	ō	0	ō	0	+	+	+	+	ō	O	ō	0	ō	-	0	0		Ō	
25	± DP over relatives	ADR	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-		25
		AER	ō	0	7	0	- 	0	7	0	0	0	7	O	7	ō	7	ō	0	O	7	0	 	o	7	0	+		
26	± relative extrapADR ± free reduced rel +AST	ARR	+	+	+	+	+	+	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	26
27		NPP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-1	-	-	-		-	-		27 28
28		GFR	_		_		$\overline{}$		-	-		-	-1	+	_	$\overline{}$	_			-		-	-		_	+	+		
29	± free Gen ± uniform Gen +GFR		+	+	+	+	+	+	+	0	0	0	0	-	+	+	+	+	+	0	-	0	-	+	+	-	-		29
30		GUN			_		_		$\overline{}$		_		_		_	_	-		_	_			_		$\overline{}$		_	_	30
3I	± DP over free Gen +GFR, +ADR	GPR	+	+	+	+	+	+	+	0	0	0	0	+	+	+	+	+	+	0	0	0	0	+	+	+	0		31
32	± GenO ≈+GUN	GFO	-	+		-		-		-	+	+	+	-	+	-	+	-	-	+	+	+	+	+	+	+	-		32
33	± Gen-feature spread to N	GFS	_		-		$\overline{}$		$\overline{}$		_		_		_	_	_		_				_		_		_	-	33
34		PDC	<u> </u>	-	_	-	+	+	?	-	-	-		0	0	0	+	0	-	0	0	0	0	+	+	0	0		34
35		APO	+	+	+	+	+	+	+	-	-	-	-	-	+	-	_	-	+	+	+	+	+	-		-			35
36		PAP	0	0	0	0	0	0	0	+	0	0	0	0	0	-	+	+	+	0	0	0	0	0	0	0	0		36
37		PCL		-	-	-	-	-	-	-	+	+	+	-	-	-	-	-		-	-	-		-	-	+	<u>-</u>		37
38		PHS	0	0	0	0	0	0	0	+		-		0	0	0	+	+		0	0	0	0	0	0	0	0		38
39	± N-feature spread to free Gen +FFS, +GFR, ≈-PHS	GSP	-	-	-	-	-	-	-	0	0	0	0	0		-	-	-	0	0	0	0	0	-	0	0	+	_	39
40	± adjectival Gen +APO	AGE	-	-	-	-		-		0	0	0	0	0	-	0	0	0	+	+	+	-	+	0	0	0	0		40
41		GCN	-	-	-	-	-	-	- 1	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-			41
42		TLC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0	+	+	+	+	+	-		+	+		42
43		TSL	-	-	-	-	+	-		+		-	+	-		-	-	-	-	-	-	-		0	0	-			43
44		TDC	+	+	+	+	+	+	+	+	+	?		+	+	+	+	+	+	0	0	0	0	0	0	0	0		44
45		NOC	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	- 1	-		-		-	-		45
46		NOO	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	+	-		46
47		NMI	+	+	-	+		-	-	-	+	+	-	-	-	-	-	-	-	-	-	-		+	+	0	-	-	47
48	± N over M2 As -NM1	NM ₂	0	0	+	0	+	+	+	+	0	0	-	-	-	-	-	-	-	-	-	-	-	0	0	0	-	-	48
49	± N over As -NM2	NOA	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	0	0	0	-		49
50	± N over GenO ≈-GFO, -NOA or -AST	NGO	0	0	0	0	0	0	0	0	0	0	+	0	+	0	+	0	0	+	+	+	+	0	0	0	0	0	50
51	± N over ext. argNGO or (-GFO, -NOA or -AST)	NOE	0	0	0	0	0	0	0	0	0	0	0	-	0	-	0	-	+	0	0	0	0	0	0	0	+	+	51
52	± free MOD -NOA	AFM	0	0	0	0	0	0	0	0	0	0	+	-	-	-	-	-	-	-	- 1	-	- 1	0	0	0	-		52
53	± class MOD -AFM	ACM	0	0	0	0	0	0	0	0	0	0	0	-	- 1	-	- 1	-	-	-	- 1	+	+	0	0	0	-		53
54		DOA	-	-	- 1	-	-1	-	- 1	-	- 1	+	+	-	0	0	0	0	0	0	0	0	0	-	- 1	0	0	_	54
55		DMO	-	-	- 1	-	-1	-	- 1	-	- 1	-	-	-	ō	ō	ō	0	ō	0	ō	-	- 1	-	-	+	ō	_	55
56	± Cons. Pr. (-NM1,+A-Cpl) or (+NPP or ≈-NM2, +Cpl-A)	ACP	0	0	+	0	+	+	+	+	0	0	- 1	+	+	+	+	+	-	-	-	-	- 1	0	0		ŏ		56
3	(Turis) or (True of a Turis, Pepi-A)		Sic	Cal	It	Sal	Sp	Fr		Rm	Gri			E	D	Da		Nor	Blg	SC	Slo	Po	Rus	Ir	Wel	Far		Hi	
			Sit	Car	-11	Sai	20	TI	r tg	KIII	GIII	500	CFIR	- 1	D.	Da	ICC	TOT	Bilg	30	310	10	Kus	-"	Well	40.11	100.00		

The structure of linguistic distances

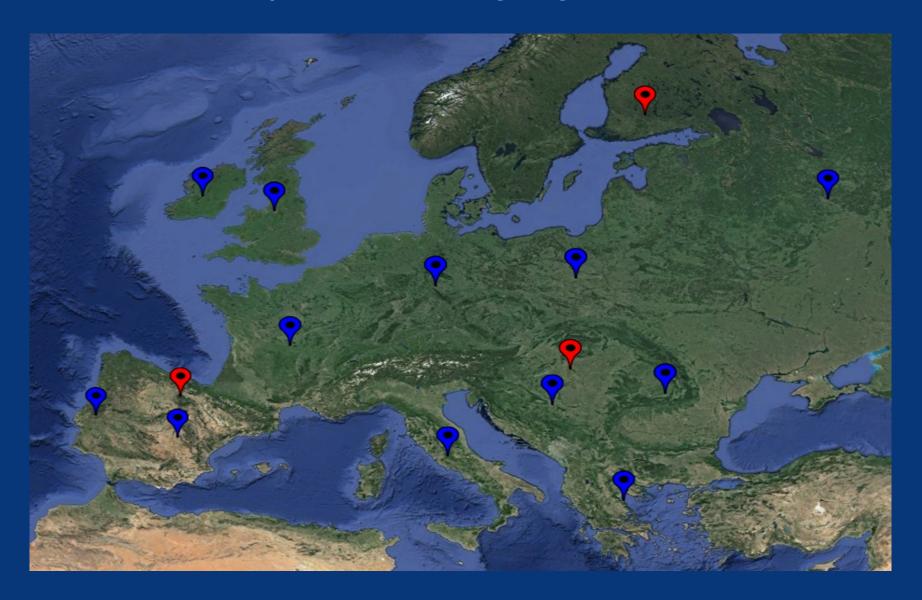
A problem: internal implications

GRAMMAR:

PCM = designed to control for the non-independence of characters.

- Explicit hypotheses about implications among syntactic parameters.
- D_{SYN}: normalized Hamming (or Jaccard) distance = d/(i+d)

IE cognates: Bouckaert et al. (2012)


- Expansion/revision of Dyen et al.'s (1992) list of IE cognate words
- Lists actual roots for each meaning (no 1:1 correspondence between meaning and word)
 - Codes for synonymy
- Richer device for quantitative experiments on IE lexical diversification

LEXICAL DISTANCES

	English	German	
fish	+	+	1 identity
	(fish)	(Fisch)	
breathe	+	-	1 difference
	(breathe)		
	-	+	1 difference
		(atmen)	

- D_{LEX} : d/(i+d) = 2/3
- D_{LFX} : differences = 0.5 = 1/2

Europe across language families

Syntactic and Lexical distances

	E	Fr	D	Grk	Ir	It	Po	Ptg	Rm	Rus	SC	Sp
E	0	0.1842	0.0732	0.3	0.1111	0.15	0.2424	0.15	0.2105	0.2424	0.2188	0.175
Fr	0.7193	0	0.1579	0.2895	0.1944	0.0476	0.2333	0.0488	0.1622	0.2667	0.2759	0.0714
D	0.38847	0.73272	0	0.2564	0.1111	0.125	0.1471	0.125	0.25	0.1765	0.1471	0.15
Grk	0.82439	0.82432	0.81124	0	0.2571	0.225	0.1818	0.2564	0.2	0.1818	0.1875	0.25
Ir	0.81074	0.81176	0.81221	0.86456	0	0.2105	0.2143	0.1892	0.2571	0.2143	0.2222	0.1842
It	0.73012	0.23111	0.72889	0.81345	0.80543	0	0.1935	0.0233	0.1026	0.2258	0.2333	0.0682
Po	0.72816	0.77629	0.74944	0.84649	0.83066	0.77489	0	0.1935	0.2333	0.0278	0.0571	0.2258
Ptg	0.76233	0.3431	0.75884	0.83903	0.84615	0.31313	0.78049	0	0.1053	0.2258	0.2333	0.0233
Rm	0.75799	0.44186	0.75476	0.82609	0.84052	0.39468	0.79835	0.44788	0	0.2333	0.2414	0.1026
Rus	0.7201	0.75234	0.74766	0.83562	0.81862	0.75676	0.31519	0.76371	0.77302	0	0.0286	0.2581
SC	0.73298	0.77458	0.76978	0.82028	0.83092	0.76498	0.33488	0.77778	0.78462	0.309	0	0.2667
Sp	0.75	0.30193	0.75589	0.82809	0.82895	0.27122	0.775	0.22505	0.44664	0.76139	0.77728	0

$$r = 0.850$$
 p = 0.001

Genetic Data

ARTICLE

The Population Reference Sample, POPRES: A Resource for Population, Disease, and Pharmacological Genetics Research

Matthew R. Nelson,^{1,8} Katarzyna Bryc,² Karen S. King,¹ Amit Indap,² Adam R. Boyko,² John Novembre,^{5,8} Linda P. Briley,¹ Yuka Maruyama,¹ Dawn M. Waterworth,³ Gérard Waeber,⁵ Peter Vollenweider,⁶ Jorge R. Oksenberg,⁷ Stephen L. Hauser,⁷ Heide A. Stirnadel,⁸ Jaspal S. Kooner,⁹ John C. Chambers,¹⁰ Brendan Jones,¹ Vincent Mooser,⁸ Carlos D. Bustamante,² Allen D. Roses,¹ Daniel K. Burns,¹ Marganet G. Ehm,¹ and Eric H. Lai¹

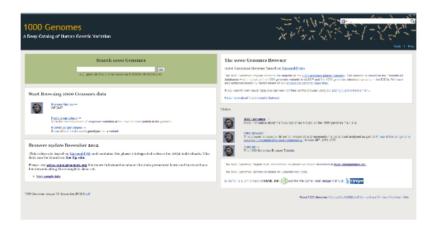
5,886 subjects genotyped at 500,568 loci using the Affymetrix 500K single nucleotide polymorphism (SNP) chip.

Basque

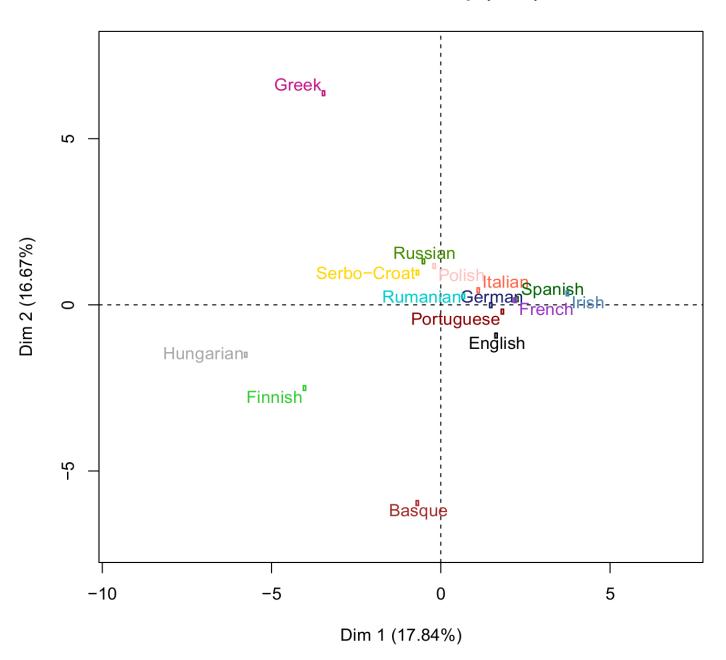
OPEN & ACCESS Freely available online

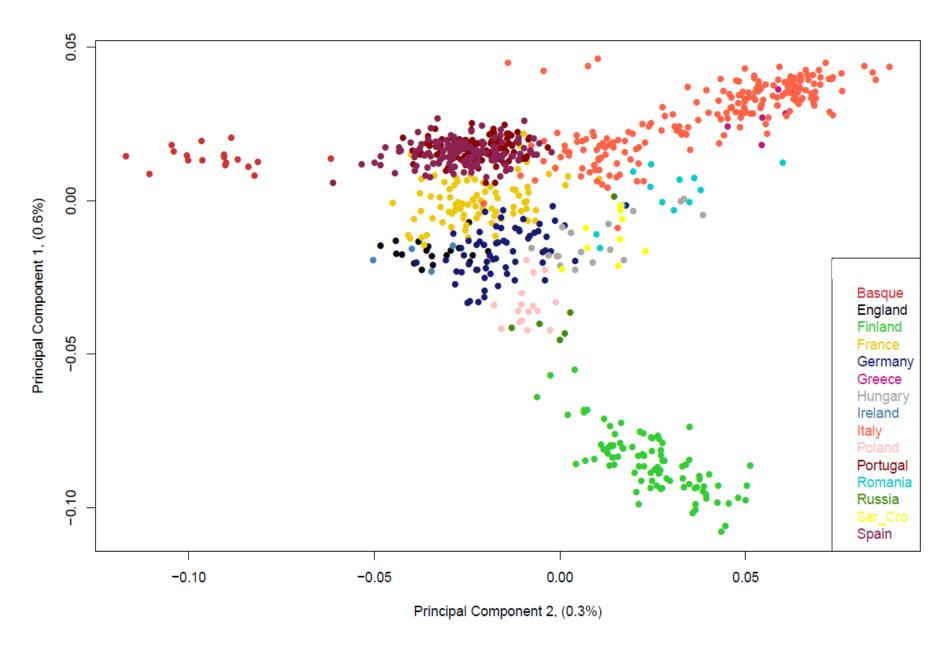
PLOS GENETICS

Genomic Ancestry of North Africans Supports Back-to-Africa Migrations

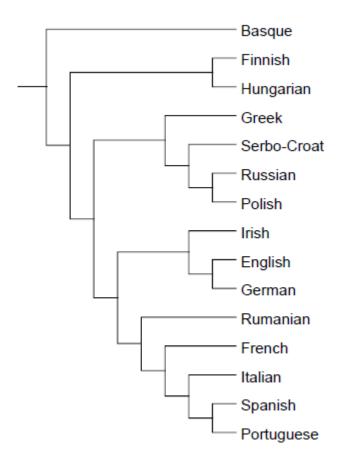

Brenna M. Henn¹⁹, Laura R. Botigué²⁹, Simon Gravel¹, Wei Wang³, Abra Brisbin³, Jake K. Byrnes¹, Karima Fadhlaoui-Zid⁴, Pierre A. Zalloua⁵, Andres Moreno-Estrada¹, Jaume Bertranpetit², Carlos D. Bustamante¹¹*, David Comas²¹*

1 Department of Genetics, Stanford University, Stanford, California, United States of America, 2 Institute of Evolutionary Biology ICSC UPP, Universitat Pompeu Fabra, Benesia Paperstrates of Biological Statistics and Computational Biology, Cosmil University, Bhass, New York, United States of America, 4 Laboratory of Genetics, Innumology, and Human Refut Laboratory and Human Refut Laboratory. Chausan Below Laboratory and States of America, 4 Laboratory and Human Refut Laboratory.

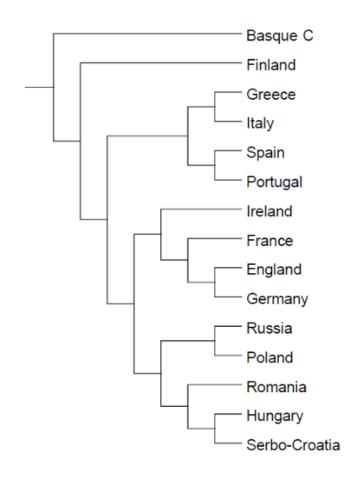


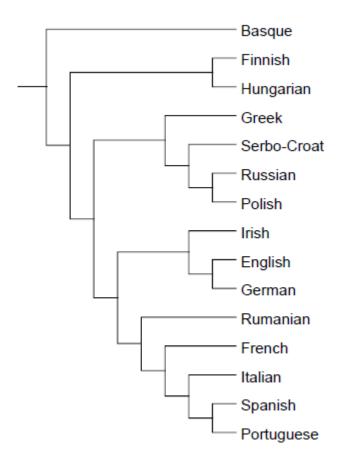


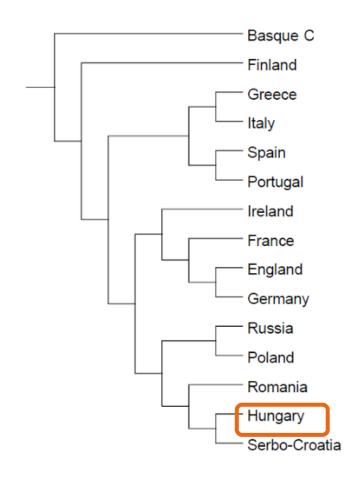
Finnish

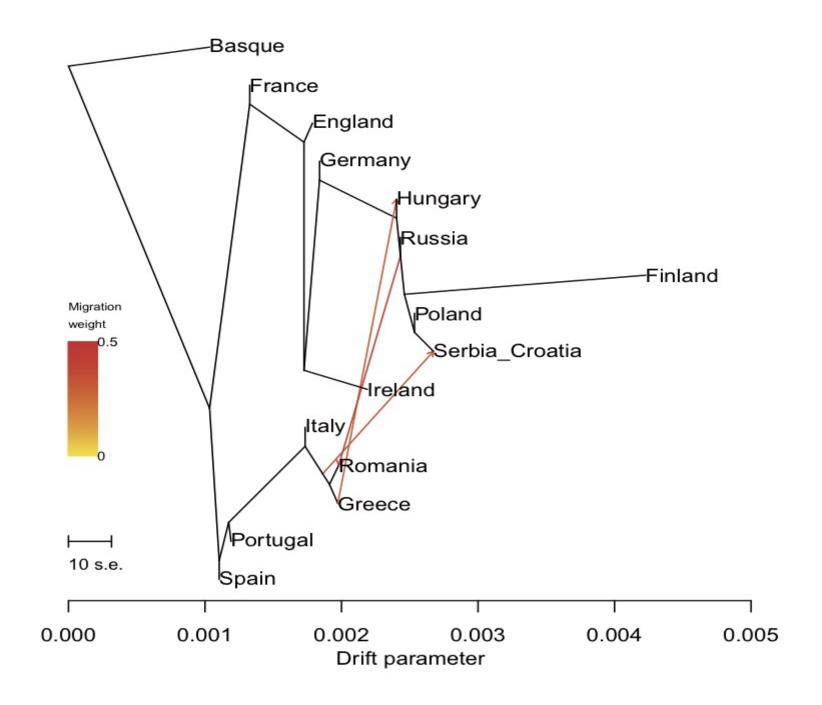


Individuals factor map (PCA)



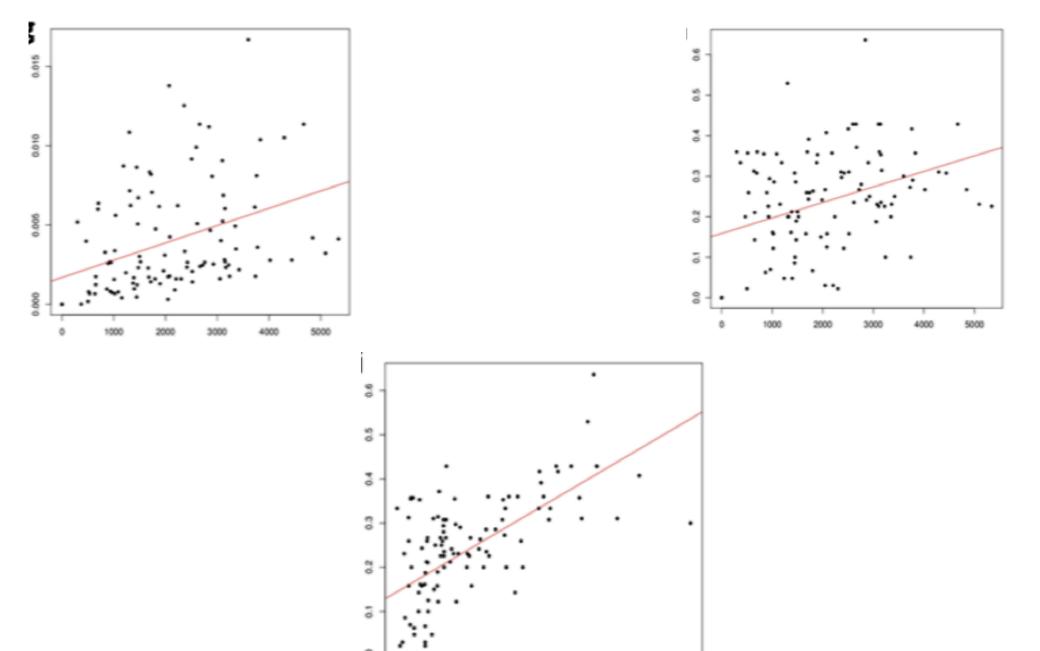

Syntactic distances


Genetic distances



Syntactic distances

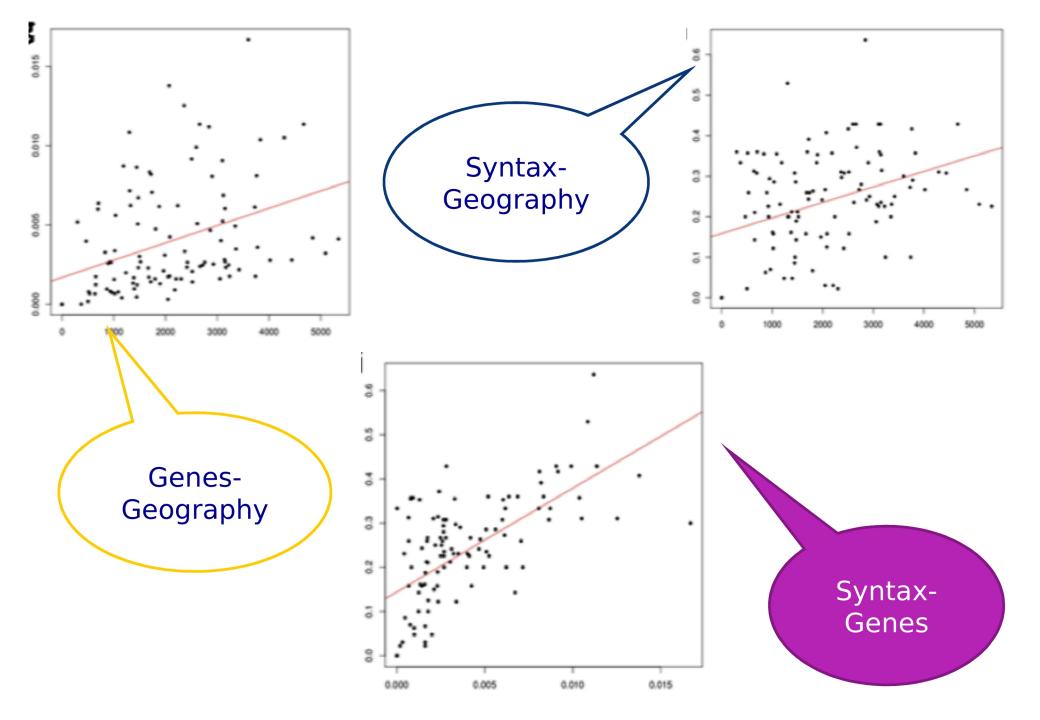
Genetic distances



Geographic distances

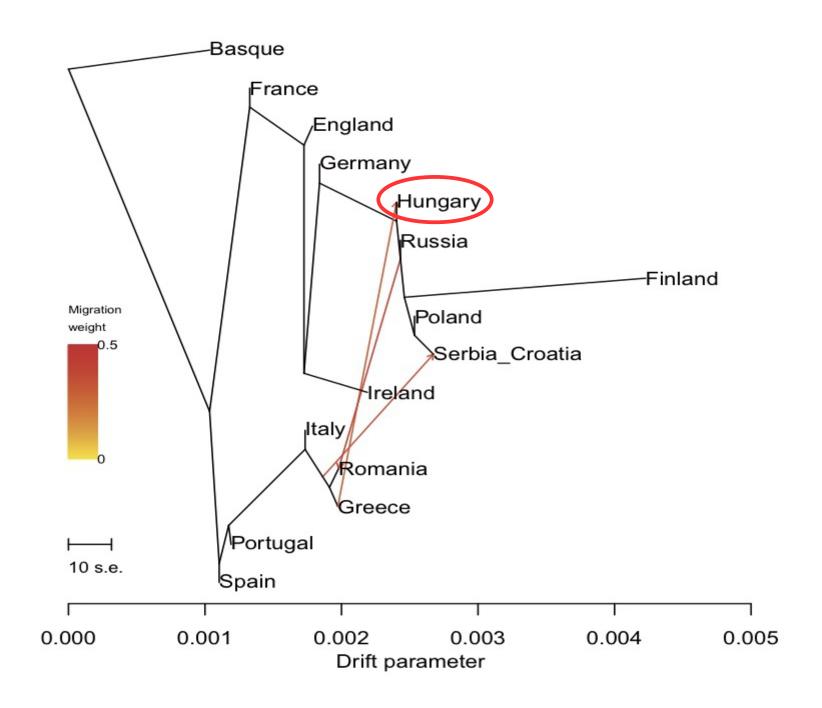
Great Circle Distances (the shortest distance between two points on the surface of a sphere)

	Basque	England	Finland	France	Germany	Greece	Hungary	Ireland	Italy	Poland	Portugal	Romania	Russia	Ser_Cro	Spain
Basque	C)													
England	1187.32	2 0)												
Finland	3598.33	3116.53	0												
France	703.27	930.48	2900.12	. 0											
Germany	1720.55	1441.89	1879.06	1021.06	0										
Greece	2842.08	3148.58	2070.09	2370.7	1808.53	0									
Hungary	2504.1	2515.3	1472.55	1894.75	1086.01	833.19	0								
Ireland	1301.76	652.09	3760.08	1386.19	2081.45	3726.67	3140.04	0							
Italy	1692.39	2083.82	2359.24	1234.44	1019.94	1155.1	948.34	2614.46	0						
Poland	2659.05	2423.91	1035.1	1986.03	1007.66	1309.18	514.5	3072.68	1325.44	C					
Portugal	693.88	1665.57	4292.19	1395.39	2414.33	3420.15	3164.26	1498.94	2299.75	3346.22	. 0				
Romania	3099.24	3151.21	1442.74	2518.15	1715.71	652.92	637.63	3777.63	1450.7	892.46	3738.87	0			
Russia	4669.32	4440.39	1463.4	4020.28	3053.41	2236.19	2181.1	5092.48	3103.42	2046.74	5340.66	1678.13	0		
Ser_Cro	2594.25	2759.21	1739.13	2048.29	1372.57	466.32	370.15	3361.71	924.19	868.04	3220.66	531.06	2204.72	()
Spain	298.17	1473.97	3830.7	965.2	1962.6	2924.66	2666.35	1517.52	1798.83	2864.87	501.42	3237.63	4845.04	2719.27	7



0.000

0.015


0.010

0.005

Distance matrices	r	Р
$d_{GEN}d_{GEO}$ Genetic - Geographic	0.299	0.030
$d_{SYN}d_{LEX}$ Syntactic - Lexical	0.850	0.001
$d_{SYN}d_{GEO}Syntactic$ - $Geographic$	0.240	0.039
$d_{\mathit{LEX}}d_{GEO}$ Lexical - Geographic	0.084	0.264
$d_{SYN}d_{GEN}Syntactic$ - Genetic	0.599	0.001
$d_{\mathit{LEX}}d_{GEN}$ Lexical - Genetic	0.537	0.001
$d_{GEN}d_{GEO}(d_{SYN})$ Genetic - Geographic (Syntax held constant)	0.200	0.114
$d_{GEN}d_{GEO}(d_{\mathit{LEX}})$ Genetic - Geographic (Lexicon held constant)	0.302	0.035
$d_{SYN}d_{GEO}(d_{GEN})$ Syntactic - Geographic (Genetics held constant)	0.079	0.264
$d_{LEX}d_{GEO}(d_{GEN})$ Lexical - Geographic (Genetics held constant)	-0.095	0.736
$d_{SYN}d_{GEN}(d_{GEO})$ Syntactic - Genetic (Geography held constant)	0.570	0.002
$d_{LEX}d_{GEN}(d_{GEO})$ Lexical - Genetic (Geography held constant)	0.538	0.001

Distance matrices	r	Р
$d_{GEN}d_{GEO}$ Genetic - Geographic	0.299	0.030
$d_{SYN}d_{LEX}$ Syntactic - Lexical	0.850	0.001
$d_{SYN}d_{GEO}Syntactic$ - $Geographic$	0.240	0.039
$d_{LEX}d_{ ext{GEO}}$ Lexical - Geographic	0.084	0.264
$d_{SYN}d_{GEN}Syntactic$ - Genetic	0.599	0.001
$d_{LEX}d_{GEN}$ Lexical - Genetic	0.537	0.001
$d_{GEN}d_{GEO}(d_{SYN})$ Genetic - Geographic (Syntax held constant)	0.200	0.114
$d_{GEN}d_{GEO}(d_{\mathit{LEX}})$ Genetic - Geographic (Lexicon held constant)	0.302	0.035
$d_{SYN}d_{GEO}(d_{GEN})$ Syntactic - Geographic (Genetics held constant)	0.079	0.264
$d_{LEX}d_{ ext{GEO}}(d_{ ext{GEN}})$ Lexical - Geographic (Genetics held constant)	-0.095	0.736
$d_{SYN}d_{GEN}(d_{GEO})$ Syntactic - Genetic (Geography held constant)	0.570	0.002
$d_{LEX}d_{GEN}(d_{GEO})$ Lexical - Genetic (Geography held constant)	0.538	0.001

Europe's diversity without Hungary

G. Tömöry, B. Csányi, E. Bogácsi-Szabó, T. Kalmár, A. Czibula, A. Csosz, K. Priskin, B. Mende, P. Langó, C. S. Downes, and I. Raskó. (2007) Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. American Journal of Physical Anthropology 134:354-368

Ancient DNA in Hungary shows a predominance of European mitochondrial haplotypes in burials attributed to the lower classes, and a high incidence of Asian haplotypes in high-status individuals of the tenth century,

which points to the **Asian immigrants** as representing a **social elite**, rather than the bulk of the population

Distance matrices	r	Р
$d_{GEN}d_{GEO}$ Genetic - Geographic	0.275	0.048
$d_{SYN}d_{LEX}$ Syntactic - Lexical	0.850	0.001
$d_{SYN}d_{GEO}$ Syntactic - Geographic	0.291	0.026
$d_{\mathit{LEX}}d_{GEO}$ Lexical - Geographic	0.152	0.144
$d_{SYN}d_{GEN}Syntactic$ - Genetic	0.740	0.001
$d_{\mathit{LEX}}d_{GEN}$ Lexical - Genetic	0.687	0.001
$d_{GEN}d_{GEO}(d_{SYN})$ Genetic - Geographic (Syntax held constant)	0.093	0.254
$d_{\text{GEN}} d_{\text{GEO}} (d_{\text{LEX}})$ Genetic - Geographic (Lexicon held constant)	0.238	0.083
$d_{ ext{SYN}} d_{ ext{GEO}} (d_{ ext{GEN}})$ Syntactic - Geographic (Genetics held constant)	0.135	0.178
$d_{LEX} d_{GEO} (d_{GEN})$ Lexical - Geographic (Genetics held constant)	-0.053	0.615
$d_{ ext{SYN}}d_{ ext{GEN}}(d_{ ext{GEO}})$ Syntactic - Genetic (Geography held constant)	0.717	0.001
$d_{LEX}d_{GEN}(d_{GEO})$ Lexical - Genetic (Geography held constant)	0.679	0.001

CONCLUSIONS

- Syntactic distances proved to correlate well with Lexical distances. This means that when evidence for the lexicon is unavailable (e.g. cross-family comparison) we can safely rely on syntactic information.
- Once precise measures are employed for measuring syntactic, genetic and geographic variation, the claim that geography is the best predictor for genetic variation in Europe reveals to be wrong.

THANKS!

Selected References:

Barbujani, G. & Sokal, R.R. Zones of sharp genetic change in Europe are also linguistic boundaries. Proc. Natl. Acad. Sci. USA 87, 1816-1819 (1990).

Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957-960 (2012).

Cavalli-Sforza, L. L., Menozzi, P., Piazza, A. The History and Geography of Human Genes. Princeton University Press, Princeton (1994).

Chomsky, N. Lectures on Government and Binding. Foris, Dodrecht (1981).

Darwin, C. On the Origin of Species. John Murray, London (1859).

Longobardi, G., Guardiano, C. Evidence for syntax as a signal of historical relatedness. Lingua 119, 1679-1706 (2009).

Longobardi, G., Guardiano, C., Silvestri, G., Boattini, A., Ceolin, A. Toward a syntactic phylogeny of modern Indo-European languages. J. Histor. Linguistics 3, 122-152 (2013).

Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98-101 (2008).

Tömöry, G., et al. Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations." Am. J. Phys. Anthropol. 134, 354-368 (2007).