V-to-T-to-C grammaticalization
and the development of accusativity in Tibetan subject relative clauses

Lingzi Zhuang

Department of Linguistics, Cornell University
lz458@cornell.edu

DiGS 20, University of York
June 19, 2018
Starting point

- Dixon’s (1994) generalization
 - “If it were relative clauses that entered into an [ergative] split, we might expect the subordinate clause to show ‘ergative’ characteristics - and the main clause would, if it differed from subordinate clauses, be of the accusative type.” (p.102ff.)
- Tibetan has developed the exact opposite split.
Matrix clauses are split-ergative in Modern Lhasa Tibetan (1) -
- and in fact fully ergative in Old and Classical Tibetan (2).
But MLT has developed a subject-object (ACC) alignment in
relative clauses:

- Relative COMP *mkhan* licenses all types of subject traces
- However, historically it has *not* been compatible with
 unaccusatives/statives.

(1) Pa-sangs mog-mog bzos-*kyi*-red
Pasang momo make.impfv.neut
‘Pasang made momos’ (MLT)
Tibetan vs. Dixon’s generalization

- Matrix clauses are split-ergative in Modern Lhasa Tibetan (1) -
- and in fact fully ergative in Old and Classical Tibetan (2).
- But MLT has developed a subject-object (ACC) alignment in relative clauses:
 - Relative COMP *mkhan* licenses all types of subject traces
 - However, historically it was *not* always compatible with unaccusatives.

(1) Pa-sangs=*kyis* mog-mog bzos-\textit{pa}-red
 Pasang=\textit{erg} momo make.\textit{pfv}.\textit{neut}
‘Pasang made momos’ (MLT)
Matrix clauses are split-ergative in Modern Lhasa Tibetan (1) - and in fact fully ergative in Old and Classical Tibetan (2).

But MLT has developed a subject-object (ACC) alignment in relative clauses:

Relative COMP mkhan licenses all types of subject traces
However, historically it was not always compatible with unaccusatives.

(2) ḫjang rje-gol=gyis kyang pyag-ḥtshal te
Jang master-servant=ERG also prostrate.impfv CONJ
‘The master and servants of Jang also were prostrating’ (OT)
Tibetan vs. Dixon’s generalization

- Matrix clauses are split-ergative in Modern Lhasa Tibetan (1) - and in fact fully ergative in Old and Classical Tibetan (2).
- But MLT has developed a subject-object (ACC) alignment in relative clauses:
 - Relative COMP \textit{mkhan} licenses all types of subject traces
 - However, historically it was not always compatible with unaccusatives.

\begin{enumerate}
\item\textit{\begin{tabular}{c}
\textbf{(3)}
\end{tabular}}
\item a. \[ti\text{ mog-mog bzos mkhan} ma\text{-byan}i\]
momo make COMP cook
‘the cook who makes momos’ (MLT)
\item b. \[ri=nas ril ti mkhan] mi\text{ }i\]
mountain=ABL fall COMP person
‘the person who falls from the mountain’ (MLT)
\end{enumerate}
Research questions

- How does a subject-oriented relative complementizer (*mkhan*) develop, in an **ERG**-aligned language, from a non-subject-oriented source?
 - What categorial changes?
 - When and how does case alignment in *mkhan*-embedded environments “switch”?

- How do Empty Category-licensing features grammaticalize “up the tree”?
Research questions

- How does a subject-oriented relative complementizer (mkhan) develop, in an ERG-aligned language, from a non-subject-oriented source?
 - What categorial changes?
 - When and how does case alignment in mkhan-embedded environments “switch”?

- How do Empty Category-licensing features grammaticalize “up the tree”?
Research questions

- How does a subject-oriented relative complementizer (*mkhan*) develop, in an ERG-aligned language, from a non-subject-oriented source?
 - What categorial changes?
 - When and how does case alignment in *mkhan*-embedded environments "switch"?

- How do Empty Category-licensing features grammaticalize "up the tree"?
Research questions

- How does a subject-oriented relative complementizer (mkh\(an\)) develop, in an ERG-aligned language, from a non-subject-oriented source?
 - What categorial changes?
 - When and how does case alignment in mkh\(an\)-embedded environments “switch”?

- How do Empty Category-licensing features grammaticalize “up the tree”?
Overview of conclusions

- The grammaticalization of MLT *mkhan* is **V-to-T(n)-to-C**.
- Alignment switch happens during **T(n)-to-C**: target position for EC licensing is also translated “up the tree.”
 - Categorial reanalysis may be accompanied by featural reanalysis.
- C-stage *mkhan* inherits a T-feature from T, which is evidenced by a differential T-feature deletion pattern between subject and object RCs.
Overview of conclusions

- The grammaticalization of MLT mkhan is \textbf{V-to-T(n)-to-C}.
- Alignment switch happens during \textbf{T(n)-to-C}: target position for EC licensing is also translated “up the tree.”
 - Categorial reanalysis may be accompanied by featural reanalysis.
- C-stage \textit{mkhan} inherits a T-feature from T, which is evidenced by a differential T-feature deletion pattern between subject and object RCs.
Tibetan: a brief profile

- Sino-Tibetan > Tibeto-Burman > Bodic (bod=‘Tibet’)
- SOV, suffixing, ergative (OT, CT)/aspectually split ergative (MLT)
- Second oldest written language in Sino-Tibetan (650 AD; cf. Hill 2011) with a Brahmic abugida script

Tibetan: a brief profile

- Sino-Tibetan > Tibeto-Burman > Bodic (bod=‘Tibet’)
- SOV, suffixing, ergative (OT, CT)/aspectually split ergative (MLT)
- Second oldest written language in Sino-Tibetan (650 AD; cf. Hill 2011) with a Brahmic abugida script

Tibetan: a brief profile

- Sino-Tibetan > Tibeto-Burman > Bodic (bod=‘Tibet’)
- SOV, suffixing, ergative (OT, CT)/aspectually split ergative (MLT)
- Second oldest written language in Sino-Tibetan (650 AD; cf. Hill 2011) with a Brahmic abugida script

7-11c. - **Old Tibetan**, originally the language of the Yarlung valley, “colonized the entire plateau with the expansion of the Tibetan Empire,” reaching its height in 9c., and “continued to be the lingua franca in the oasis cities of the Silk Road for some decades after the Tibetan empire lost control of these territories” (Hill 2011:112).

11c. et seq. - **Classical Tibetan** developed, becoming “a stable but changing written standard.”

Modern vernaculars: Central (Ü-Tsang), Amdo, Khams, et al.

- Modern Lhasa Tibetan is the Modern Central Tibetan variety spoken in Lhasa proper.
Old Tibetan, Classical Tibetan, modern vernaculars

- **7-11c. -**
 Old Tibetan, originally the language of the Yarlung valley, “colonized the entire plateau with the expansion of the Tibetan Empire,” reaching its height in 9c., and “continued to be the lingua franca in the oasis cities of the Silk Road for some decades after the Tibetan empire lost control of these territories” (Hill 2011:112).

- **11c. et seq. -**
 Classical Tibetan developed, becoming “a stable but changing written standard.”

- **Modern vernaculars:** Central (Ü-Tsang), Amdo, Khams, et al.
 - Modern Lhasa Tibetan is the Modern Central Tibetan variety spoken in Lhasa proper.
7-11c. - **Old Tibetan**, originally the language of the Yarlung valley, “colonized the entire plateau with the expansion of the Tibetan Empire,” reaching its height in 9c., and “continued to be the lingua franca in the oasis cities of the Silk Road for some decades after the Tibetan empire lost control of these territories” (Hill 2011:112).

11c. et seq. - **Classical Tibetan** developed, becoming “a stable but changing written standard.”

Modern vernaculars: Central (Ü-Tsang), Amdo, Khams, et al.

- **Modern Lhasa Tibetan** is the Modern Central Tibetan variety spoken in Lhasa proper.
OT and CT corpora in this study

- **Old Tibetan Documents Online (OTDO)**
 - Most comprehensive digitized, searchable collection of OT documents
 - Dunhuang manuscripts (Pelliot tibétain, ITJ, et al.); some inscriptions and paper/wooden documents.

- **Derge Kanjur** through the *eKanjur* project at Uni-Wien
 - Entire corpus of the Tibetan *Bkaḥ-ḥgyur* (Translated Words of the Buddha) canon, as printed in Derge (Dégé), Sichuan.
 - Exemplary of the high Classical register
Relative **COMPS** in OT/CT are invariant: *ba/pa*

(4)

a. Subject RC:

\[t_i \text{ mkho-sham} \; \text{chen-pho} \; \text{bgyI} \; \text{ba} \; \text{hI} \; \text{rtsis-mgo}_i \; \text{administration} \; \text{great} \; \text{make.IRR} \; \text{COMP} \; \text{GEN} \; \text{statute} \]

‘the manuals which would create great administration’ (OT) [Pt1288:28]

b. Object RC:

\[\text{bdag=gis} \; t_i \; \text{bsad} \; \text{pa} \; \text{hI} \; \text{mi}_i \; \text{de} \; \text{1SG=ERG} \; \text{kill.PFV} \; \text{COMP} \; \text{GEN} \; \text{person DEM} \]

‘the person whom I killed’ (CT) [D353.p76-1-84a]

c. Dative/locative RC:

\[\text{rta} \; t_i \; \text{mgyogs-su} \; \text{hpel} \; \text{ba} \; \text{hI} \; \text{gnas}_i \; \text{horse} \; \text{quickly} \; \text{multiply.IMPFV} \; \text{COMP} \; \text{GEN} \; \text{place} \]

‘the place where horses multiply quickly’ (OT) [Pt1286:37]
Innovative relative COMPs in MLT are structure-sensitive

(5) a. Subject RC:

\[t_i \text{ mog-mog bzos mkhan} \text{ ma-byan}_i \]
\[\text{momo make COMP cook} \]

‘the cook who makes momos’ (MLT)

b. Object RC:

\[\text{nga=s } t_i \text{ bris yag} \text{ yi-ge}_i \]
\[1SG=ERG \text{ write COMP letter} \]

‘the letter that I write’ (MLT)

c. Dative/locative RC:

\[\text{Ye-shes=kyis } t_i \text{ ho-ma sprad sahi} \text{ zhi-mi}_i \]
\[\text{Yeshe=ERG milk give COMP cat} \]

‘the cat to which Yeshe gives milk’ (MLT)
MLT *mkhan* licenses extraction of all types of subjects.

(6)

a. **Transitive/unergative** subject extraction:

\[t_i \text{ mog-mog } \text{bzos } \text{mkhan] } \text{ma-byan}_i \]

momo make COMP cook

‘the cook who makes momos’ (MLT)

b. **Unaccusative** subject extraction:

\[\text{ri=nas } \text{ril } t_i \text{ mkhan] } \text{mi}_i \]

mountain=ABL fall COMP person

‘the person who falls from the mountain’ (MLT)

c. **Stative** subject extraction:

\[\text{deng-sang } t_i \text{ Lhasa=la } \text{yod } \text{mkhan] } \text{phru-gu}_i \]

these.days Lhasa=LOC EXIST COMP child

‘the children that are in Lhasa these days’ (MLT)

● But *mkhan*’s subject orientation is an innovation.
Roadmap: *mkhan*: V-to-T(\(n\))-to-C

- **Old Tibetan:** lexical control V ‘to know (how to do)’
 - Selects transitive/unergative vP complements
- **Classical Tibetan:** agent nominalization T(\(n\)) head
 - Selects agentive vP complements
- **Modern Lhasa Tibetan:** subject relative COMP
 - Moves all types of subjects
In OT, *mkhan* starts out as a lexical verb “to know” (7).

(7) \[\text{smra myi } \textbf{mkhan} \text{ gyi ma-mo}
\text{ speak NEG know \text{ GEN [female.deity]}}
\text{ '[goddess] who does not PRO know speaking' (OT) [Pt 1046b:2]}

Lexical semantics: ‘to know how to’

Can be directly negated.

Note that (7) happens to be an RC. Why does it not have the invariant COMP *ba*?

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003:117), which can be relativized by an empty COMP.
In OT, *mkhan* starts out as a lexical verb “to know” (7).

(7) [smra myi mkhan] gyi ma-mo
 speak NEG know GEN [female.deity]
 ‘[goddess] who does not PRO know speaking’ (OT) [Pt 1046b:2]

Lexical semantics: ‘to know how to’
- Can be directly negated.
- Note that (7) happens to be an RC. Why does it not have the invariant COMP *ba*?
 - *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003:117), which can be relativized by an empty COMP.
In OT, *mkhan* starts out as a lexical verb “to know” (7).

(7) [smra myi *mkhan*] gyi ma-mo
 speak NEG know GEN [female.deity]
 ‘[goddess] who does not PRO know speaking’ (OT) [Pt 1046b:2]

Lexical semantics: ‘to know how to’

Can be directly negated.

Note that (7) happens to be an RC. Why does it not have the invariant COMP *ba*?

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003:117), which can be relativized by an empty COMP.
In OT, *mkhan* starts out as a lexical verb “to know” (7).

(7)

[smra myi **mkhan**] gyi ma-mo
speak NEG know GEN [female.deity]
‘[goddess] who does not PRO know speaking’ (OT) [Pt 1046b:2]

Lexical semantics: ‘to know how to’

Can be directly negated.

Note that (7) happens to be an RC. Why does it not have the invariant COMP *ba*?

▶ *mkhan* belongs to a special class of (*m-*prefixed) intransitive/stative verbs (Matisoff 2003:117), which can be relativized by an empty COMP.
In OT, *mkhan* starts out as a lexical verb “to know” (7).

(7)
[smra myi mkhan] gyi ma-mo
speak NEG know GEN [female.deity]
‘[goddess] who does not PRO know speaking’ (OT) [Pt 1046b:2]

- Lexical semantics: ‘to know how to’
- Can be directly negated.
- Note that (7) happens to be an RC. Why does it not have the invariant COMP *ba*?
 - *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003:117), which can be relativized by an empty COMP.
Analysis: V-stage

(7') OT: $\forall mkhan$

- $mkhan$ lexically selects a vP complement with a PRO subject. The subject of $mkhan$ controls the PRO.
- The lexical semantics of $mkhan$ ‘to know’ restricts selection to agentive vPs.
 - ‘know to speak/run/#die/#exist’
- PRO = [Spec, vP]: control targets the external argument position
 - PRO.ERG, if assuming standard Case marking on PRO (Landau 2006, San Martin 2004)

- ‘Goddess knows PRO to speak.’
In OT, *mkhan* is also attested in zero-converted nominalizations: names of professions.

(8)

a. lug=gyis *lam-mkhan* $\text{byed kyang myI nus}$
 sheep=ERG *road-knower* do also NEG be.able
 ‘Sheep are also not able to work as *road-guides*’ (OT) [Pt239:r8-3]

b. ri-mo-mkhan ni las ma lags
 painting-knower TOP work NEG be.so
 ‘As for *painters*, (their) work is not like so’ (OT) [Pt1062:22]

V-stage traits:

- Lexical semantics ‘know-er’
- No vP shell recursion: no other verbs cannot be embedded under *mkhan* in these zero-converted NPs.
CT: *mkhan* is reanalyzed as T(n).

OT:
Merge *mkhan* as V Move through v and T / zero-conversion

\[[TP ... [v_1P ... [v_2P PRO ...] v_1t_{mkhan}] T mkhan] \]

CT:
Merge *mkhan* as T(n)

\[[T(n)P [vP t ...] T(n)mkhan] \]

Reanalyzed as T(n) in CT: *mkhan* is able to select full vP complements: (9)

(9) \[[T(n)P me-tog phreng rgyud mkhan] =gyis smras-pa... flower rosary string(.IMPFV) NZR =ERG say.PFV-PA \]

‘...said the one who strings flower rosaries’ (CT) [D1.p3-1-22a]
$T(n)$ *mkhan*: consequences

- Loss of lexical V semantics
 - No longer “to know/knower”: agent nominalizer instead.
- Inability to be negated: *m(y)i mkhan
- No T inflection on embedded verb: only IMPFV form.
 - Consistent with the semantics of agent nominalizers
- $T(n)$ nominalizers may have specific T-related semantics
 - In MLT, the object nominalizer $T(n)yag$ contrasts minimally with pa in having IMPFV aspect: (10)

 (10) hdi [nga=s bzos yag] red :: hdi [nga=s bzos pa] red
 this 1SG=ERG make yag be.NEUT :: this 1SG=ERG make pa be.NEUT
 ‘This is what I make/will make.’ :: ‘This is what I made.’
Loss of lexical V semantics
 - No longer “to know/knower”: agent nominalizer instead.

Inability to be negated: *m(y)i mkhan

No T inflection on embedded verb: only IMPFV form.
 - Consistent with the semantics of agent nominalizers

T(n) nominalizers may have specific T-related semantics
 - In MLT, the object nominalizer T(n)yag contrasts minimally with pa in having IMPFV aspect: (10)

(10) hdi [nga=s bzos yag] red :: hdi [nga=s bzos pa] red
 this 1SG=ERG make yag be.NEUT :: this 1SG=ERG make pa be.NEUT
 ‘This is what I make/will make.’ :: ‘This is what I made.’
\(T(n)\) *mkhan*: consequences

- Loss of lexical V semantics
 - No longer “to know/knower”: agent nominalizer instead.
- Inability to be negated: \(*m(y)i \ mkhan\)
- No T inflection on embedded verb: only IMPFV form.
 - Consistent with the semantics of agent nominalizers
- \(T(n)\) nominalizers may have specific T-related semantics
 - In MLT, the object nominalizer \(T(n)yag\) contrasts minimally with \(pa\) in having IMPFV aspect: (10)

\[
(10) \quad \text{h. di [nga=s bzos } yag\text{] red} :: \text{h. di [nga=s bzos } pa\text{] red}
\text{this 1SG=ERG make } yag\text{ be.NEUT} :: \text{this 1SG=ERG make } pa\text{ be.NEUT}
\text{‘This is what I make/will make.’} :: \text{‘This is what I made.’}
\]
\(T(n) mkhan \): consequences

- Loss of lexical V semantics
 - No longer “to know/knower”: agent nominalizer instead.
- Inability to be negated: \(*m(y)i mkhan\)
- No T inflection on embedded verb: only IMPFV form.
 - Consistent with the semantics of agent nominalizers

\(T(n) \) nominalizers may have specific T-related semantics

- In MLT, the object nominalizer \(T(n) yag \) contrasts minimally with \(pa \) in having IMPFV aspect: (10)

\[
\text{(10) } \text{jabi} [\text{nga=s bzos } yag] \text{ red} :: \text{jabi} [\text{nga=s bzos } pa] \text{ red} \\
\text{this 1SG=ERG make } yag \text{ be.NEUT} :: \text{this 1SG=ERG make } pa \text{ be.NEUT} \\
\text{‘This is what I make/will make.’ :: ‘This is what I made.’}
\]
Up till now, the selectional properties of \sqrt{mkhan} and $T(n)mkhan$ have excluded unaccusative/stative complements.

- Empty categories are licensed only at *external* argument positions (\([\text{Spec, } \nu P/VP]\) > “ergative alignment”

Why is MLT *mkhan* able to license unaccusative/stative subject traces (11)?

(11) \([deng-sang \ t_i \ Lhasa=la \ \textbf{yod} \ mkhan] \ \text{phru-gu}_i\)

\(\text{these.days \ Lhasa=LOC \ EXIST \ COMP \ child}\)

‘the children that are in Lhasa these days’ (MLT)
Proposal:

- $T(n)\ mkhan$ is reanalyzed as $C\ mkhan$.
- EC-licensing feature on $T(n)\ mkhan$ is inherited and translated upwards by $C\ mkhan$.

In CT:

- $T(n)\ mkhan$ licenses (binds) t_{Ag} at [Spec, vP]

In MLT:

- $C\ mkhan$ licenses (moves) OP_{subj} at [Spec, TP]
Analysis: EC-licensing feature from T-stage to C-stage

(12) \(CT: T(n) mkhan \) binds external subject trace at \([\text{Spec}, \text{vP}]\)

\[
\lambda x[\text{string}(x, fr)]
\]

‘one who strings flower rosaries’
(13) **CT:** $T(n) \text{mkhan}$ cannot bind VP-internal DPs

Intended: ‘one who falls’
MLT: \(c_{mkhan} \) can move any subject from [Spec, TP]

'\textit{the chef who makes momos}'
Analysis: EC-licensing feature from T-stage to C-stage

(15) MLT: EPP on _c mkhan can move any subject from [Spec, TP]

‘the person who fell from the mountain’
Recap: *mkhan*: V-to-T(n)-to-C

- **Old Tibetan:** lexical control V ‘to know (how to do)’
 - Selects transitive/unergative vP complements
 - Licenses ERG PROs - “ERG alignment”

- **Classical Tibetan:** agent nominalization T(n) head
 - Selects agentive vP complements
 - Licenses traces at [Spec, vP] (binding) - “ERG alignment”

- **Modern Lhasa Tibetan:** subject relative COMP
 - Licenses subject OP traces at [Spec, TP] (OP movement) - “NOM alignment”
We have a T-related asymmetry between MLT subject and object relative clauses:

- Subject RCs with *mkhan* have no T-restriction: (20a)
- Object RCs with *yag* are interpreted obligatorily as IMPFV: (20b)

(20) a. chang ḡthung **mkhan** mgron-po de Ye-shes red wine drink COMP guest DEM Yeshe COP.NEUT

‘The guest who drank/drinks/will drink wine is Yeshe.’

b. Ye-shes=kyis sbyang **yag** yig-gzugs de Dbu-can Yeshe=ERG learn COMP font DEM Uchen red

COP.NEUT

‘The font that Yeshe **learned/learns/will learn** is Uchen.’
We have a T-related asymmetry between MLT subject and object relative clauses:

- Subject RCs with *mkhan* have no T-restriction: (20a)
- To get PFV interpretation in object RCs, *ba/pa* must be used: (21b)

(21)

a. chang ḷthung **mkhan** mgron-po de Ye-shes red wine drink COMP guest DEM Yeshe COP.NEUT

‘The guest who drank/drinks/will drink is Yeshe.’

b. Ye-shes=kyis sbyang **bahi** yig-gzugs de Dbu-can Yeshe=ERG learn COMP font DEM Uchen red COP.NEUT

‘The font that Yeshe learned/#learns/#will learn is Uchen.’
Differential T interpretations: a T-featural analysis

- Is there a unified explanation?

 Subject RC with *mkhan*
 - Has no T-restriction
 - OP moves from [Spec, TP] to [Spec, CP]

 Object RC with *yag*
 - Has T-restriction
 - OP moves from [Spec, vP] to [Spec, CP]
Pesetsky and Torrego (2001)

- Nominative Case assignment is the sharing of a head feature [uT] by its specifier.
- T-to-C movement is then motivated by the inherited [uT] on C.
MLT subject-object RC asymmetry as a consequence of differential T-feature deletion

- **Subject OPs get a T feature at [Spec, TP]**
- **The T feature is deleted after movement to [Spec, CP]**
- **Crucially, object OPs move directly to [Spec, CP] without getting a T feature at TP**
- **Consequently, the T feature on cyag is not marked for deletion**

'(the chef) who cooks momos'
MLT subject-object RC asymmetry as a consequence of differential T-feature deletion

- Subject OPs get a T feature at [Spec, TP]
- The T feature is deleted after movement to [Spec, CP]
- Crucially, object OPs move directly to [Spec, CP] without getting a T feature at TP
- Consequently, the T feature on `cyag` is not marked for deletion

昶(t'he chef) who cooks momos'
MLT subject-object RC asymmetry as a consequence of differential T-feature deletion

- Subject OPs get a T feature at [Spec, TP]
- The T feature is deleted after movement to [Spec, CP]
- Crucially, object OPs move directly to [Spec, CP] without getting a T feature at TP
- Consequently, the T feature on cyag is not marked for deletion
The T-interpretation difference between object RCs with *yag* and subject RCs with *mkhan* is because subjects, and *not* objects, acquire a T feature at [Spec, TP], which then marks the T feature on C for deletion.

Differential interpretation of the T-feature on C receives a unified explanation if we adopt a theory in which T-to-C movement entails marking-for-deletion of the T-feature on C.

- “Structural” (*NOM* Case) and “inherent” (tense-aspect semantics) features on T are co-existential.
Conclusions

- MLT subject relative complementizer *mkhan* is reanalyzed from OT $\mathcal{V} mkhan$ through CT $\mathcal{T}(n) mkhan$, in the classic “upwards” fashion of Roberts and Roussou (2003).

- Upward reanalysis of functional heads may be accompanied by upward feature translation.
 - In Tibetan, this feature translation is manifested by a switch from “ergative alignment” to “accusative alignment” in *mkhan*-embedded environments during T-to-C reanalysis.

- The MLT-synchronic asymmetry in T-interpretations in subject vs. object RCs bears out a differential T-feature deletion pattern on C.
Conclusions

- MLT subject relative complementizer *mkhan* is reanalyzed from OT \(\sqrt{mkhan} \) through CT \(T(n)mkhan \), in the classic “upwards” fashion of Roberts and Roussou (2003).

- Upward reanalysis of functional heads may be accompanied by upward feature translation.
 - In Tibetan, this feature translation is manifested by a switch from “ergative alignment” to “accusative alignment” in *mkhan*-embedded environments during T-to-C reanalysis.

- The MLT-synchronic asymmetry in T-interpretations in subject vs. object RCs bears out a differential T-feature deletion pattern on C.
Conclusions

- MLT subject relative complementizer *mkhan* is reanalyzed from OT \sqrt{mkhan} through CT $\text{T}^{(n)}_{mkhan}$, in the classic “upwards” fashion of Roberts and Roussou (2003).

- Upward reanalysis of functional heads may be accompanied by upward feature translation.
 - In Tibetan, this feature translation is manifested by a switch from “ergative alignment” to “accusative alignment” in *mkhan*-embedded environments during T-to-C reanalysis.

- The MLT-synchronic asymmetry in T-interpretations in subject vs. object RCs bears out a differential T-feature deletion pattern on C.
Thank you.

- Special thanks to Gesang Yangla and Gen Tenzin Phuntsok for help with MLT judgements; to Gen Sonam Tsering, Gen Tenzin Phuntsok and Prof. Daniel Boucher for their language instruction. All errors are mine.

- Thanks to Prof. John Whitman and the Fall 2017 Historical Syntax Seminar at Cornell Linguistics.
Appendix 1: *m*-prefixed stative verbs in OT/CT

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003).

- Special properties of *m*-prefixed verbs:
 - No aspect-mood prefixal inflection

SAD ‘to kill’	IMPFV	PFV	IRR	IMP
g-sod	b-sad	g-sad	sod	

 - Can be relativized with an empty COMP (9)

 (9) [rtsed-mo rtse zhing dgaḥ mgu [C ∅] hi gnas=rnams game play VPCONJ joy rejoice GEN place=PL
 ‘the place where (one) plays games and rejoices’ (CT) [D57.p41-1-209b]
Appendix 1: *m*-prefixed stative verbs in OT/CT

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003).

- Special properties of *m*-prefixed verbs:
 - No aspect-mood prefixal inflection

	IMPFV	PFV	IRR	IMP
SAD	g-sod	b-sad	g-sad	sod
NGAH	m-ngah	m-ngah	m-ngah	

 - Can be relativized with an empty COMP (9)

 (9) [rtsed-mo rtse zhing dgaḥ mgu [C 0] ḥi gnas=rnams game play VPconj joy rejoice GEN place=PL ‘the place where (one) plays games and rejoices’ (CT) [D57.p41-1-209b]
Appendix 1: *m*-prefixed stative verbs in OT/CT

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003).

- Special properties of *m*-prefixed verbs:
 - No aspect-mood prefixal inflection

	IMPFV	PFV	IRR	IMP
SAD ‘to kill’	g-sod	b-sad	g-sad	sod
NGAH ‘to possess, be, exist’	m-ngaḥ	m-ngaḥ	m-ngaḥ	/

 - Can be relativized with an empty COMP (9)

 (9) [rtsed-mo rtse zhing dgaḥ mgu [C 0] ḥi gnas=rnams game play VPCONJ joy rejoice GEN place=PL] ‘the place where (one) plays games and rejoices’ (CT) [D57.p41-1-209b]
Appendix 1: *m*-prefixed stative verbs in OT/CT

- *mkhan* belongs to a special class of (*m*-prefixed) intransitive/stative verbs (Matisoff 2003).

- Special properties of *m*-prefixed verbs:
 - No aspect-mood prefixal inflection

	IMPFV	PFV	IRR	IMP
SAD ‘to kill’	g-sod	b-sad	g-sad	sod
NGAH ‘to possess, be, exist’	m-ngaḥ	m-ngaḥ	m-ngaḥ	/

 - Can be relativized with an empty **COMP** (9)

 (9) [rtsed-mo rtse zhing dgaḥ mgu [C ∅] ḥi gnas=rnams game play VPCONJ joy rejoice GEN place=PL ‘the place where (one) plays games and rejoices’ (CT) [D57.p41-1-209b]
Appendix 2: How does $_mkhan$ acquire a relative operator?

- Modifying GEN > appositive GEN > incorporation of GEN into $_mkhan$ > reanalysis as OP inside relative CP.

- Appositive GEN structures are already attested in CT: (17)

 (17) $[OP_j \ t_j \ rgyal-po-Lha-chen-po \ h\dot{i} \ skra \ dang \ kha-spu \ h\dot{breg} \ King.\ Mahadeva \ GEN \ hair \ and \ beard \ shave \ mkhan]_i \ gyi \ mi_i \ NZR \ GEN \ person \ ‘the \ person \ that \ is \ King \ Mahadeva’s \ hair \ and \ beard \ shaver’$

- After GEN incorporation in MLT: (18)

 (18) $[OP_i \ t_i \ rgyal-po-Lha-chen-po \ h\dot{i} \ skra \ dang \ kha-spu \ h\dot{breg} \ King.\ Mahadeva \ GEN \ hair \ and \ beard \ shave \ mkhan] \ mi_i \ COMP \ person \ ‘the \ person \ who \ shaves \ King \ Mahadeva’s \ hair \ and \ beard’$
GEN in Tibetan behaves like a generalized λ-abstraction operator (cf. Chinese *de*, Cheng and Sybesma 2005).

- Appositive genitives
- Gapless relative clauses

(19)
\[\text{[dus gsum mnyam] gyi tshul-khrims} \]
\[\text{time three be.same GEN precept} \]
\[\text{‘the precept that the three times are the same’ (CT)} \]
\[\text{[D353.p76-1-182a]} \]

Before **GEN** incorporation: coreferentiality of agent trace and external DP supplied by pragmatics (aboutness relation)

After **GEN** incorporation: coreferentiality grammaticalized as RC syntax