

Laboratory-scale test system to derive relative foliar wash-off factors (WOF) for plant protection products

Gourlay V.⁽¹⁾, Bopp C.⁽¹⁾, Girardi J.^(1,2), Meier M.⁽¹⁾, Fent G.⁽¹⁾, Kubiak R.⁽¹⁾

⁽¹⁾ RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany // ⁽²⁾ Universität Koblenz-Landau, Landau, Germany

INTRODUCTION	 MATERIAL AND METHODS
Background	Area of investigation
Foliar Wash-off Workshop (ECPA): "Development of a	Crop types

Current lack of experimental methods to determine foliar wash-** off of pesticides

Harmonized Study Protocol". Bracknell, UK, 05.11.2015

- Current standard experimental design for WOF determination:
 - Spray-treated planted pots
 - Placement under rain chamber
 - Realistic application and exposure of intact plants
 - **Drawbacks:**
 - Variability of leaf distribution has a strong impact on individual leaf's spray and rain interception
 - **Only large plants with sufficient leaf areas are usable**

Purpose of the study

- Development of a laboratory-scale test system (see Fig. 1) to estimate foliar wash-off factors in relation to a tracer
- Simple yet adaptable screening test design
- Adapted for ranges of crops, PPP/formulation and rain duration/intensity

Bean

Grape vine

- Foliar wash-off tracer
 - Bromide (ion exchange chromatography)
 - **Pyranine** (fluorescence)
- Test compound
 - Cyflufenamid (Fungicide, EC formulation)

Characteristics of the test system

- Single leaf section application (see Fig. 3)
- Flat irrigated area (metal / glass plate, see Fig. 4,5) with fixed angle (45°)
- ✤ Micro-irrigation (see Fig. 6)
- Direct collection and evaluation of wash-off solution

Figure 3: Treated leaves during

Figure 2: Detail on leave application

Leaf preparation and application

- Cultivation in soil under greenhouse conditions
- Harvest of homogeneous leaves shortly prior to application
- ✤ Full or section of leaves 4×5 cm² (see Fig. 32)
- ✤ Homogenous application with 100×1µL drops (see Fig. 2)
- **↔ 24h storage** in the dark

Artificial rain and fraction protocol

- ***** Bi-distilled water
- Rain flow: 0.5 mL/min
- Standard cumulative fractions after
 - 10, 20, 30, 40, 60 & 80 s (about 1.0 mL/s)

Figure 1: Tier 1 development and schematic of the test system

drying period

Figure 4: Detail on the plate holder

Figure 5: Detail on the leave plate

Figure 6: Detail on the irrigation outlet

RESULTS AND DISCUSSION

Validity of the test system

- Tracer recovery after different storage conditions (see Fig. 9)
 - **Refrigerator**: 80%_{appl}
 - Room temperature: $60\%_{appl}$
 - Storage under cold condition is more adapted
- Tracer recovery without leave (see Fig. 7)
 - $100\%_{appl}$ both tracer
 - No parallel losses on the test system
- Tracer recovery with plant (Grape vine):

Figure 7: Recovery of bromide and pyranine from metal leaf holder

CONCLUSION AND FURTHER INVESTIGATION

- ✓ Fractionation of the wash-off solution improves the understanding of the wash-off dynamics
- \checkmark Even under worst case rainfall conditions, removing > 80% of applied tracer by wash-off (including recovery rinsing step), a "significant portion" of Cyflufenamid (about 50%) remained on the leaves

✓ Perspective:

 Development of a rain chamber for comparison with full plants

- **Pyranine: ~80 %appl**
- Bromid:~20% appl (not adapted)
- * Additional **non-influential** parameters:
 - Drop density $< 1 \text{ drop} / \text{cm}^2$
 - Irrigation temperature
 - Plate holder temperature (when stored under cold conditions)

- Recovery comparison in the first two fractions
 - Pyranine: $56\%_{appl}$ (1st fraction) and $16\%_{appl}$ (2nd fraction)
 - Cylfufenamid: $31\%_{appl}$ (1st fraction) and $18\%_{appl}$ (2nd fraction)

temperature (pyranine)

Figure 10: Future rain chamber

- Controlled rain intensity (See Fig. 11)
- About 4 m high (See Fig. 10)
- Participation to a inter-laboratory ring test with the rain chamber

Figure 11: Detail on the rain chamber nozzle