Limited penetration depth in soil system with Freundlich sorption and first-order degradation
Allen & Walker (1987)

- 18 UK agricultural soils from top 10 cm
 - 14 clay loams or clays
 - limited range of textures considering other EU countries
 - organic carbon range: 0.7-2.4%

- laboratory studies with three herbicides on
 - D_{egT50} at 20°C and pF = 2.5
 - Freundlich isotherm: K_F and N

- first such data set including N

- their aim: predict D_{egT50} from soil properties
 - more than decade before spatially distributed modelling became popular
 - so far ahead of their time
 - prediction appeared to be difficult
Allen & Walker (1987)

Why favorite data set over 30 years?

- Ph D supervisor Allan Walker guarantee for high-quality degradation rate measurements:
 - some 75 field tests of Walker persistence models between 1973 and 1987
 - long, long before validation terminology and good-modelling practice guidance was developed

- Literature information on variation in substance properties:
 variation also due to different methodologies:
 - which part real and which part caused by scientists?
 - Wauchope 2002 review sorption: max $K_{oc} / \min K_{oc} = 100$?
 - this paper: ‘true variability’
My use of the data set:

- underpinning CVs of K_{oc} and $DegT50$ for spatially-distributed exposure assessments at EU level
 - observed variability minimum level for zonal or EU level

- explore causes of variation in K_{oc} and $DegT50$

- Freundlich exponent N (pesticide property in EU guidance)
 - variability between soils
 - testing to which extent N is soil or pesticide property
Allen & Walker (1987)

Variability in degradation half-lives

EFSA guidance assumes lognormal distribution with CV of about 50%
correlation coefficient 0.30 : not significant
so spatially-distributed predictions of $DegT50$ difficult
Variability of K_{oc}

EFSA guidance assumes lognormal distribution with CV of about 50%
Allen & Walker (1987)

K_{oc} values correlated?
(then probably similar sorption sites)
Variability in Freundlich exponent

- wide range for all three
- metribuzin lower than other two
- CV of three pesticides and single soil on average 12%
- further statistical analysis needed to test hypothesis whether N is soil or pesticide property
Allen & Walker (1987)

- The dataset is very valuable for scientists interested in:
 - Pesticide degradation and sorption processes
 - Spatially-distributed modelling of pesticide exposure

- My talk: Effect of interaction between non-linear sorption and degradation on leaching behaviour
 - Allen & Walker is one of the most valuable sources for magnitude of non-linearity (N)
Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions
models for FOCUS groundwater scenarios all based on Freundlich isotherm and first-order degradation of total pesticide concentration in soil system, further called Freundlich-SFO system (Single First Order)

- PELMO
- PEARL
- PRZM
- MACRO

Freundlich-SFO approach is a cornerstone of EU leaching assessment since 2000
Introduction

Freundlich-SFO system

- Freundlich sorption isotherm
 \[X = K_F \cdot c_{\text{ref}} \left(\frac{c}{c_{\text{ref}}} \right)^N \]

 - \(X \): content sorbed (mg/kg)
 - \(K_F \): Freundlich sorption coefficient (L/kg)
 - \(N \): Freundlich exponent (-)
 - \(c \): concentration in liquid phase (mg/L)
 - \(c_{\text{ref}} \): reference value of \(c \) (mg/L)

- SFO = single first-order kinetics

 \[c^* = \theta \cdot c + \rho \cdot X \]

 - \(c^* \): concentration in soil system (mg/L)
 - \(\theta \): volume fraction of water (-)
 - \(\rho \): dry bulk density (kg/L)

 \[\frac{d c^*}{d t} = -k \cdot c^* \]

 - \(t \): time (d)
 - \(k \): first-order rate coefficient (1/d)

[Diagram showing the effect of \(N \) on the sorption isotherm]

WAGENINGEN UNIVERSITY & RESEARCH
Introduction

- **FOCUS leaching concentration at 1 m depth**
 - simulated with PEARL

- two pesticides applied in winter cereals in Hamburg and Kremsmünster
 - any pesticide-scenario combination shows same shape

- sensitivity to N: at some point sharp decline to zero

- why?
Behaviour of closed Freundlich-SFO system

- e.g. incubation system for measuring degradation rate in top soil
- what is time course of fraction in liquid phase?
- analytical approximation (ignoring mass in liquid phase):

 \[
 f_{liq} = f_{liq,0} \exp\left(-k \cdot t \left(\frac{1 - N}{N}\right)\right)
 \]

 - \(f_{liq}\): fraction in liquid phase (-)
 - \(f_{liq,0}\): \(f_{liq}\) at \(t = 0\) depending on sorption coefficient etc. (-)
 - \(k\): degradation rate coefficient (d\(^{-1}\))
 - \(t\): time (d)
 - \(N\): Freundlich exponent (-)

- calculations for system with \(DegT50 = 200\) d and \(K_F = 3\) L/kg
Behaviour of closed Freundlich-SFO system

- \(\text{DegT50} = 200 \text{ d} \) and \(K_F = 3 \text{ L/kg} \)
 - analytical approximation works well

\[
f_{\text{liq}} = f_{\text{liq,0}} \exp\left(-k t \left(\frac{1-N}{N} \right) \right)
\]

- decrease faster for higher \(N \)
 - \(N = 1 \) then \(f_{\text{liq}} \) constant

- background of decrease of \(f_{\text{liq}} \): concentration decrease in Freundlich system leads to shift to solid phase

- background of exponential decrease of \(f_{\text{liq}} \): content sorbed decreases exponentially
Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions
Leaching in uniform soil profile

- simplified version of PEARL

- soil profile with uniform properties
 - volume fraction of water 0.25
 - water flow rate 1 mm/d
 - dry bulk density of 1.5 kg/L
 - dispersion length of 5 cm
 - no plant uptake
 - degradation and sorption uniform with depth
 - numerical compartments of 2 mm
 - single pesticide application of 1 kg/ha

- results shown for following pesticide properties
 - degradation rate based on $DegT50 = 200$ d
 - Freundlich isotherm parameters: $K_F = 3$ L/kg and $N = 0.9$

- calculations for range of other pesticide properties show qualitatively always same result
11 profiles of concentration in soil system for times increasing from 100 to 9000 d

Concentration in soil system (mg/L)

Depth (m)

concentration axis from 10^0 to 10^{-20} mg/L to demonstrate principle

1 molecule per L
later concentration profiles all converge to same depth
Leaching in uniform soil profile

- approaches plateau
- consistent with behaviour of concentration profiles
- for $N = 0.7$ plateau is shallower and reached quicker

average penetration depth:
- 50% above and 50% below this depth
Leaching in uniform soil profile

- so pulse in Freundlich-SFO leaching system with constant properties has finite penetration depth
 - beyond which no pesticide molecule will ever pass
- this causes probably the drastic drop in FOCUS leaching concentration when N decreases
Leaching in uniform soil profile

- finite penetration depth, so speed of pulse goes to zero

- this speed is proportional to fraction of pesticide in liquid phase
 - only molecules in liquid phase move

- so let us examine fraction of pesticide in liquid phase for total mass of pesticide present in this leaching system
Leaching in uniform soil profile

- exponential decrease similar to closed system

\[f_{\text{liq}} = f_{\text{liq}, 0} \exp \left(-k t \left(\frac{1 - N}{N} \right) \right) \]

- \(k \) and \(N \) are known but \(f_{\text{liq}, 0} \) unknown so \(f_{\text{liq}, 0} \) estimated from start of linear phase
Leaching in uniform soil profile

- Fraction in liquid phase in soil profile decreases at about the same speed as in a closed system after an initial phase with a more rapid decline.
- Exponentially decreasing fraction in liquid phase gives exponentially decreasing speed of the pulse.
- Therefore, a pulse has a finite penetration depth in a Freundlich-SFO soil system.

\[f_{liq} = f_{liq,0} \exp\left(-k \frac{t}{N}\right) \]

- Fraction in liquid phase in soil profile decreases at about the same speed as in a closed system after an initial phase with a more rapid decline.
- Exponentially decreasing fraction in liquid phase gives exponentially decreasing speed of the pulse.
- Therefore, a pulse has a finite penetration depth in a Freundlich-SFO soil system.
Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions
Evidence for validity of Freundlich-SFO concept

- finite penetration depth after infinite time counterintuitive

- sound underpinning needed of this cornerstone of EU leaching assessment

- Freundlich-SFO has historical roots in pesticide world
 - hundreds of measurements of degradation rate measured by extraction with solvent from 100% to some 5% show nice SFO behaviour

- problem: for simulating leaching at 0.1-ppb level the models have to extrapolate orders of magnitude below this 5%
Evidence for validity of Freundlich-SFO concept

- H_0: hypothesis Freundlich-SFO: degradation rate proportional to concentration in total soil
 - for most substances equivalent to: rate proportional to amount sorbed

- H_a: alternative hypothesis: degradation rate proportional to concentration in liquid phase
 - my perception: main-stream microbiological thinking since about 1985
 - considerable amount of indirect evidence (e.g. paraquat behaviour)
 - very large consequences for leaching assessment
Evidence for validity of Freundlich-SFO concept

- degradation rate measurements needed that can distinguish between H_0 and H_a
 - not easy, but doable: e.g. study substances with low N values that show very rapid microbial degradation

- to best of my knowledge, no measurements are available that support preference of H_0 over H_a
 - but I am happy to be proven wrong
Conclusions

- Leaching of pesticide pulse in uniform Freundlich-SFO soil system results in limited penetration depth
 - which decreases with increasing curvature of isotherm

- This is caused by exponentially decreasing fraction in liquid phase
Conclusions

- this exponentially decreasing fraction is caused by Freundlich-SFO assumption that degradation rate is proportional to total amount in soil instead of amount in liquid phase

- experimental tests of this Freundlich-SFO degradation rate concept required because
 - above results are counterintuitive
 - indirect evidence in favour of alternative concept
Thank you for your attention!