Limited penetration depth in soil system with Freundlich sorption and first-order degradation

Jos Boesten

- 18 UK agricultural soils from top 10 cm
 - 14 clay loams or clays
 - limited range of textures considering other EU countries
 - organic carbon range: 0.7-2.4%
- laboratory studies with three herbicides on
 - *DegT50* at 20°C and pF = 2.5
 - Freundlich isotherm: K_F and N
- first such data set including N
- their aim: predict *DegT50* from soil properties
 - more than decade before spatially distributed modelling became popular
 - so far ahead of their time
 - prediction appeared to be difficult

Why favorite data set over 30 years ?

- Ph D supervisor Allan Walker guarantee for high-quality degradation rate measurements
 - some <u>75</u> field tests of Walker persistence models between 1973 and 1987
 - long, long before validation terminology and good-modelling practice guidance was developed

time

- literature information on variation in substance properties: variation also due to different methodologies
 - which part real and which part caused by scientists ?
 - Wauchope 2002 review sorption: max K_{oc} / min K_{oc} = 100 ?
 - this paper: 'true variability'

My use of the data set:

- underpinning CVs of K_{oc} and DegT50 for spatially-distributed exposure assessments at EU level
 - observed variability minimum level for zonal or EU level
- explore causes of variation in *K*_{oc} and *DegT50*
- Freundlich exponent N (pesticide property in EU guidance)
 - variability between soils
 - testing to which extent N is soil or pesticide property

Variability in degradation half-lives

EFSA guidance assumes lognormal distribution with CV of about 50%

correlation coefficient 0.30 : not significant

so spatially-distributed predictions of *DegT50* difficult

Variability of K_{oc}

EFSA guidance assumes lognormal distribution with CV of about 50%

K_{oc} values correlated ?

(then probably similar sorption sites)

Variability in Freundlich exponent

- # wide range for all three
- # metribuzin lower than other two
- # CV of three pesticides and single soil on average 12%

further statistical analysis needed to test hypothesis whether N is soil or pesticide property

dataset very valuable for scientists interested in

- pesticide degradation and sorption processes
- spatially-distributed modelling of pesticide exposure

- my talk: effect of interaction between non-linear sorption and degradation on leaching behaviour
 - Allen & Walker one of most valuable sources for magnitude of nonlinearity (N)

Outline

Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions

Introduction

- models for FOCUS groundwater scenarios all based on Freundlich isotherm and first-order degradation of total pesticide concentration in soil system, further called Freundlich-SFO system (Single First Order)
 - PELMO
 - PEARL
 - PRZM
 - MACRO

 Freundlich-SFO approach is a cornerstone of EU leaching assessment since 2000

Introduction

Freundlich-SFO system

Freundlich sorption isotherm

$$X = K_F \ c_{ref} \left(\frac{c}{c_{ref}}\right)^N$$

X K_F N C Cref

ρ

t k

- SFO = single first-order kinetics

$$\frac{d c *}{d t} = -k c *$$

content sorbed (mg/kg)
Freundlich sorption coefficient (L/kg)
Freundlich exponent (-)
concentration in liquid phase (mg/L)
reference value of c (mg/L)

concentration in soil system (mg/L) volume fraction of water (-) dry bulk density (kg/L)
time (d) first-order rate coefficient (1/d)

Introduction

Behaviour of closed Freundlich-SFO system

- e.g. incubation system for measuring degradation rate in top soil
- what is time course of fraction in liquid phase ?
- analytical approximation (ignoring mass in liquid phase):

$$f_{liq} = f_{liq,0} \exp\left(-k t \left(\frac{1-N}{N}\right)\right)$$

• f_{liq} fraction in liquid phase (-)

•
$$f_{liq,0}$$
 f_{liq} at $t=0$ depending on sorption coefficient etc. (-

- k^{*} degradation rate coefficient (d⁻¹)
- *t* time (d)
- *N* Freundlich exponent (-)

calculations for system with DegT50 = 200 d and $K_F = 3$ L/kg

Behaviour of closed Freundlich-SFO system

- $DegT50 = 200 \text{ d} \text{ and } K_F = 3 \text{ L/kg}$
 - analytical approximation works well

$$f_{liq} = f_{liq,0} \exp\left(-k t \left(\frac{1-N}{N}\right)\right)$$

- decrease faster for higher N
 - N = 1 then f_{liq} constant
- background of decrease of *f_{liq}*: concentration decrease in Freundlich system leads to shift to solid phase
- background of exponential decrease of f_{liq}: content sorbed decreases exponentially

Outline

Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions

- simplified version of PEARL
- soil profile with uniform properties
 - volume fraction of water 0.25
 - water flow rate 1 mm/d
 - dry bulk density of 1.5 kg/L
 - dispersion length of 5 cm
 - no plant uptake
 - degradation and sorption uniform with depth
 - numerical compartments of 2 mm
 - single pesticide application of 1 kg/ha
- results shown for following pesticide properties
 - degradation rate based on *DegT50* = 200 d
 - Freundlich isotherm parameters: $K_F = 3 \text{ L/kg}$ and N = 0.9
- calculations for range of other pesticide properties show qualitatively always same result

11 profiles of concentration in soil system for times increasing from 100 to 9000 d

concentration axis from 10^o to 10⁻²⁰ mg/L to demonstrate principle

average penetration depth:

50% above and 50% below this depth

Average penetration depth (mm)

- so pulse in Freundlich-SFO leaching system with constant properties has finite penetration depth
 - beyond which no pesticide molecule will ever pass
- this causes probably the drastic drop in FOCUS leaching concentration when N decreases

- finite penetration depth, so speed of pulse goes to zero
- this speed is proportional to fraction of pesticide in liquid phase
 - only molecules in liquid phase move
- so let us examine fraction of pesticide in liquid phase for total mass of pesticide present in this leaching system

 exponential decrease similar to closed system

$$f_{liq} = f_{liq,0} \exp\left(-k t \left(\frac{1-N}{N}\right)\right)$$

k and N are know but f_{liq,0} unknown so f_{liq,0} estimated from start of linear phase

Fraction in liquid phase in soil profile (-)

$$f_{liq} = f_{liq,0} \exp\left(-k t\left(\frac{1-N}{N}\right)\right)$$

- fraction in liquid phase in soil profile decreases at about same speed as in closed system
 - after an initial phase with a more rapid decline
 - exponentially decreasing fraction in liquid phase gives exponentially decreasing speed of the pulse
- therefore a pulse has a finite penetration depth in a Freundlich-SFO soil system

Outline

Limited penetration depth in soil system with Freundlich sorption and first-order degradation

- Introduction
- Behaviour of closed Freundlich-SFO system
- Leaching in uniform soil system
- Evidence for Freundlich-SFO behaviour
- Conclusions

Evidence for validity of Freundlich-SFO concept

- finite penetration depth after infinite time counterintuitive
- sound underpinning needed of this cornerstone of EU leaching assessment
- Freundlich-SFO has historical roots in pesticide world
 - hundreds of measurements of degradation rate measured by extraction with solvent from 100% to some 5% show nice SFO behaviour
- problem: for simulating leaching at 0.1-ppb level the models have to extrapolate orders of magnitude below this 5%

Evidence for validity of Freundlich-SFO concept

- H₀: hypothesis Freundlich-SFO: degradation rate proportional to concentration in total soil
 - for most substances equivalent to: rate proportional to amount sorbed
- H_a: alternative hypothesis: degradation rate proportional to concentration in liquid phase
 - my perception: main-stream microbiological thinking since about 1985
 - considerable amount of indirect evidence (e.g. paraquat behaviour)
 - very large consequences for leaching assessment
 - Beltman et al. (2008) Water Resour. Res. 44, W05417

Evidence for validity of Freundlich-SFO concept

- degradation rate measurements needed that can distinguish between H₀ and H_a
 - not easy, but doable: e.g. study substances with low *N* values that show very rapid microbial degradation
- to best of my knowledge, no measurements are available that support preference of H₀ over H_a
 - but I am happy to be proven wrong

- leaching of pesticide pulse in uniform Freundlich-SFO soil system results in limited penetration depth
 - which decreases with increasing curvature of isotherm

 this is caused by exponentially decreasing fraction in liquid phase

 this exponentially decreasing fraction is caused by Freundlich-SFO assumption that degradation rate is proportional to total amount in soil instead of amount in liquid phase

- experimental tests of this Freundlich-SFO degradation rate concept required because
 - above results are counterintuitive
 - indirect evidence in favour of alternative concept

Thank you for your attention !

