

A comprehensive and continuous pesticide screening during one growing season in five small Swiss streams

Eawag: Rahel Comte, Simon Mangold, Heinz Singer, Simon Spycher, Christian Stamm

Oekotoxzentrum: Marion Junghans, Miriam Langer

FOEN: Manuel Kunz

Cantons: BE, BL, TG, TI, VS

VSA: Tobias Doppler, Irene Wittmer

Getting closer to exposure relevant for aquatic organisms in small streams

Location of 5 Small Streams

Sample Selection on the Example of the Weierbach

High Concentration Peaks, High Variance

Comprehensive View on Eschelisbach

Environmental Quality Standards (EQS)

- Acute and Chronic EQS based on exotoxicological data
- Chronic EQS compared to 14 d time weighted averages (twa)
- acute EQS to measured concentrations
- $RQ = \frac{C}{EQS}$ $RQ > 1 \rightarrow$ Risk for sensitive organisms
- **32** different PPP exceeding EQS (from a total of 128 detected compounds)

Comparison with Quality Standards

of half-days with single substance concentrations > **acute** and chronic QS

	Mooskanal		Weierbach		Eschelis-bach		Canale P. di M.		Tsatonire	
	Ac.	Chr.	Ac.	Chr.	Ac.	Chr.	Ac.	Chr.	Ac.	Chr.
Herbicide	0	140	64	868	7	112	0	28	134	420
Fungicide	0	0	35	168	25	140	0	0	17	56
Insecticide	19	84	39	476	61	504	0	0	2	168
% of time ≥ 1 exceedances	6	43	24	92	22	92	0	10	41	86

- Acute EQS-exceedances not only due to higher time resolution, because with 14-d time weighted averages 8 a.s. > acute QS

Risks for Different Groups of Organisms

Classification of substances by primarily affected group of organisms
(i.e., trophic level)

For each sample RQs are summed according to the classification

Eschelisbach: Active ingredients with RQ > 0.1

Different Perspectives: Active ingredient (< 1% of measurements with exceedance)
vs.
stream (92% of time with elevated risk)

"Historic" View (2005-2012)

Scenarios for Acute Risk Quotients

All active ingredients (89 compounds)

Same but with 2-week composite samples

Historic view (28 most frequently measured) with 2 –week composite samples

WFD with 2-week composite samples (3 PPP detected)

Substance Selection by Guideline for diffuse sources (38 a.s.)

Wittmer, Stamm, Singer, Junghans 2014: Beurteilungskonzept für Mikroverunreinigungen aus diffusen Einträgen

Relevance for Swiss River Network

Conclusion

- Large variety of a.s. and high concentration peaks in small streams
- Chronic EQS exceeded in all examined streams, in some cases almost during entire monitoring campaign. Considerable variability among streams
- The pollution we «see» depends on the choice of substance AND the sampling strategy
- A suited monitoring strategy can provide ecotoxicologically relevant information and help to reduce the variability of PPP-monitoring data

Acknowledgements

Special thanks to all colleagues from cantonal authorities and Federal Office of the Environment for funding.

Photograph: Kim Jae-Sun

Thank you for your attention!

Additional Slides

Small vs. medium sized streams

Number of active ingredients required to cover 90% of sum of concentrations

- NAWA Spez 2015: ≈ 10 a.i
- NAWA Spez 2012: ≈ 15 a.s.
- RÜS ?

High Concentration Peaks, High Variance

Occasionally Elevated Concentrations without Rain Event

