

Significance of soil algal and cyanobacterial communities, as a model for the pesticide risk assessment.

Crouzet O., Consentino L., Mallet C., Maron P-A., Berard A.

Pesticide Behaviour in Soils, Water and Air – York 2017

INTRODUCTION

Pesticides in the environment

Environmental pesticide contamination and ecological awareness

- ♥ Very high and diverse compounds (fungicides, herbicides, insecticides, etc...)
- Semanence and transfer => local and diffuse environmental contamination
- Side-effects on biodiversity => ecosystem functioning

European and national frameworks to decrease the environmental risk

- PAN Europe => Strategy on the sustainable use of pesticides ; (EC) No 1107/2009
- Ecophyto French project (2010 2018)
- ✤ Develop innovative farming practices & alternative pest management strategies
- Secure and prevent the risks (renewal of approval of many products)

Umprove Risk Assessment processes	- Relevant exposure routes (EFSA, 2016) - Effects on biodiversity & functions (EESA, 2016)
(Regulatory & legislative policies)	- Recovery Time (EFSA, 2017)

INTRODUCTION

Significance of microbial processes for environmental quality

SERVICES

- Nutrient recycling
 - Soil buffering
 - C storage

- ...

Photosynthetic microorganisms in agricultural soils

What can we expect and learn from soil algae and cyanobacetria, as indicators of herbicide impacts on soil functioning ?

Photosynthetic microorganisms in agricultural soils

Why soil photosynthetic microorganisms ?

- ♥ Various metabolic pathways could be disrupt by herbicides
- ✤ First soil microbial interface receiving pesticides
- ✤ Many knowledges from aquatic systems on direct and indirect impacts

→ Impacted at low herbicide concentrations

(Crouzet et al., 2013, in revision Bérard et al. 2004; Joly et al., 2015)

0

Algal & cyanobacterial biofilms

Expected as very

sensitives

Photosynthetic microorganisms in agricultural soils

Why soil photosynthetic microorganisms ?

- ♥ Various metabolic pathways could be disrupt by herbicides
- ♥ First soil microbial interface receiving pesticides
- ✤ Many knowledges from aquatic systems on direct and indirect impacts

➔ Impacted at low herbicide concentrations

(Crouzet et al., 2013, in revision Bérard et al. 2004; Joly et al., 2015)

An unrecognized abundance and diversity of soil algae and cyanobacteria

- ✤ present in all temperate agricultural soils
- ✤ numerous trophic strategies

(Metting, 1981; Pipe & Schubert, 1984; Hoffman, 1989; Bérard et al., 2005; Zancan et al., 2006; Reisser, 2007 ; Davis et al., 2013)

Diatoms, chlorophyceae, xanthophyceae, eustigmatophyceae, etc... (Eukaryotic algae)

Photosynthetic microorganisms in agricultural soils

Why soil photosynthetic microorganisms ?

- ♥ Various metabolic pathways could be disrupt by herbicides
- ♥ First soil microbial interface receiving pesticides
- ✤ Many knowledges from aquatic systems on direct and indirect impacts

➔ Impacted at low herbicide concentrations

(Crouzet et al., 2013, in revision Bérard et al. 2004; Joly et al., 2015)

(Metting, 1981; Pipe & Schubert, 1984; Hoffman, 1989; Bérard et al., 2005; Zancan et al., 2006; Reisser, 2007 ;

Davis et al., 2013)

An unrecognized abundance and diversity of soil algae and cyanobacteria

- ♥ present in all temperate agricultural soils
- ✤ numerous trophic strategies

Influence on soil processes

- Soil surface aggregate stability (Bailey et al. 1973; De Caire et al. 1997; Crouzet et al., in revision)
- S − 10 % of microbial production and C storage (Shimmel and Darley 1985; Reisser 2007)
- ♦ N₂ fixation by cyanobacteria (Wegener et al. 1985; Pardo et al. 2009)

Current issues & Objectives

Methods & descriptors to study soil microbial photosynthetic microorganisms.
Suitable bioassay for soil algae -> field sampling strategies
Biochemical and genetic descriptors for structural endpoints
Development of functional approaches (e.g. photosynthetic activity)

Effects of herbicides at soil algal and cyanobacterial communities ?
Identifying suitable indicators of exposure or impact of herbicide :
biochemical / molecular taxonomic signatures
herbicide community tolerance acquisition (PICT)

To what extent herbicide-related communities shifts could induce changes in their functions (soil aggregation, C fluxes) ?

Field experiments (long-term and low dose effects)

Comparative approach of Long-term cropping systems (loamy soil, Versailles)

<u>Winter wheat,</u> Alfalfa, pea

No amendment mechanical weed control,

 \neq chemical inputs (pesticides, fertilizers), and some \neq in rotation and soil tillage

<u>Winter wheat</u>, rapeseed, pea Fertlizers (N, P, K),

rei (112ers (11, P, K),

Pesticides (herbicides, fungicides, insecticides)

Biomass & Abundances of algae & cyanobacetria : CONV vs. ORG

→ Higher microbial photosynthetic biomass in conventional cropping system

- Fertilizers -> favour the growth of algae and cyanobacteria in CONV soils
- Higher frequency of soil tillage for weeding, limit their growth in ORG soils

➔ No evidence of sulfonyl-urea herbicide effect (single event) on these endpoints.

Community structure and Diversity : CONV vs. ORG

→ All photosynthetic microorganisms -> 23S rDNA plastidial

Temporal shift of the genetic structure of soil photosynthetic microorganisms

Community structure and Diversity : CONV vs. ORG

→ All photosynthetic microorganisms -> 23S rDNA plastidial

 \Rightarrow Strong differences at the middle spring (after herbicide treatments) :

- -Higher diversity and Eveness indices (H' and E) in soils from Conventional system
- -Cyanobacteria dominated in soils from Organic system

Community structure and Diversity : CONV vs. ORG

→ Focus on cyanobacterial community -> 16S rDNA

\Rightarrow What is different in cyanobacetrial communities ?

Higher diversity index (H') and Eveness in soils from Organic system

Microcoleus and Nostoc dominated soils from Conventional system

Pesticide Behaviour in Soils, Water and Air – York 2017

Pollution Community Tolerance acquisition (PICT assay).

✓ Specificity towards a contaminant (or a mode of action)

✓ Robustness to confounding factors

Lab microcosm experiments

Functional significance for aggregate stability in cropped soils:

✓ Indigenous soil algae and cyanobacteria influence soil aggregate stability

Does herbicide disturb functional roles of soil algae and cyanobacteria ?

Lab microcosm experiments

Functional significance for aggregate stability in cropped soils:

Structural stability of soil aggregates

Light

Conclusion & Perspectives

Indicators of herbicide impact

- Soil algae and cyanobacteria appear as more sensitive to herbicides than other microbial communities, in agricultural soils (Crouzet et al., 2010; 2013; Joly et al., 2015)
 - \Rightarrow NOEC and LOEC detected at herbicide doses lower than agricultural application rates
- **Proof of concept of an "in-soil" herbicide PICT assay** (Crouzet et al, in prep)
- Advances in genetic diversity analysis of algae and cyanobacteria in agricultural soils (Bérard et al., 2005; Davies et al., 2013;

rard et al., 2005; Davies et al., 2013; Crouzet et al, in prep)

Further insights into the community ecotoxicology

C Greater investigations on responses of algal and cyanobacterial diversity to herbicides:

Acquiring dataset across different field experiments, in order to hierarchize environmental and agricultural driving factors to highlight taxonomic signatures at the community level in relation with herbicide gradients.

Functional trait approach on algae and cyanobacteria

Thanks to technical staff and students:

Christelle M., Jean-Pierre P.,

Virginie N., & Maeva V.

And INRA Experimental Farm Unit

Thanks for your Attention

Acknowledgments to the INRA division of Plant Health & Environment for fundings of the project COMIPHO

