

Sensitivity of pesticide biodegradation kinetics to depletion of soil microbial species richness

Irene Bramke, Jessica Princivalle, Liz J Shaw

Soil Biodiversity

- The relationship between **biodiversity** and **ecosystem function** (BEF) has been studied for a number of decades, originally focussing on macro-organisms and above-ground communities
- BEF relationships *in soil* have come into focus as the extreme microbial diversity of soils became accessible (microbial fingerprinting, NGS, 'omics)
 - higher biodiversity found to confer a benefit to some functions (e.g. nitrification, denitrification, methane oxidation)
 - broad-scale functional parameters (e.g. SIR) can increase as biodiversity decreases
 - functional redundancy vs the ecological role of the rare biosphere

- BEF relationships
- A sensitive to loss of biodiversity
- B functional redundancy
- C idiosyncratic response

Pesticide degradation in laboratory studies

- Half-lives of degradation of 10 pesticides in 9 different soils (coloured bars, triplicate DT50s per soil)
- The coefficient of variation of the mean DT50 across these 9 soils is shown to indicate the range within which soil half lives vary
- Much but not all of this variability can be attributed to the physical and chemical characteristics of the soil

→ between-soil variability is compound specific and may also be determined by their BEF

Data source: Kah, Melanie, Sabine Beulke, and Colin D. Brown. "Factors influencing degradation of pesticides in soil." *Journal of agricultural and food chemistry* 55.11 (2007): 4487-4492.

Rationale

- Test soils in degradation studies have altered microbial communities
 - soil processing affects microbial community structure and diversity
 - small soil volumes in standard lab conditions can become nutrient limited
 - this in turn affects microbial communities over time
- Lab studies may not be suitable to inform sufficiently on the true persistence range of some compounds
- New CPP development effort is ideally invested in candidates showing robust and consistent degradation (in lab and field)
- CPPs with predictable degradation in most soils allow greater precision of exposure estimates ... and more robust risk assessments

Hypotheses

- Pesticide biodegradation function depends on the phylogenetic (and therefore metabolic) microbial diversity of the soil
- There may be a lack of redundancy for the degradation function of some pesticides ('specialist degraders' - high dependency - high variability of degradation)

Aims

- Construct series of test soils that encompass a microbial biodiversity gradient
- Investigate if any parameters of pesticide biodegradation function are sensitive to reduction in soil microbial biodiversity

Construction of test soils of reduced biodiversity

- An initial round of experiments was conducted to optimise a dilution/inoculation methodology (adapted from Wertz et al.) for large soil volumes
- Serially diluted microbial soil suspensions of a **fresh soil**; 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} , and 10^{-10}
- Inoculated into **sterilised** soil (gamma irradiation plus three rounds of autoclaving)
- 20 weeks equilibration was sufficient to allow re-colonisation and to establish equivalent levels of bioactivity (SIR, enzyme assays and qPCR)
- MySeq Amplicon sequencing confirmed a successive reduction of microbial diversity was achieved

Construction of a microbial diversity gradient

Degradation studies using soils of decreasing microbial diversity

Azoxystrobin

Bicyclopyrone

Terbutylazine

2,4-D

- Soils are solvent extracted and extracts analysed by
 - LSC to quantify extractable ^{14}C residue (parent + transformation products)
 - HPLC with radiodetection to quantify % of parent remaining
- Analysis of trapped $^{14}\text{CO}_2$ and post-extraction solids = non-extractable residue
- Obtain a full mass balance

Azoxystrobin

	k	DT_{50} [days]
Fresh	0.009	77
10^{-2}	0.001	464
10^{-4}	0.001	542
10^{-6}	0.001	649
10^{-8}	0.001	417
10^{-10}	0.001	1191
γ -irradiated	<0.001	> 10 years

- The reported range of $DT_{50,lab}$ of 35.2-248 days *
- In our study, the DT_{50} in fresh soil was 77 days
- Soil photolysis contributes to AZ degradation in the field - some of the $DT_{50,field}$ range can be attributed to the influence of light
- For field trials with incorporation a $DT_{50,field}$ range of 121-262 days remains
- All parameters of AZ degradation function (DT_{50} , k and %parent remaining) show some impairment compared to the fresh control for all dilutions
- This indicates high dependency on biodiversity

* European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin. EFSA Journal 2010;8(4):15421542. [110 pp.]. doi:[10.2903/j.efsa.2010.1542](https://doi.org/10.2903/j.efsa.2010.1542).

Terbutylazine

	k	DT ₅₀ [days]
Fresh	0.01	75
10 ⁻²	0.01	77
10 ⁻⁴	0.01	115
10 ⁻⁶	0.01	101
10 ⁻⁸	0.001	166
10 ⁻¹⁰	0.01	104
gamma-irradiated	<0.001	> 10 years

- DT50 ranges in lab (DT₅₀_{lab} 65 - 167 days) and field (DT₅₀_{field} 10 - 148 days)* overlap well
- In our study, the DT50 in fresh soil was 75 days
- In the 10⁻² soil, which retained less than half of the estimated OTU richness of the fresh soil, TBZ degradation was preserved according to all three parameters of degradation function (DT50, k and %parent remaining)
- The 10⁻¹⁰ soil degraded nearly 20% more parent than the 10⁻⁶ and 10⁻⁸ ...dependency on community composition?

2,4-D kinetics

	k	DT ₅₀ [days]
Fresh	0.227	3
10^{-2}	0.092	7
10^{-4}	0.085	8
10^{-6}	0.052	13
10^{-8}	0.008	87
10^{-10}	0.004	188
γ -irradiated	0.003	238

- The reported lab DT₅₀ range (DT₅₀_{lab} 1.2 – 94.6 days) is much wider than that in the field (DT₅₀_{field} 22 - 38 days) *
- In our study, the DT₅₀ in fresh soil was 3 days
- Degradation function was maintained down to the 10^{-6} soil (according to DT₅₀, k, %parent remaining AND formation of ¹⁴CO₂)
- Mineralisation of 2,4-D was more comprehensive in the 10^{-2} and 10^{-4} soils compared to the fresh

Abundance of 2,4-D degraders by MPN

- Most Probable Number (MPN) experiment
- Cell-based assay, estimates the number of degraders present in a soil
- A reduction in 2,4-D degraders, coherent with the overall diversity erosion, was observed
- Degrader numbers were below the level of detection in the 10^{-8} , 10^{-10} and gamma irradiated soils
- The 10^{-6} soil contained an estimated ~1400 degraders ... and still achieved near complete removal of extractable 2,4-D

Cochran, W. G. (1950). *Estimation of bacterial densities by means of the "most probable number"*. *Biometrics*, 6, 105-16.

11 Alexander, Martin. "Most probable number method for microbial populations."

Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties methods of soil analysis (1982): 815-820

- Extracted Parent
- Extracted Other
- Evolved CO₂
- PES

Fresh

Biodiversity depletion affects distribution of 2,4-D residues

What B-EF relationships did we see?

(%parent degraded as parameter of degradation function)

Conclusions

- Hypothetical biodiversity-function relationship types postulated for other systems exist also for hyper-complex soil communities
- The degree of sensitivity to microbial depletion is compound specific
- Functional redundancy for the degradation of some pesticides may be limited
- The approach used here may offer utility in CPP R&D;
 - identify and focus on candidate compounds where degradation function is resistant to microbial depletion

Acknowledgements

- University of Reading

Jessica Princivalle

Liz Shaw, Chris Collins

Richard Skeffington, Antia Villada, Kim Carter, Geoff Warren

- Syngenta

Sam Marshall, Kevin Thomas

- Rothamsted Research

Ian Clark

