Atmospheric Heterogeneous Reactivity Of Pesticides:
Parameters Influencing the Degradation Kinetics

Coraline Mattei

Etienne Quivet – Henri Wortham
Heterogeneous degradation
Heterogeneous degradation

Degradation by

\[\text{O}_3 \cdot \text{OH} \quad \text{NO}_3 \cdot \quad \text{hv} \]

\(\text{O}_3 \) formed mainly by photolysis of \(\text{O}_2, \text{NOx}, \text{VOCs} \)

\(\approx 10^{12} \text{ molecule.cm}^{-3} \)

\(\approx 40 \text{ ppb} \)

\(\cdot \text{OH} \) formed mainly by photolysis of ozone

\(\approx 10^7 \text{ molecule.cm}^{-3} \) by day

Very reactive
What are ye studying?

What are the parameters influencing the **heterogeneous** degradation kinetics of pesticides by **ozone** and \(\cdot \text{OH radicals} \)?
What are ye studying?

Permethrin (i) \(K_{\text{part}} = 0.97 \)

Cyprodinil (f) \(K_{\text{part}} = 0.07 \)

Deltamethrin (i) \(K_{\text{part}} = 0.91 \)

Tetraconazole (f) \(K_{\text{part}} = 0.38 \)

Oxadiazon (h) \(K_{\text{part}} = 0.62 \)

Difenoconazole (f) \(K_{\text{part}} = 0.99 \)

Pendimethalin (h) \(K_{\text{part}} = 0.01 \)

Fipronil (i) \(K_{\text{part}} = 0.84 \)

K_{\text{part}} estimé par AEROWINTM Software V1.0 using the Junge-Pankow adsorption mode
Parameters under study

Humidity

Particle type

Hydrophilic silica R812
- Specific surface area: 255 m².g⁻¹
- 5 nm to 50 nm Agglomerates 5 μm to 25 μm
- Surface: mainly silanols

Hydrophobic silica Aerosil 255
- Specific surface area: 260 m².g⁻¹
- 5 nm to 50 nm Agglomerates 5 μm to 25 μm
- Surface: mainly siloxanes

0-80% RH
Experimental Method
Simulation of atmospheric conditions

Surface coverage: 3%

Liquid/Solid adsorption

RH: 0 – 80%

C_t/C_0

Kinetic constants

Half life

Time

Analysis: GC-MS/MS

O_3: 400 ppb

• OH: 10^7 molecule.cm^{-3}
Results
8 pesticides under study

Permethrin

Cyprodinil

Deltamethrin

Pendimethalin

Tetraconazole

Oxadiazon

Difenoconazole

Fipronil
Ozone degradation
Degradation by ozone

Pendimethalin - O₃
Hydrophilic silica

Hydrophilic silica: reactivity ↘
when humidity ↗
Degradation by ozone

Pendimethalin - O$_3$

Hydrophobic silica

Hydrophobic silica: reactivity ↓ when humidity ↑
Degradation by ozone

Pendimethalin - O$_3$

Hydrophobic silica

Reactivity faster on hydrophilic silica under 80 % RH
Degradation by ozone

Reactivity:

Low humidity > high humidity

hydrophilic silica > hydrophobic silica

Except cyprodinil
·OH radical degradation
\[\text{⋅OH radical production} \]

Production:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{H}_3\text{C} \\
\quad & \quad \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

2,3-dimethyl-2-butene

\[+ \text{O}_3 \rightarrow \text{⋅OH} + \text{products} \]

Analysis:

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\quad & \quad \\
\text{m-xylene} & \quad \text{m-xylene}
\end{align*}
\]

\[+ \text{⋅OH} \rightarrow \text{products} \]

\[\text{⋅OH} : 10^7 \text{ molecule.cm}^{-3} \]

PTR-MS
Example of pendimethalin

Degradation by \cdotOH

Relative humidity influences the kinetics

K_{OH} (cm3 molecule$^{-1}$ S$^{-1}$)

Relative humidity (%)

Hydrophobic silica
Hydrophilic silica

X3
Example of pendimethalin

Degradation by \cdotOH

Particle type influences the kinetics
Other pesticides

Degradation by •OH

Deltamethrin

Permethrin

Relative humidity and particle type influences the degradation kinetics.
Atmospheric implications

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Oxidant</th>
<th>$t_{1/2 \text{part}}$ (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprodinil</td>
<td>Ozone</td>
<td>0.4 - 91</td>
</tr>
<tr>
<td></td>
<td>·OH</td>
<td>/</td>
</tr>
<tr>
<td>Pendimethalin</td>
<td>Ozone</td>
<td>0.2 - 17</td>
</tr>
<tr>
<td></td>
<td>·OH</td>
<td>3 - 40</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>Ozone</td>
<td>4 - 35</td>
</tr>
<tr>
<td></td>
<td>·OH</td>
<td>5 - 18</td>
</tr>
<tr>
<td>Permethrin</td>
<td>Ozone</td>
<td>5 - 20</td>
</tr>
<tr>
<td></td>
<td>·OH</td>
<td>4 - 57</td>
</tr>
</tbody>
</table>

Persistent Organic Pollutant: $t_{1/2 \text{total}} \geq 2$ days

Stockholm convention, 2001
Conclusion

Ozone and ·OH radicals degradation

Degradation kinetics are influenced by:

- **Relative humidity**
 Reactivity decreases when RH increases.

- **Particle type**
 Hydrophilic > Hydrophobic.

- **Pesticide nature**

Realistic kinetic constants can hardly be estimated at 0% RH.

Follow up:

- Heterogeneous degradation by NO$_3^-$.
- Heterogeneous degradation on Arizona dust.
• Project COPP’R “Modelling of atmospheric contamination by plant protection products at the regional scale”

• Ph.D. grant