

Evaluation of a novel test design to determine uptake of chemicals by plant roots

Experiences with uptake testing

<u>Marc Lamshoeft</u>⁽¹⁾, Zhenglei Gao ⁽¹⁾, Herbert Resseler ⁽²⁾, Carola Schriever ⁽³⁾, Robin Sur ⁽¹⁾, Paul Sweeney ⁽²⁾, Sarah Webb ⁽²⁾, Birgit Zillgens ⁽⁴⁾, Marco U. Reitz ⁽⁵⁾

(1) Bayer AG, (2) Syngenta, (3) BASF SE, (4) DuPont GmbH, (5) Industrieverband Agrar e.V., Frankfurt/Main, Germany

ECPA/IVA Working Group "Plant Uptake Factor", Presentation at Conference on Pesticide Behaviour, York, UK, Sep. 2017

Outline

- Introduction
- Study design
- **Results from ring test with 1,2,4-triazole in wheat**
- Uptake studies with various crops/compounds combinations
- **Comparison with former studies**
- Summary and outlook

Intro: Purpose of testing a new design?

- Increased reproducibility of uptake measurements
- **Determination of translocation from (soil) solution into the plant**
- **D** Formula to derive input parameter for e-fate models (leaching)
- Proposal to regulatory authorities
- Way forward to more robust regulatory decision making ?

Introduction Plant Uptake of chemicals

After entering the plant via the root hairs, a chemical can follow: Apoplastic pathway via the cell walls Symplastic pathway via the plasmodesma Transcellular pathway from vacuole to vacuole

5

Introduction Uptake Factors

Uptake in environmental fate models

- Decreases mass of chemical in soil available for leaching
- Mass removed from soil depends on
 - concentration in the liquid phase
 - transpiration
 - potential of a compound to be taken up via plant roots
- Potential for uptake via root is described by a single parameter, PUF** or TSCF*, that describes the ratio of concentrations of a chemical in different compartments.

TSCF: * Transpiration Stream Concentration Factor PUF: **Plant Uptake Factor RCF: Root Concentration Factor K_{ом}: Distribution Coefficient Soil Organic Matter and Porewater

Introduction Calculation of Uptake Factors

 m_{sol-2} : mass of test chemical in solution at the end of the equilibration phase (Day 2) [µg] m_{sol-8} : mass of test chemical in solution at the end of the experiment (Day 8) [µg] V_{sol-0} : volume of nutrient solution at the start of the equilibration phase (Day 0), after removal of aliquot L] V_{sol-2} : volume of nutrient solution at the end of the equilibration phase (Day 2), after removal of aliquot [L] V_{sol-8} : volume of nutrient solution at the end of the experiment (Day 8), after removal of aliquot [L] V_{sol-8} : wolume of nutrient solution at the end of the experiment (Day 8), after removal of aliquot [L] m_{shoots} : mass of test chemical in shoots (Day 8) [µg]

Plant uptake: study design

Results from ring test with 1,2,4-triazole in wheat

*Lab #1 and #3 failed to sample at Day 2 and therefore PUF values could not be calculated.

Application of quality criterion "biomass" to PUF and TSCF values

(1,2,4-triazole in wheat)

	Mean	Confidence
		Interval (95%)
PUF		
PUF (n=39) without quality check	0.73	(0.64 - 0.82)
PUF (n=33) with quality check "biomass"	<u>0.65</u>	(0.57 - 0.73)
(biomass factor >= 1.739 OR		
biomass factor < 1.739 and initial biomass > 1.55)		
TSCF		
TSCF (n=49) without quality check	1.03	(0.76 - 1.3)
TSCF (n=39) with quality check "biomass"	<u>0.64</u>	(0.58 - 0.70)
(only replicates with biomass increase of > 0.67 g over 8 d)		

Conclusion: PUF≈TSCF, narrow confidence interval

Plant uptake: study design

Suitable for other substances and crops? Review of 14 data sets

- 11 compounds \rightarrow broad range of different chemical classes
 - log K_{ow}: -1.5 up to 2
 - molecular mass: 69 up to 563 g/mol
 - Three ionic compounds: A (pka 0.23), H (pka 3.58) and G (pka 4.06)
- 3 plant species
- Compound-crop combinations

Uptake studies with various crops/compounds combinations

- □ Uptake is correlated with transpiration (mol. weight ≤ 363 g/mol)
- Uptake decreases when mol. weight > 394 g/mol

Uptake studies with various crops/compounds combinations

If plants are comparable (size, growth, transpiration), then species per se does not play a major role.

Summary of study results

Sub-		MW ⁽¹⁾	Log	PUF	Confidence	TSCF	Confidence	Radioactive	WUE
stance	Plant	[g/mol]	Kow	(± SD)	Interval (95%)	(± SD)	Interval (95%)	recovery [%]	[g/L]
Suc	cessful	ap <u>p</u> lica	ti <u>on</u> t	₯₿₽₫₿ .ჳ ϳ Ϙ	ni@and.jon	i <u>e comp</u> c	und 86, 0.74)	95.8	97.3
Rec		atesan	d <u>r</u> ądi	<u>q-ch</u> emi	calo <u>purity</u> v	vere high	in the prese	ent studies	30.5
sug	gesting	thantsch	emica	al.loss.pr	odesses)(e.	go.szobatsili	sationand r	neta bo lism	63.4
did	not aff	oct ⁶⁹ SCI	$= \frac{-0.58}{2}$	0.64 ± 0.19	(0.57,0.71)	0.67 ± 0.18	(0.61, 0.73)	98.0	35.9
E	wheat		-0.13	0.69±0.16	(0.51,0.87)	0.69 ± 0.06	(0.64,0.73)	99.7	54.9
∎ FWl	JEvcoentf	irmæd g	0-0.01 p	olanst gro	wth\$health	0.28 ± 0.05	(0.24, 0.32)	97.5	31.6
■ ^c Sm		$r = dt^7 col$	nf ⁰ d&r	$h^{2}b^{5}$ $h^{1}h^{2}r$	valle55h75hv 1	Ha ⁷ rthhis	tnole3421A	96.4	14.9
Н	wheat	369	-1.54	0.31 ± 0.07	(0.25,0.37)	0.2 ± 0.02	(0.18,0.22)	98.3	30.9
rel	ability	of the s	tudy (design04	(0.77,0.84)	0.78 ± 0.04	(0.74,0.82)	96.2	54.9
■ Pre	citemates	CF ¹ dete	rnh9ha	af4∂1πh 9℃β r	anges, fragm	0.01+-0.31	(0.28,0.34)	99.9	51.6
G	tomato	217	-0.18	0.60 ± 0.07	(0.55,0.67)	0.33 ± 0.02	(0.31,0.35)	96.1	35.3
l I	tomato	394	0.60	0.13 ± 0.01	(0.12,0.14)	0.04± 0.00	(0.03,0.05)	96.5	47.0
J	tomato	549	-1.10	0.02 ± 0.03	(0.0,0.04)	0.01 ± 0.00	(0.00,0.01)	109.1	37.0
К	tomato	563	-0.75	0.09 ± 0.04	(0.05,0.13)	0.01 ± 0.00	(0.01,0.01)	95.7	40.5

Comparison of TSCF values from different studies

- High uptake of polar compounds with masses of less than 200 g/mol
- Negligible uptake of compounds with masses of greater than 394 g/mol

Conclusion on TSCF predictability

Compounds with log K_{ow} -2 to 2

- Briggs curve showed parallelism with always lower TSCF values
- Dettenmaier: overestimation of TSCF (for small highly water soluble polar chemicals)?

Industrieverband

How could the new test design be used?

- Qualitative indication of plant uptake → PUF/TSCF > 0
- Tier 0: ZERO !
- Tier 1: TSCF according to Briggs et al. 1982: Reasons: EFSA 2013, FOCUS 2000; Lamshöft 2017 (in prep.,)
- Tier 2: Experimental TSCF:

[Reason: EFSA 2013]

Proposal from ECPA/IVA:

a: average value from test with surrogate plants (wheat and tomato) or

b: average value from tests with selected crops (e.g. herbicides)

Summary and outlook Test design to determine plant uptake

- What it is for
 - Environmental fate modelling
 - Measure variables to calculate PUF and TSCF
- Experiences so far
 - Checked for applicability, intra-/inter-laboratory variability (round robin test 2015)
 - Review of tests with different compounds using wheat, tomato and potato
- Next steps
 - \Rightarrow Implementation as an OECD guideline
 - \Rightarrow Publication in a peer-reviewed scientific journal (ongoing)

Thank You!

Acknowledgement:

Fraunhofer Institute IME, Ricerca Biosciences, Utah State University, RLP Agroscience, Smithers Viscient, Fera Science Ltd., Eurofins GmbH, Bayer AG, Syngenta AG conducted the round robin test.

Back-up slide

Coefficient of variation or confidence interval for small numbers?

TSCF	Substance 1	Substance 2	Substance 3	Substance 4
Replicate 1	0.1	0.5	0.5	1
Replicate 2	0	0.6	0.4	0.9
Replicate 3	0.1	0.5	0.5	1
Replicate 4	0.1	0.5	0.5	1
Arithmetic mean	0.08	0.53	0.48	0.98
Standard deviation	0.05	0.05	0.05	0.05
Coefficient of variation	66.67	9.52	10.53	5.13
Standard error of mean	0.03	0.03	0.03	0.03
95% confidence interval, lower limit	0.03	0.48	0.43	0.93
95% confidence interval, upper limit	0.12	0.57	0.52	1.02
95% confidence interval, range	0.10	0.10	0.10	0.10

