Evaluation of a novel test design to determine uptake of chemicals by plant roots

Experiences with uptake testing

Marc Lamshoef (1), Zhenglei Gao (1), Herbert Resseler (2), Carola Schriever (3), Robin Sur (1), Paul Sweeney (2), Sarah Webb (2), Birgit Zillgens (4), Marco U. Reitz (5)

(1) Bayer AG, (2) Syngenta, (3) BASF SE, (4) DuPont GmbH, (5) Industrieverband Agrar e.V., Frankfurt/Main, Germany

Outline

- Introduction
- Study design
- Results from ring test with 1,2,4-triazole in wheat
- Uptake studies with various crops/compounds combinations
- Comparison with former studies
- Summary and outlook
Intro: Purpose of testing a new design?

- Increased reproducibility of uptake measurements
- Determination of translocation from (soil) solution into the plant
- Formula to derive input parameter for e-fate models (leaching)
- Proposal to regulatory authorities
- Way forward to more robust regulatory decision making?
Introduction
Plant Uptake of chemicals

After entering the plant via the root hairs, a chemical can follow:
Apoplastic pathway via the cell walls
Symplastic pathway via the plasmodesma
Transcellular pathway from vacuole to vacuole
Uptake in environmental fate models

- Decreases mass of chemical in soil available for leaching
- Mass removed from soil depends on:
 - concentration in the liquid phase
 - transpiration
 - potential of a compound to be taken up via plant roots
- Potential for uptake via root is described by a single parameter, PUF** or TSCF*, that describes the ratio of concentrations of a chemical in different compartments.

PUF: Plant Uptake Factor
TSCF: Transpiration Stream Concentration Factor
RCF: Root Concentration Factor

TSCF: Transpiration Stream Concentration Factor
RCF: Root Concentration Factor
K_{OM}: Distribution Coefficient Soil Organic Matter and Porewater
Introduction
Calculation of Uptake Factors

Uptake in aerial part (shoots)

\[
TSCF = \ln\left(1 - \frac{m_{\text{shoots}}}{m_{\text{shoots}} + m_{\text{sol-8}}}\right)
\]

\[
= \ln\left(\frac{V_{\text{sol-0}}}{V_{\text{sol-2}}}\right)
\]

Uptake in whole plant (roots & shoots)

\[
PUF = \ln\left(\frac{m_{\text{sol-8}}}{m_{\text{sol-2}}}\right)
\]

\[
= \ln\left(\frac{V_{\text{sol-8}}}{V_{\text{sol-2}}}\right)
\]

\[m_{\text{sol-2}}:\] mass of test chemical in solution at the end of the equilibration phase (Day 2) [µg]
\[m_{\text{sol-8}}:\] mass of test chemical in solution at the end of the experiment (Day 8) [µg]
\[V_{\text{sol-0}}:\] volume of nutrient solution at the start of the equilibration phase (Day 0), after removal of aliquot L
\[V_{\text{sol-2}}:\] volume of nutrient solution at the end of the equilibration phase (Day 2), after removal of aliquot L
\[V_{\text{sol-8}}:\] volume of nutrient solution at the end of the experiment (Day 8), after removal of aliquot L
\[m_{\text{shoots}}:\] mass of test chemical in shoots (Day 8) [µg]
Plant uptake: study design

Use of radioactivity enables the detection of total translocated amount

Test solution: volume, mass test item, pH, O₂

Test item (¹⁴C) application

Plant material: ¹⁴C - mass balance (shoots, roots, root wash), biomass

Day 0

Day 2 (t₀)

Day 4 (t₁)

Day 8 (t_ end)

Experimental phase

Cultivation

Pre-conditioning (10 days)

Equilibration

Experiment

Substrate

Perlite

Nutrient solution

Nutrient solution + test item

Application and sampling

BBCH 12

BBCH ~ 21

Day 2

Day 4

Day 8

Application and sampling
Results from ring test with 1,2,4-triazole in wheat

Lab #1 and #3 failed to sample at Day 2 and therefore PUF values could not be calculated.
Application of quality criterion “biomass” to PUF and TSCF values (1,2,4-triazole in wheat)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Confidence Interval (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUF (n=39) without quality check</td>
<td>0.73</td>
<td>(0.64 - 0.82)</td>
</tr>
<tr>
<td>PUF (n=33) with quality check “biomass”</td>
<td>0.65</td>
<td>(0.57 - 0.73)</td>
</tr>
<tr>
<td>(biomass factor >= 1.739 OR biomass factor < 1.739 and initial biomass > 1.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSCF (n=49) without quality check</td>
<td>1.03</td>
<td>(0.76 - 1.3)</td>
</tr>
<tr>
<td>TSCF (n=39) with quality check “biomass”</td>
<td>0.64</td>
<td>(0.58 - 0.70)</td>
</tr>
<tr>
<td>(only replicates with biomass increase of > 0.67 g over 8 d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: PUF≈TSCF, narrow confidence interval
Suitable for other substances and crops?
Review of 14 data sets

- 11 compounds → broad range of different chemical classes
 - log K_{ow}: -1.5 up to 2
 - molecular mass: 69 up to 563 g/mol
 - Three ionic compounds: A (pka 0.23), H (pka 3.58) and G (pka 4.06)
- 3 plant species
- Compound-crop combinations

<table>
<thead>
<tr>
<th>Substance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* 1,2,4-Triazole, round robin test
XV Symp. PC, Piacenza 2015
A to H: mol. weight <370 g/mol
I to K: mol. weight >393 g/mol
Uptake studies with various crops/compounds combinations

- Uptake is correlated with transpiration (mol. weight ≤ 363 g/mol)
- Uptake decreases when mol. weight > 394 g/mol
Hypothesis:
If plants are comparable (size, growth, transpiration), then species per se does not play a major role.
Summary of study results

<table>
<thead>
<tr>
<th>Substance</th>
<th>Plant</th>
<th>MW<sup>(1)</sup> [g/mol]</th>
<th>Log Kow</th>
<th>PUF (± SD)</th>
<th>Confidence Interval (95%)</th>
<th>TSCF (± SD)</th>
<th>Confidence Interval (95%)</th>
<th>Radioactive recovery [%]</th>
<th>WUE [g/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>potato</td>
<td>114</td>
<td>0.56</td>
<td>0.57 ± 0.20</td>
<td>(0.46, 0.68)</td>
<td>0.76 ± 0.15</td>
<td>(0.66, 0.74)</td>
<td>95.8</td>
<td>97.3</td>
</tr>
<tr>
<td>B</td>
<td>potato</td>
<td>169</td>
<td>1.31</td>
<td>0.68 ± 0.02</td>
<td>(0.65, 0.69)</td>
<td>0.67 ± 0.01</td>
<td>(0.65, 0.69)</td>
<td>99.8</td>
<td>30.5</td>
</tr>
<tr>
<td>C</td>
<td>wheat</td>
<td>141</td>
<td>-0.58</td>
<td>0.64 ± 0.19</td>
<td>(0.57, 0.71)</td>
<td>0.67 ± 0.18</td>
<td>(0.61, 0.73)</td>
<td>98.0</td>
<td>35.9</td>
</tr>
<tr>
<td>D</td>
<td>wheat</td>
<td>141</td>
<td>-0.13</td>
<td>0.69 ± 0.16</td>
<td>(0.51, 0.87)</td>
<td>0.69 ± 0.06</td>
<td>(0.64, 0.73)</td>
<td>99.7</td>
<td>54.9</td>
</tr>
<tr>
<td>E</td>
<td>wheat</td>
<td>217</td>
<td>-1.54</td>
<td>0.65 ± 0.12</td>
<td>(0.55, 0.75)</td>
<td>0.37 ± 0.03</td>
<td>(0.34, 0.4)</td>
<td>96.4</td>
<td>14.9</td>
</tr>
<tr>
<td>F</td>
<td>wheat</td>
<td>369</td>
<td>0.11</td>
<td>0.31 ± 0.07</td>
<td>(0.25, 0.37)</td>
<td>0.2 ± 0.02</td>
<td>(0.18, 0.22)</td>
<td>98.3</td>
<td>30.9</td>
</tr>
<tr>
<td>G</td>
<td>tomato</td>
<td>141</td>
<td>-0.18</td>
<td>0.60 ± 0.04</td>
<td>(0.55, 0.75)</td>
<td>0.33 ± 0.13</td>
<td>(0.31, 0.35)</td>
<td>99.9</td>
<td>51.6</td>
</tr>
<tr>
<td>H</td>
<td>tomato</td>
<td>217</td>
<td>0.60</td>
<td>0.60 ± 0.07</td>
<td>(0.55, 0.67)</td>
<td>0.33 ± 0.02</td>
<td>(0.31, 0.35)</td>
<td>96.1</td>
<td>35.3</td>
</tr>
<tr>
<td>I</td>
<td>tomato</td>
<td>394</td>
<td>0.10</td>
<td>0.61 ± 0.08</td>
<td>(0.63, 0.71)</td>
<td>0.31 ± 0.13</td>
<td>(0.28, 0.34)</td>
<td>99.9</td>
<td>47.0</td>
</tr>
<tr>
<td>J</td>
<td>tomato</td>
<td>549</td>
<td>-1.10</td>
<td>0.02 ± 0.03</td>
<td>(0.00, 0.04)</td>
<td>0.01 ± 0.00</td>
<td>(0.00, 0.01)</td>
<td>109.1</td>
<td>37.0</td>
</tr>
<tr>
<td>K</td>
<td>tomato</td>
<td>563</td>
<td>-0.75</td>
<td>0.09 ± 0.04</td>
<td>(0.05, 0.13)</td>
<td>0.01 ± 0.00</td>
<td>(0.01, 0.01)</td>
<td>95.7</td>
<td>40.5</td>
</tr>
</tbody>
</table>

- **Successful application to non-ionic and ionic compounds.**
- Recovery rates and radio-chemical purity were high in the present studies suggesting that chemical loss processes (e.g. volatilisation and metabolism) did not affect TSCF calculations.
- **WUE confirmed good plant growth/health.**
- Small range of confidence intervals show the robustness and reliability of the study design.
- Precise TSCF determination CI range from 0.01-0.12.
Comparison of TSCF values from different studies

- High uptake of polar compounds with masses of less than 200 g/mol
- Negligible uptake of compounds with masses of greater than 394 g/mol
Conclusion on TSCF predictability

Compounds with log K_{ow} -2 to 2
- Briggs curve showed parallelism with always lower TSCF values
- Dettenmaier: overestimation of TSCF (for small highly water soluble polar chemicals)?
How could the new test design be used?

- Qualitative indication of plant uptake ➔ PUF/TSCF > 0
- Tier 0: ZERO!
- Tier 1: TSCF according to Briggs et al. 1982:
 Reasons: EFSA 2013, FOCUS 2000; Lamshöft 2017 (in prep.,)
- Tier 2: Experimental TSCF:
 [Reason: EFSA 2013]
 Proposal from ECPA/IVA:
 a: average value from test with surrogate plants (wheat and tomato) or
 b: average value from tests with selected crops (e.g. herbicides)
Summary and outlook
Test design to determine plant uptake

- What it is for
 - Environmental fate modelling
 - Measure variables to calculate PUF and TSCF

- Experiences so far
 - Checked for applicability, intra-/inter-laboratory variability (round robin test 2015)
 - Review of tests with different compounds using wheat, tomato and potato

- Next steps
 - Implementation as an OECD guideline
 - Publication in a peer-reviewed scientific journal (ongoing)
Thank You!

Acknowledgement:
Fraunhofer Institute IME, Ricerca Biosciences, Utah State University, RLP Agroscience, Smithers Viscient, Fera Science Ltd., Eurofins GmbH, Bayer AG, Syngenta AG conducted the round robin test.
Back-up slide
Coefficient of variation or confidence interval for small numbers?

<table>
<thead>
<tr>
<th>TSCF</th>
<th>Substance 1</th>
<th>Substance 2</th>
<th>Substance 3</th>
<th>Substance 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicate 1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Replicate 2</td>
<td>0</td>
<td>0.6</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Replicate 3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Replicate 4</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>0.08</td>
<td>0.53</td>
<td>0.48</td>
<td>0.98</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>66.67</td>
<td>9.52</td>
<td>10.53</td>
<td>5.13</td>
</tr>
<tr>
<td>Standard error of mean</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>95% confidence interval, lower limit</td>
<td>0.03</td>
<td>0.48</td>
<td>0.43</td>
<td>0.93</td>
</tr>
<tr>
<td>95% confidence interval, upper limit</td>
<td>0.12</td>
<td>0.57</td>
<td>0.52</td>
<td>1.02</td>
</tr>
<tr>
<td>95% confidence interval, range</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>