Pesticide sorption in fractured clayey tills varies substantially depending on soil domain and manure addition

Albers, C.N., Ernstsen, V., Rosenbom, A.E., Johnsen, A.R.

Geological Survey of Denmark and Greenland
Danish Ministry of Energy, Utilities and Climate
Background

• The observed unexpected leaching of strongly sorbing pesticides, especially in clayey areas

• Knowledge that water transport may be fast through macropores in such soils

• Our hypothesis that sorption behaviour is different in macropores

• Our hypothesis that dissolved and colloidal material from manure may influence sorption
The pesticides

Tebuconazole
Fungicide
Hydrophobic (Log K_{ow} 3.7; 36 mg/L water)
No charge at neutral pH (pKa 5.0)

Glyphosate
Herbicide
Very hydrophilic (Log K_{ow} -3.4)
Negatively charged at neutral pH
Excavation pits

To 4.5 m at site 1

To 6 m at site 2
Eight visible soil domains

- Plough layer
- Oxidized with brown macropores
- Oxidized with grey macropores and fractures
- Oxidized with reddish fractures
- Reduced with reddish fractures
- Reduced

[Diagram showing soil domains labeled 1 to 8, with descriptions of oxidation and reduction states]
Plough layer
Oxidized with brown macropores
Oxidized with grey macropores and fractures
Oxidized with reddish fractures
Reduced
Reduced with reddish fractures

1
5
2
4
7
6
8
3
Plough layer
- Oxidized with brown macropores
- Oxidized with grey macropores and fractures
- Oxidized with reddish fractures
- Reduced with reddish fractures

Reduced
Plough layer
Oxidized with brown macropores
Oxidized with grey macropores and fractures
Oxidized with reddish fractures
Reduced
Reduced with reddish fractures
Visible differences in samples

- Plough layer
 - Oxidized with brown macropores
 - Oxidized with grey macropores and fractures
 - Oxidized with reddish fractures
- Reduced with reddish fractures
- Reduced
Soil domain characteristics

Texture, pH, TOC, TIC, different fractions of Fe, Mn and Al, surface area, CEC, exchangable cations...

Site 2:

<table>
<thead>
<tr>
<th>TOC (%)</th>
<th>pH</th>
<th>Fe-oxides (g/kg)</th>
<th>Mn-oxides (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>5.9</td>
<td>201</td>
</tr>
<tr>
<td>0.37</td>
<td>0.12</td>
<td>1.1</td>
<td>21</td>
</tr>
<tr>
<td>0.67</td>
<td>0.17</td>
<td>3.9</td>
<td>153</td>
</tr>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>6.4</td>
<td>261</td>
</tr>
<tr>
<td>0.12</td>
<td>0.37</td>
<td>12.6</td>
<td>910</td>
</tr>
<tr>
<td>0.05</td>
<td>0.37</td>
<td>7.2</td>
<td>97</td>
</tr>
<tr>
<td>0.06</td>
<td>0.05</td>
<td>8.3</td>
<td>44</td>
</tr>
<tr>
<td>0.17</td>
<td>0.37</td>
<td>8.3</td>
<td>201</td>
</tr>
</tbody>
</table>

Site 1 very similar
Tebuconazole sorption

\[C_s = K_F \times C_w^n \]

\[K_F: \]

\[n = 0.77-0.87 \]
Glyphosate sorption

Data fit poorly to the Freundlich isotherm due to high concentration dependency:

\[C_s = K_{FeX} \times C_w^n \times C_w^{-D} \]

[Sibbesen, 1981; De Jonge et al., 2001]

No single soil parameter influenced this distribution much

Also variation in \(n \) and \(D \)
Tebuconazole sorption with manure

- Less sorption as expected from hypothesis
- More sorption (reverse of hypothesis)
Glyphosate sorption with manure

Site 1, K_{Fex}

Control

0.1%

1%

10%

Generally same effect at site 2
Glyphosate sorption kinetics at low conc. (~1 µg/L)

Domains 2 and 7 show odd sorption kinetics – but not when manure is added.
Understanding the effect of pig manure

Conductivity (µS/cm)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>K_d (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>5</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>10</td>
</tr>
<tr>
<td>Manure, 0.1%</td>
<td>20</td>
</tr>
</tbody>
</table>

Divalent metal ions

- **Cu**
 - None: 4.9 mg/L
 - Manure: 7.5 mg/L

- **Zn**
 - None: 21900 mg/L
 - Manure: 4.9 mg/L

- **PO_4^{3-}**
 - None: 2648 mg/L
 - Manure: 182 mg/L

Increasing K_d - Likely candidates

Minor effect - Likely candidates

DOC

<table>
<thead>
<tr>
<th>Treatment</th>
<th>K_d (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>5</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>10</td>
</tr>
<tr>
<td>Manure, 0.1%</td>
<td>20</td>
</tr>
</tbody>
</table>

Phosphate

<table>
<thead>
<tr>
<th>Treatment</th>
<th>K_d (L/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>5</td>
</tr>
<tr>
<td>Manure, 1%</td>
<td>10</td>
</tr>
<tr>
<td>Manure, 0.1%</td>
<td>20</td>
</tr>
</tbody>
</table>
Conclusions

• Preferential flow channels differ geochemically from matrix soil

• Pesticide sorption influenced (Glyph. > Tebuc.)

• Pig manure has big influence on sorption (strength, conc. depend., kinetics) but differently in different soil domains

• In the case of glyphosate, the combined effect of DOC and phosphate

• So what is the effect on leaching (P-28, friday)?