

Pesticide sorption in fractured clayey tills varies substantially depending on soil domain and manure addition

Albers, C.N., Ernstsen, V., Rosenbom, A.E., Johnsen, A.R.

Geological Survey of Denmark and Greenland Danish Ministry of Energy, Utilities and Climate

Background

- The observed unexpected leaching of strongly sorbing pesticides, especially in clayey areas
- Knowledge that water transport may be fast through macropores in such soils
- Our hypothesis that sorption behaviour is different in macropores
- Our hypothesis that dissolved and colloidal material from manure may influence sorption

The pesticides

Tebuconazole

Fungicide Hydrophobic (Log K_{ow} 3.7; 36 mg/L water) No charge at neutral pH (pKa 5.0)

Glyphosate

Herbicide Very hydrophilic (Log K_{ow} -3.4) Negatively charged at neutral pH

$$O \longrightarrow P \longrightarrow NH_2^+ \longrightarrow O$$

G E U S www.geus.dk

Excavation pits

To 4.5 m at site 1

To 6 m at site 2

Eight visible soil domains

Plough layer

Oxidized with brown macropores

Oxidized with grey macropores and fractures

Oxidized with reddish fractures

Plough layer

Oxidized with brown macropores

Oxidized with grey macropores and fractures

Oxidized with reddish fractures

G E U S www.geus.dk

Plough layer

Oxidized with brown macropores

Oxidized with grey macropores and fractures

Oxidized with reddish fractures

G E U S www.geus.dk

Plough layer

Oxidized with brown macropores

Oxidized with grey macropores and fractures

Oxidized with reddish fractures

Visible differences in samples

Plough layer

Oxidized with brown macropores

Oxidized with grey macropores and fractures

Oxidized with reddish fractures

Soil domain characteristics

Texture, pH, TOC, TIC, different fractions of Fe, Mn and Al, surface area, CEC, exchangable cations...

Site 1 very similar

Tebuconazole sorption

n = 0.77 - 0.87

Glyphosate sorption

Data fit poorly to the Freundlich isotherm due to high concentration dependency:

$$C_s = K_{Fex} \times C_w^{n_{ex}C_w^{-D}}$$

[Sibbesen, 1981; De Jonge et al., 2001]

Also variation in *n* and *D*

No single soil parameter influenced this distribution much

Tebuconazole sorption with manure

Less sorption as expected from hypothesis

More sorption (reverse of hypothesis)

Glyphosate sorption with manure

Generally same effect at site 2

Glyphosate sorption kinetics at low conc. (~1 μg/L)

Domains 2 and 7 show odd sorption kinectics – but not when manure is added

GEUS

Understanding the effect of pig manure

	Conductivity (µS/cm)	X	Zr/mg/L)	DOC (mg/L)	PO ₄ ³⁻ (mg/L)
Pig manure	21900	4.9	7.5	2648	182
	Increasing K _d	Minor effect		Likely candidates	

Conclusions

- Preferential flow channels differ geochemically from matrix soil
- Pesticide sorption influenced (Glyph.>Tebuc.)
- Pig manure has big influence on sorption (strength, conc. depend., kinetics) but differently in different soil domains
- In the case of glyphosate, the combined effect of DOC and phosphate
- So what is the effect on leaching (P-28, friday)?