

The impacts of light and season on isopyrazam degradation in river microcosms

<u>Rebecca Southwell¹</u>, Laurence Hand², Jonty Pearson³, Gary Bending¹

¹School of Life Sciences, University of Warwick, UK ²Syngnenta, Jealott's Hill International Research Centre, UK ³Warwick School of Engineering, University of Warwick, UK

Pesticide Behaviour in Soils, Water and Air – Aug./Sept. 2017

Background

OECD testing

- Developed by the Organisation for Economic Cooperation and Development and carried out by industry
- Provide a number of tests to determine the risks of chemicals to the environment and human health
 - Test 308 specifies water and sediment are incubated in the dark

Source: ibacon.com

OECD testing

- How relevant and reproducible are the OECD tests?
- No adequate consideration of:
 - Light
 - Microbial diversity
 - Temporal variation
- Do these processes need to be taken into consideration when carrying out the OECD tests?

Experimental aims and objectives

Experimental aims and objectives

- 1. How is **isopyrazam degradation** affected by;
 - Non-UV light?
 - Temporal variation?

2. What is the role of the **microbial community** in these interactions?

- Sample water and sediment from the River Dene, Wellesbourne, UK
- Every 3 months from June 2014 to April 2016

September 2014

January 2016

- All 8 sampling points were assessed using identical methods...
- Pre-incubate the water and sediment for 9 days
 - 16 hour non-UV light cycle, 50 rpm shaker, 20 °C incubation temperature
- Two separate treatments;
 - Dark water-sediment
 - Illuminated water-sediment

- After 9 days, replace with fresh water and amend with 0.1 mg/L ¹⁴C-labelled isopyrazam
- Labelled in the pyrazole ring
- Destructive harvests in triplicate at days 9, 18, 27, and 36

Created using ChemDraw

Isopyrazam analysis

Microbial analysis

Microbial DNA extraction on;

a) water and sediment from the sample site

b) water and sediment from the **microcosms** at the **end** of the experiment

Amplification of DNA using 16S and 23S rRNA genes to amplify both bacteria and phototrophs, respectively

Results

Isopyrazam degradation between light treatment

Significantly faster degradation in illuminated systems compared to dark No difference in degradation between sampling points in the dark microcosms

Isopyrazam illuminated degradation between sampling point

Variable degradation in the illuminated treatments between sampling points

Isopyrazam illuminated degradation between sampling point

Summer and autumn 2014 significantly quicker compared to winter and spring points

Isopyrazam illuminated degradation between sampling point

Winter 2015 significantly slower compared to all other sampling points

Isopyrazam illuminated degradation between seasons

Significant difference of decline **between** different **season years**, except in summer **Temporal variation** in degradation, but **not** a seasonal effect

Isopyrazam illuminated degradation between seasons

Significant difference of decline **between** different **season years**, except in summer **Temporal variation** in degradation, but **not** a seasonal effect

Metabolite generation between light treatment

Significantly more metabolite production in illuminated systems

Illuminated metabolite generation

Variable metabolite generation in illuminated treatments between sampling points

Illuminated metabolite generation

Significantly more metabolite production in winter 2016 compared to winter 2015

Increased mineralisation in summer 2014 Increased mineralisation in winter 2015 despite slower degradation

Sample site water temperature vs. Illuminated DegT50

When ambient water temperature at the sample site is **colder**, it takes **longer** for isopyrazam to degrade by 50 %

Sample site sediment bacterial community structure

Sediment at the sample site is **not very variable** over sampling points

Illuminated microcosm sediment bacterial community

Different bacterial communities over **time** – especially **cyanobacteria** abundance - even though incubated under the **same lab conditions**

Dark microcosm sediment bacterial community

Little cyanobacteria in dark systems – bacteria present in the light aids degradation?

OTUs specific to transformation

- No specific phyla or taxa linked with higher mineralisation or degradation rate
- Further comparisons at the Operational Taxonomic Unit level

OTUs specific to mineralisation

OTUs specific to DegT50

Phyla - Cyanobacteria Family - Pseudanabaenaceae

Conclusions

- 1. How is **isopyrazam degradation** affected by;
 - Non-UV light?
 - Temporal variation?
- Little degradation in dark treatments regardless of sampling point
- Increased isopyrazam degradation with the addition of non-UV light at all times of year
- Degradation varies throughout sampling points but it is not closely linked to season – variable community metabolic potential
- Mineralisation is very variable between sampling points

Conclusions

- 2. What is the role of the **microbial community** in these interactions?
- Temporal shifts in communities at the sample site but no clear link with sampling point or isopyrazam degradation
- Bacterial community changes when incubated under non-UV light and phototrophs, e.g. cyanobacteria, can proliferate
- Although no clear links between specific bacterial or phototrophic groups and isopyrazam degradation or mineralisation, certain OTUs are more abundant when mineralisation or degradation rates are higher
- Water temperature at the time of sampling may play a role in shaping the community and ultimately what drives degradation

Acknowledgments

Long suffering river helpers

Helen Jones Emily Stoakes Chris Hale

Mark Day Martin Holdworth Harriet Moreland Mansoor Saeed

Thanks for listening Any questions?