

Modelling, monitoring and misinterpretation - the challenges of meaningful exposure assessments

Mark H. Russell
DuPont Haskell Laboratory for Health and Environmental Sciences

Pesticide Behaviour in Soils, Water and Air
27-29 March 2006
University of Warwick, UK

DuPont Crop Protection *The miracles of science*

Key steps in exposure modelling

- Selection and/or modification of appropriate model
- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data
- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data
- Calculation of model results
- Comparison with monitoring data
- Comparison with effects data to assess risk

 The miracles of science

Approaches to selection of chemical e-fate data

Sources of environmental fate data

- taken from guideline GLP studies
- guidance on kinetic evaluations
- specific endpoints calculated
 - mean / median / geometric
 - specific percentile (80-90)
 - conservative / worst-case

DU PONT
The miracles of science®

Approaches to selection of modelling results

Deterministic, with a single set of inputs

PECsoil		
Time after last application (days)	Actual PECsoil (ug/kg)	TWA PECsoil (ug/kg)
0	269.0	--
1	263.7	266.4
2	258.5	263.7
4	248.3	258.5
7	233.8	251.0
14	203.1	234.5
28	153.3	205.8
50	98.5	169.7
100	36.1	116.0

Probabilistic, with variation in one or more inputs

DU PONT
The miracles of science®

Regulatory

Key steps in exposure modelling

Fixed

- Selection and/or modification of appropriate model
- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data
- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data
- Calculation of model results
- Comparison with effects data to assess risk
- Comparison with monitoring data

The miracles of science

Regulatory

Key steps in exposure modelling

Fixed

Fixed

- Selection and/or modification of appropriate model
- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data
- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data
- Calculation of model results
- Comparison with effects data to assess risk
- Comparison with monitoring data

The miracles of science

Regulatory

Key steps in exposure modelling

Fixed

- Selection and/or modification of appropriate model

Fixed

- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data

Fixed

- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data
- Calculation of model results
- Comparison with effects data to assess risk
- Comparison with monitoring data

The miracles of science

Regulatory

Key steps in exposure modelling

Fixed

- Selection and/or modification of appropriate model

Fixed

- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data

Fixed

- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data

Fixed

- Calculation of model results
- Comparison with effects data to assess risk
- Comparison with monitoring data

The miracles of science

Regulatory

Key steps in exposure modelling

Fixed

- Selection and/or modification of appropriate model

Fixed

- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data

Fixed

- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data

Fixed

- Calculation of model results

Fixed

- Comparison with effects data to assess risk
- Comparison with monitoring data

The miracles of science

Regulatory

Key steps in exposure modelling

Fixed

- Selection and/or modification of appropriate model

Fixed

- Creation of appropriate scenario(s)
 - Geographic locations
 - Landscape, crop and water body parameters
 - Weather, soil and agronomic data

Fixed

- Compilation of chemical data
 - Environmental fate (including metabolites)
 - Application data

Fixed

- Calculation of model results

Fixed

- Comparison with effects data to assess risk

Not required

- Comparison with monitoring data

The miracles of science

Surface water monitoring data

- USGS data
- 12 drinking water reservoirs of various sizes in 12 states of USA
- 178 pesticides and degradation products
- Two years of sampling
- Weekly to quarterly sampling, with higher rate of sampling May to September

DU PONT
The miracles of science®

Comparison of USEPA Tier I (FIRST) acute surface water modelling to monitoring

Tier I modelling using FIRST is intended to be a screening evaluation of the potential to impact surface water quality

Comparison

- acute modelling results
- maximum monitoring data (from highly vulnerable reservoirs with 11 to 37 samples per year)

DU PONT
The miracles of science®

Recommendations to improve interpretation of surface water modelling

- Typically, an unknown degree of conservatism is incorporated into regulatory model simulations as a result of:
 - use of fixed input data (scenarios, e-fate, appln data)
 - reporting of selected modelling results
- To help determine the extent of conservatism, it is appropriate to:
 - determine key factors contributing to predicted concentrations - e.g. drift values, hydrology, buffer width
 - evaluate the magnitude, duration and return frequency of critical value exceedence
 - compare regulatory modelling results with available monitoring data and evaluate possible reasons for differences

The miracles of science

Analysis of key factors and exceedence frequency

- Primary issue in this case: runoff due to late spring rain events
- Exceedence appears to be a single event and can be reduced by controlling runoff
- Available monitoring data indicates occasional spring detections

The miracles of science

Higher tier developments in modelling: a groundwater example

- To support higher tier evaluations, it can be useful to express results probabilistically using distributions of key inputs such as chemical properties, time, location, etc.

Percentile	PECgw ($\mu\text{g/L}$)
0	0.04
10	0.06
20	0.06
30	0.06
40	0.07
50	0.07
60	0.07
70	0.07
80	0.08
90	0.08
100	0.11

DU PONT
The miracles of science®

Challenges in development of future surface water modelling

- Improved simulation of potential concentrations in small water bodies may require:
 - better representation of ditch, pond and stream hydrology
 - more realistic water body loading rates
 - a broader range of environmental scenarios
- Simulation of potential concentrations in surface water used as drinking water supplies may require:
 - development and use of watershed-scale models
 - evaluation of chemical use intensity within a watershed
- Finished drinking water concentrations can be impacted by:
 - mixing of source waters
 - filtration and carbon treatment
 - effects of chlorination / ozonation

DU PONT
The miracles of science®

Acknowledgments

- The coauthors of the work included in this presentation:

Scott Jackson, BASF

Paul Hendley, Syngenta

Russell Jones, Bayer

Nick Poletika, Dow

Dave Gustafson, Monsanto

- Thank you for your attention!

The miracles of science®