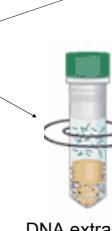
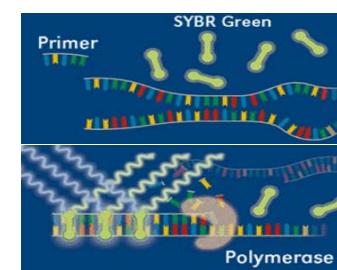
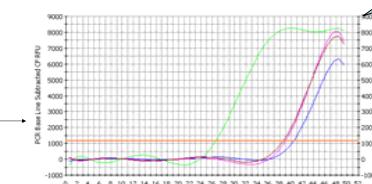

Ellinor Lindberg^{1,2}, Nina Tuxen¹, Carsten Suhr Jacobsen², Hans-Jørgen Albrechtsen¹Institute of Environment & Resources DTU, Technical University of Denmark¹Geological Survey of Denmark and Greenland (GEUS)²

Can the degradation potential of MCPP in the plume from Sjølund landfill be shown by the quantification of the metabolic genes of the microbial degraders?


Sjølund landfill

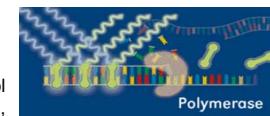
Incubation with ¹⁴C-MCPP


Mineralization of MCPP

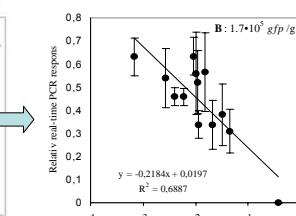
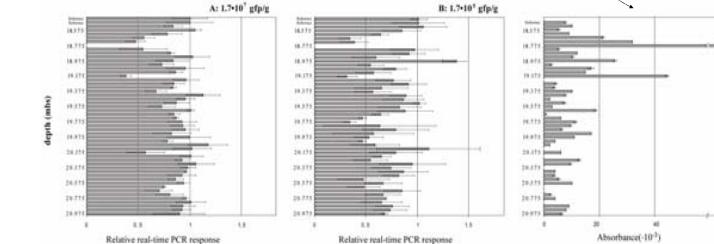

Sediment core collected at transition zone between background and plume. Core divided into 50 sediment samples.

DNA extraction

Real-time PCR with primers specific for genes encoding phenoxy acid degrading enzymes



Resulting quantification of the phenoxy acid metabolic genes (e.g. *tfdA* and *tfdC*)

10 µL DNA extract

Absorbance at 400 nm measured on DNA extract as indicator of the concentration of humus-like compounds

+ internal PCR control (= *gfp* gene, added at 2 concentrations)

Real-time PCR with *gfp* specific primers

1) Humus-like compounds contribute to PCR inhibition in many inhibited samples

2) The inhibition is higher at low ($<10^5$ genes/g) than at high gene concentrations

3) Most sediment samples with degradation potential also inhibited PCR

Advantages and Disadvantages: Real-time PCR vs. incubation methods

- + Faster (Min. 2 days vs. several months)
- + Price ca. 13 €/sample after optimization (≈ price for incubation method with ¹⁴C-labelled compound) (price of materials)
- +/- Can detect non-cultivable microorganisms
- +/- Detection limit (Depending on primers. In our study low: 80 genes/g)
- Inhibition of PCR reaction from compounds co-extracted with DNA
- Primer design (the relevant genes have to be known)

Conclusions

- Genes coding for phenoxy acid degrading enzymes could be detected with a **low detection limit** of 10^2 genes/g sediment => **With suitable primers real-time PCR can be used for quantification of specific degraders in aquifer sediment despite a low gene concentration**
- PCR signal was lacking in many samples from the zone where degradation potential was shown using incubation methods which could be due to 1) The tested primers **do not detect the genes** responsible for the degradation 2) We are **below detection limit** 3) PCR inhibition
- Humus-like compounds contributed to PCR inhibition in many of the inhibited samples
- The inhibition is greater at low gene concentrations ($<10^5$ genes/g) than at higher => **Important to use an internal PCR control (e.g. the *gfp*-gene) at quantification of genes with a low concentration**