

BIOAVAILABILITY OF TRIAZINE RESIDUES IN AGED SOILS

William C. Koskinen

USDA-ARS, St. Paul, MN

Enrique Barriuso

INRA, Grignon, France

Jussara B. Regitano

Universidade de Sao Paulo, Brazil

Michael J. Sadowsky

University of Minnesota

Triazines

- ◆ The chemicals that launched 1000's of careers
- ◆ Atrazine, simazine, terbuthylazine, cyanazine, propazine, prometryn, etc

Availability/Bioavailability

- ◆ Availability/Bioavailability is the integration of various processes in soil and controls:
 - transport to water and air

Availability/Bioavailability

- ◆ Availability/Bioavailability is the integration of various processes in soil and controls:
 - transport to water and air
 - exposure to and uptake by target and nontarget organisms

Availability/Bioavailability

- ◆ Availability/Bioavailability is the integration of various processes in soil and controls:
 - transport to water and air
 - exposure to and uptake by target and nontarget organisms
 - degradation

Availability/Bioavailability

- ◆ Availability/bioavailability is the integration of various processes in soil and controls:
 - transport to water and air
 - exposure to and uptake by target and nontarget organisms
 - degradation
- ◆ Sorption-desorption is arguably the most important process; it directly or indirectly controls all other processes

Characterization of Availability

- ◆ Indirect methods
- ◆ Direct methods

Characterization of Availability – Indirect Methods

- ◆ Aqueous extractable

Characterization of Availability – Indirect Methods

- ◆ Aqueous extractable
- ◆ Organic solvent extractable
(supercritical fluids for pesticides in
soil water at typical field moisture
levels)

Characterization of Availability – Indirect Methods

- ◆ Aqueous extractable
- ◆ Organic solvent extractable
(supercritical fluids for pesticides in
soil water at typical field moisture
levels)
- ◆ Isotopic exchange technique

Characterization of Bioavailability – Indirect Methods

- ◆ Aqueous extractable
- ◆ Solvent extractable
- ◆ SFC method – pesticide in soil water
at typical field moisture levels
- ◆ Isotopic exchange technique
- ◆ Batch equilibration method; K_d ; K_{oc} ;
 K_f , $1/n$

Potential Problems/Criticisms

- ◆ Little data to support aqueous or solvent extractable = availability

Potential Problems/Criticisms

- ◆ Little data to support aqueous or solvent extractable = availability
- ◆ Slurry method doesn't represent reality

Potential Problems/Criticisms

- ◆ Little data to support solvent extractable = bioavailability
- ◆ Slurry method doesn't represent reality
- ◆ Desorption hysteresis

Potential Problems/Criticisms

- ◆ Little data to support solvent extractable = bioavailability
- ◆ Slurry method doesn't represent reality
- ◆ Desorption hysteresis
- ◆ K_{oc} - Sorption on mineral surfaces?

Potential Problems/Criticisms

- ◆ Little data to support solvent extractable = bioavailability
- ◆ Slurry method doesn't represent reality
- ◆ Desorption hysteresis
- ◆ K_{oc} - Sorption on mineral surfaces?
- ◆ Changes in availability with time

Direct Methods

- ◆ Measured uptake by plants, earthworms, microorganisms

Direct Methods

- ◆ Measured uptake by plants, earthworms, microorganisms
- ◆ Degradation by specific pesticide-degrading microorganisms

Potential Problems/Criticisms

- ◆ Direct characterization of pesticide bioavailability in soil using plants or microorganisms can be expensive and time-consuming

Potential Problems/Criticisms

- ◆ Direct characterization of pesticide bioavailability in soil using plants or microorganisms can be expensive and time-consuming
- ◆ It requires identifying a plant or microorganism that can rapidly take up and/or degrade the pesticide

Objectives

- ◆ Characterize solvent extractability of aged triazine residues

Objectives

- ◆ Characterize solvent extractability of aged triazine residues
- ◆ Determine mineralization of aged triazine residues by a triazine-degrading organism

Objectives

- ◆ Characterize solvent extractability of aged triazine residues
- ◆ Determine mineralization of aged triazine residues by a triazine-degrading organism
- ◆ Correlate bioavailability (mineralization) of aged triazine residues to solvent extraction

Chemicals

- ◆ UL-ring-¹⁴C-atrazine (>98% pure), unlabeled atrazine (>99% pure)
- ◆ UL-ring-¹⁴C-simazine (>98% pure), unlabeled simazine (>99% pure)

Soil Properties

Expt.	Orig.	%OC	%clay	pH
Atrazine	US	0.5	3	5.8
		4.1	35	6.7
Simazine	US	1.0	4	6.3
		2.3	19	6.3
	BR	1.0	22	5.6
		1.3	40	5.5
	HW	2.6	15	8.0
		1.4	74	5.5

Methods

◆ Soil Treatment and Incubation

- Air-dry soils (10 g) treated with ^{14}C -triazine solution placed into centrifuge bottles

Methods

◆ Soil Treatment and Incubation

- Air-dry soils (10 g) treated with ^{14}C -triazine solution placed into centrifuge bottles
- Soil moisture content adjusted to -33 kPa.

Methods

◆ Soil Treatment and Incubation

- Air-dry soils (10 g) treated with ^{14}C -triazine solution placed into centrifuge bottles
- Soil moisture content adjusted to -33 kPa.
- Vial containing 5 mL 1 N NaOH was placed in bottles.

Methods

◆ Soil Treatment and Incubation

- Air-dry soils (10 g) treated with ^{14}C -triazine solution placed into centrifuge bottles
- Soil moisture content adjusted to -33 kPa.
- Vial containing 5 mL 1 N NaOH was placed in bottles.
- Soils were incubated at 25 °C for up to 8 weeks.

At each sampling time

Inoculation/Incubation

- ◆ Triazine-degrading organism:
Pseudomonas sp. strain ADP

Inoculation/Incubation

- ◆ Triazine-degrading organism:
Pseudomonas sp. strain ADP
- ◆ Inoculum density = 1×10^8 ADP cells
 g^{-1} soil

Inoculation/Incubation

- ◆ Triazine-degrading organism:
Pseudomonas sp. strain ADP
- ◆ Inoculum density = 1×10^8 ADP cells
 g^{-1} soil
- ◆ Soil moisture = -33kPa

Inoculation/Incubation

- ◆ Triazine-degrading organism:
Pseudomonas sp. strain ADP
- ◆ Inoculum density = 1×10^8 ADP cells
 g^{-1} soil
- ◆ Soil moisture = -33kPa
- ◆ Incubated up to 20 d at 25 °C.

Inoculation/Incubation

- ◆ Triazine-degrading organism:
Pseudomonas sp. strain ADP
- ◆ Inoculum density = 1×10^8 ADP cells
 g^{-1} soil
- ◆ Soil moisture = -33kPa
- ◆ Incubated up to 20 d at 25 °C.
- ◆ $^{14}\text{CO}_2$ evolution monitored

RESULTS

^{14}C -atrazine residue distribution

$^{14}\text{CO}_2$ evolution from ^{14}C -simazine-treated soils after inoculation with *Pseudomonas* sp. strain ADP.

Extractable vs. Mineralizable

Extractable vs. Mineralizable (water-extractable removed)

Extractable vs. Mineralizable (water-, methanol-extractable removed)

Atrazine Extractable vs. Mineralizable

Simazine residues distribution before and after inoculation with *Pseudomonas* sp. strain ADP in aged soils.

**Simazine
extractable vs. mineralizable**

Summary/Future

- ◆ After 40 years of research, there is still no universal method to characterize bioavailability
- ◆ The topic is wide open and we need to look for innovative methods
- ◆ Sequential solvent extraction correlated to bioavailability is a start
- ◆ Possibilities – biosensors???