

IN SITU ANALYSIS OF AUTOCHTHONOUS BACTERIAL COMMUNITIES IN GROUNDWATER: A NEW APPROACH TO STUDY THE EFFECT OF PESTICIDE ON MICROBIAL COMMUNITIES

Barra Caracciolo A°, Grenni P°, Preziosi E°, Falconi F°, Martin M*, Nande M*, Garbi C*

Water Research Institute - National Research Council - Via Reno, 1 00198 Rome -Italy caraccio@irsa.cnr.it

*Complutense University - Avenida Puerta de Hierro, 28040 Madrid – Spain

INTRODUCTION

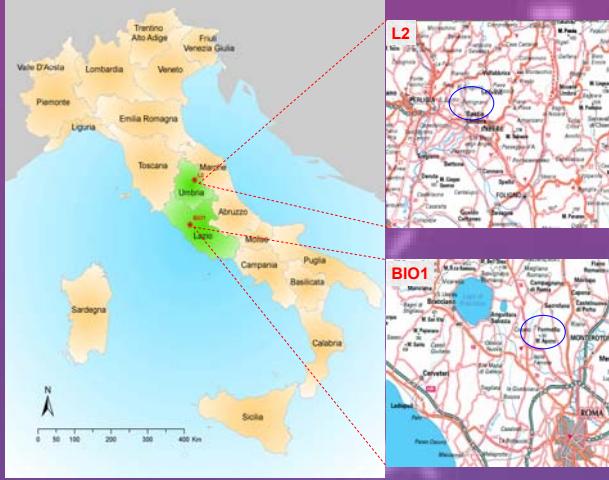
Groundwater quality and pesticide contamination of aquifers have become of great concern in all countries in which populations rely on this resource for drinking water. The transport of pesticides from agricultural fields to groundwater bodies is mainly due to water infiltration through soil. The ability of groundwater to recover from pesticide contamination is primarily dependent on the presence of a microbial community able to degrade the pesticides. Although once considered sterile, the subsurface environment is now known to harbour a wide variety and numbers of bacteria. Microbial processes and degradation in the subsurface environment occur at different rates and with different limiting factors compared to surface environments. Nevertheless, there is little research into these microorganisms because it is strictly dependent on methods able to identify and characterize their community structure and functioning. The use of molecular methods makes it possible to overcome this kind of identification limitation. In the present study we applied the Fluorescence In situ Hybridization (FISH) method to groundwater samples from phreatic aquifers, one contaminated by s-triazines and the other not, in order to identify and compare the structure and functioning of the autochthonous bacterial communities.

Areas studied and main characteristics of the aquifers

Two phreatic aquifers, but with different hydrogeological settings (one volcanic and the second one alluvial) were selected in Central Italy in order to compare different environmental situations. Groundwater samples were collected from two private wells (BIO1 and L2) used for domestic purposes with daily frequency. The main characteristics of the aquifers, measured at the sampled wells, are shown in Table 1.

A preliminary estimation of the vulnerability of the aquifers (1) based on the combination of water table depth and infiltration capability of the rocks (the so-called "Protection Capability of the Unsaturated zone" (2), which can be considered an approximation of vulnerability) was performed.

The alluvial aquifer (L2), in which water table depth doesn't exceed 30 m, has been given a "medium to high" vulnerability estimation. Moreover agriculture is highly developed and manure spreading is a common practice. Conversely, in the volcanic aquifer (BIO1) water table depth is generally higher (several tens of meters) and vulnerability has been assessed as "medium". Moreover BIO1 is located in a rural area where agriculture is not intensive.


Groundwater collection

Groundwater samples were collected by boller and put in sterile polyethylene bottles. Some samples were fixed or treated immediately for different purposes. Field parameters were determined at the sampling point (Tab. 1).

Table 1 - Main characteristics of the aquifers

	BIO1	L2
Lithology	Volcanic (0-95) Ancient alluvial deposits (95-100)	Alluvial sands, gravels and clays
Depth (m)	100	40
Water table depth (m)	80	12
Pump depth (m)	90	36
Elevation (m a.s.l.)	173	217
Geochemical facies	Earth-alkaline bicarbonate	Alkaline-bicarbonate
Vulnerability	Medium	Medium-High
Land use	Agriculture, pasture	Intensive agriculture
Temperature °C	15.03	14.06
pH	7.4	7.1
Eh (mV)	268	210
Electric Cond. (µS/cm)	348	930
O ₂ (mg/L)	8.07	9.01
s-triazine contamination	no	Yes, >0.1 µg/L
Nitrate contamination	<10 mg/L	Yes, > 100 mg/L

MATERIAL AND METHODS

Geochemical analysis
Inorganic anions (Cl, PO₄, NO₃, NO₂, SO₄) were determined by ionic chromatography (IC); major elements (Na, K, Ca, Mg) were analyzed in inductive coupled plasma mass spectrometry (ICP-MS).

FISH with AtzB1
AtzB1, a specific probe for the plasmidic DNA of the *atzB* gene sequence, recently designed at the University of Madrid (7, 8), was also applied to L2 and BIO1 water samples in order to verify the presence of the specific enzyme involved in the hydrolytic deamination of s-triazines. AtzB1 is a FAM-labeled oligonucleotide probe and the sequence is:
5'-GGA GAGCACCGATACTTTCTT-3'.

RESULTS AND DISCUSSION

Bacterial community structure: BIO1 vs L2

Geochemical analysis
Nitrate (111 mg/L) and herbicide (> 1 µg/L) occurrence (see Tab. 3) shows L2 to be a polluted groundwater, confirming the vulnerability (medium-high) estimated by the model used. The intensive agricultural practices, but also cattle breeding and uncontrolled civil or industrial effluents, together with the intrinsic vulnerability of the L2 aquifer, contribute to its pollution risk.

Table 3 - Geochemical and microbiological analyses. The microbial abundance (N/mL) and the dissolved organic carbon (DOC) detected in BIO1 were lower than L2, indicating the latter to be a more active ecosystem.

	BIO1	L2
N. bacteria/mL	8.73E+03	2.82E+04
live/dead %	70%	72%
AtzB%	n.d.	yes
DOC mg/L	0.23	0.56
DES ug/L	n.d.	0.13* 0.15**
TBA µg/L	n.d.	0.06*
NO ₃ mg/L	9.19	111
NO ₂ mg/L	0.06	0.005
Cl mg/L	40	31
PO ₄ mg/L	0.2	0.004
SO ₄ mg/L	9.17	49
HCO ₃ mg/L	177	370
Na mg/L	29.8	19
Mg mg/L	6.3	14
K mg/L	39.4	1.5
Ca mg/L	33	154
n.d. (Not detected); *detected in 2003 ; **detected in 2005		

The use of 16S rRNA-targeted oligonucleotide probes designed specifically for the main phylogenetic levels, and DAPI stains made it possible to determine the structure of the bacterial communities studied and highlight quantitative and qualitative differences between the two groundwaters analyzed (Fig. 1 and 2). The bacterial abundance, the percentage of live/dead cells and the dissolved organic carbon detected in BIO1 and L2 GW samples are in Tab. 3.

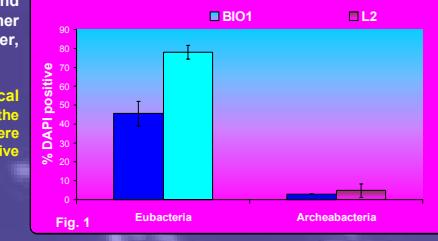


Figure 1 - In situ hybridization with the probes for Eubacteria, targeting the Bacteria domain, detected % of DAPI-stained cells averaging 45.5% in BIO1 and 78% in L2 respectively. Moreover, even if in a lower percentage, Archeabacteria were detected at both sites and with similar values (2.9% BIO1, 4.8% L2).

Figure 3
Images at the confocal microscope of bacteria detectable by DAPI-staining (blue colour), by EUB338 (red, Cy3-labeled) and by the specific AtzB1 probe (green, FAM-labeled) in L2 groundwater samples.

ACKNOWLEDGMENTS: We thank the Regional Environmental Agency (ARPA-UMBRIA) for its helpful during sampling collection and field measurements and for s-triazine data availability.

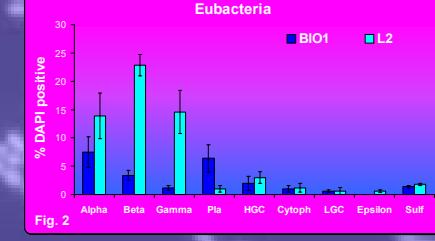


Figure 2 - FISH with the other probes for Eubacteria subgroups made it possible to detect DAPI-stained cells at both sites, although in significantly different and generally greater percentages in L2 than in BIO1.

Bacterial community functioning: AtzB1
The L2 groundwater samples were positive (6%) to the specific AtzB1 probe (Fig. 3, green colour). The detection of the plasmidic gene *atzB* indicates that some bacteria populations among the autochthonous community have the potential capability to degrade the s-triazines by performing their hydrolytic deamination. The fact that herbicide contamination has not been increasing for the last two years (terbutylazine was detected in 2003, but not in 2005, and desethylterbutylazine concentration did not increase from 2003 to 2005) seems to confirm that herbicide degradation actually occurs.

CONCLUSIONS

This study is the first characterization, using the FISH method, of the structure (phylogenetic identification) and the functioning (potential for s-triazine degradation) of groundwater microbial communities contaminated and not-contaminated by s-triazines. The results are very promising because they show the FISH method to be a valuable and new tool for characterizing and comparing groundwater ecosystems under different anthropic impact conditions.