

Testing the TOXSWA model against outdoor ditch measurements

TOXSWA

Paulien Adriaanse,
Centre for Water and Climate,
Wageningen University and Research centre,
The Netherlands

WAGENINGEN UR

Overview

- Introduction to TOXSWA model
- Importance hydrological submodel
- Field tests:
 - # prosulfocarb
 - # chlorpyrifos
- Conclusions

TOXSWA

WAGENINGEN UR

TOXSWA model

- Behaviour of pesticides in small surface waters
- Main use:
registration in NL (June 1999, v 1.2)
Annex I of EU (May 2003, v 1.1.1 and 2.2.1)
- Available via:
<http://www2.alterra.wur.nl/> (v 1.2)
<http://viso.ei.jrc.it/focus/> (v 2.2.1)

Hydrology in TOXSWA

- Simplified hydrological submodel
- Watercourse embedded in catchment

- Water conservation:

$$\text{Accumulation} = \text{inflow} - \text{outflow} + \text{lateral inflow} - \text{seepage}$$

N.B. 1. inflow from neighbouring field plus upstream area
2. behaviour field = behaviour upstream area

Hydrology in TOXSWA (2)

- Transient hydrology: $Q(x,t)$ and $h(t)$ only
- Water depth $h(t)$ via $Q_{out} = 1.7 \cdot w \cdot h_2^{3/2}$
as lower boundary condition watercourse

Q = discharge
 w = width crest
 h_1 = height crest weir
 h_2 = water depth on crest
 $h = h_1 + h_2$

- Example R1 stream

R1 stream

R1 stream:
Discharge $Q(t)$ and
water depth $h(t)$

WAGENINGEN UR

Pesticide behaviour in TOXSWA

- Mass conservation:

Accumulation = input – output – sinks \pm exchange

input = spray drift + either drainfluxes
or runoff/erosion
(neighbouring field + upstream area)

WAGENINGEN UR

Processes in water and sediment

WAGENINGEN UR

FOCUS stream scenario

Upstream area: 100 ha, 20 ha treated

WAGENINGEN UR

Testing TOXSWA model

- testing model output against field measurements
- target variable: $c(x,t)$ in water (and sediment)
- domain: single watercourse (no network)
- no serious tests available

WAGENINGEN UR

Developing and testing:

problem

conceptual model

mathematical model

computer program

input parameters from lab

field experiments

test model output against field

test acceptable ?

apply model

check all steps once again

WAGENINGEN UR

Importance hydrological submodel (1)

- Tracer in FOCUS ditch D1
- FOCUS scenario:
 - 1 ha neighbouring field
 - 2 ha upstr. not treated

- Dilution factor 3 as expected

Importance hydrological submodel (2)

- Tracer in FOCUS ditch D1
- Modified FOCUS scenario:
 - 1 ha neighbouring field
 - 2 ha upstr. treated

- $c(t)$ in ditch $\neq c(t)$ in drain,
(except when drainflow is
very low)
- So, in ditch:
 $c(t)$ strongly driven by
scenario characteristics

Importance hydrological submodel (3)

- Tracer in FOCUS stream R1
- FOCUS scenario:
1 ha neighbouring field
100 ha upstr. area
of which 20 ha treated
- So, dilution factor 5 expected

Importance hydrological submodel (4)

- Tracer in FOCUS stream R1

Event	Dilution
1	6
2	30
3	6
4	970
5	6
6	7

Tracer in stream R1 (cont)

- Water volume R1 stream:
 $0.42 \times 1.0 \times 100 = 42 \text{ m}^3$
- All events (except 2 and 4):
stream water replaced
- Event 2 and 4: only 9 and 0.5 m³
from 100 ha catchment

Event	Dilution TOXSWA	Predicted dilution
1	6	5
2	30	25
3	6	5
4	970	420
5	6	5
6	7	5

Tracer in stream R1 (cont)

- So,
 $c(t)$ is strongly driven by
scenario characteristics
(100 ha upstream area
of which 20 ha treated),
except in case of
very low runoff volumes

Conclusion for hydrology

For main uses of TOXSWA model (FOCUS sw scenarios):

Change of target variable $c(x,t)$ from input (drains/runoff) to output (end watercourse) is predictable from scenario characteristics (except for low incoming water volumes)

So, for testing the TOXSWA model:
concentrate on role processes

N.B. Testing TOXSWA testing the FOCUS sw scenarios !

Field tests

test model output against field

- Ditches: 40*1.65*0.50 m
- Stagnant
- Spray drift appln
- $c(t)$ in water,
sediment,
macrophytes

Prosulfocarb April May 2002

Chlorpyrifos May Sept 1990

Prosulfocarb

field experiments

- Herbicide in cereals, potatoes
- Use rate 3 – 4 kg/ha
- Appln 22 April 2002
- Shielded spray boom
(5% of 3.2 kg/ha)
- $C_{ini} = 76 \text{ g/L}$ (1 ditch)
- Water and sediment sampled as $f(t)$

WAGENINGEN UR

Prosulfocarb

input parameters from lab

- Standard lab tests:
$K_{om} = 1018 \text{ L/kg}$, 3 soils
$DT_{50,system} = 335 \text{ d}$ (sys 1)
= 147 d (sys 2)

Estimation of separate degradation rate in water and sediment not possible (see poster Ter Horst et al).

So, use average $DT_{50,system} = 204 \text{ d}$

WAGENINGEN UR

Chlorpyrifos

field experiments

- Insecticide, widely used
- Appln 8 May 1990 (Shielded spray boom)
- $C_{ini} = 40 \text{ g/L}$ (2 ditches)
- Water, sediment and macrophyte sampled as $f(t)$

WAGENINGEN UR

Chlorpyrifos

input parameters from lab

- Site specific input

$DT_{50,water} = f(pH)$ (20 °C, dark)
 $DT_{50,water} = 45 \text{ d}$ for exp.ditches ($pH = 8.9$)

$DT_{50,sediment} = 181 \text{ d}$ (10 °C, dark)

$K_d = 630 \text{ L/kg}$ (om ?)

$K_{mp} = 1980 \text{ L/(kg dry mp)}$

WAGENINGEN UR

test model output against field

- Agreement very moderate
- Very rapid initial decline not simulated by TOXSWA, nor peak in sediment
- TOXSWA: on conservative side

test model output against field

- Cpf in microlayer for first 10 h
- Volatilisation most important dissipation process, probably higher than simulated:
 # no ideal mixing 1st day
 # $T_{8 \text{ May}} > 15 \text{ }^{\circ}\text{C}$ (monthly mean)

- To Sediment
- Flowed out
- Transformed
- Volatilized

test model output against field

- What if:

Volatilisation 1st 10 h

20* higher:

(5 cm water instead of 50 cm
20 °C instead of 15 °C)

K_{om} halved

- Agreement improved,
so part of disagreement
may be explained

WAGENINGEN UR

test acceptable ?

Conclusions: chlorpyrifos in experimental ditches

- Model concepts should correspond to experiment
concept of 1 water layer ideally mixed microlayer cpf
> concept of one water layer possibly underestimates volatilisation

simulated monthly mean T - T at first hot day

> underestimation of rapid decline during first day

WAGENINGEN UR

Overall conclusions

Regarding hydrology:

- For main uses of TOXSWA model (FOCUS sw scenarios):
Dilution produced by TOXSWA from input (drains/runoff) to output (end watercourse) is predictable from scenario characteristics

Regarding processes:

- Model concepts not disqualified
- Input from standard lab tests cannot describe behaviour in field (prosulfocarb)
- Model concepts should correspond to experiment (chlorpyrifos)
- Need for number of high quality field data sets for testing TOXSWA

Welcome to any comments and questions

water

sed.

WAGENINGEN UR