Testing the TOXSWA model against outdoor ditch measurements

Paulien Adriaanse,
Centre for Water and Climate,
Wageningen University and Research centre,
The Netherlands

Overview

• Introduction to TOXSWA model
• Importance hydrological submodel
• Field tests: # prosulfocarb # chlorpyrifos
• Conclusions
TOXSWA model

- Behaviour of pesticides in small surface waters

- Main use:
 - registration in NL (June 1999, v 1.2)
 - Annex I of EU (May 2003, v 1.1.1 and 2.2.1)

- Available via:
 - http://www2.alterra.wur.nl/ (v 1.2)
 - http://viso.ei.jrc.it/focus/ (v 2.2.1)

Hydrology in TOXSWA

- Simplified hydrological submodel

- Watercourse embedded in catchment

- Water conservation:

 Accumulation =
 \[\text{inflow} - \text{outflow} + \text{lateral inflow} \]

 \[\text{seepage} \]

 N.B. 1. inflow from neighbouring field plus upstream area
 2. behaviour field = behaviour upstream area
Hydrology in TOXSWA (2)

- Transient hydrology: $Q(x,t)$ and $h(t)$ only
- Water depth $h(t)$ via $Q_{out} = 1.7 \cdot w \cdot h_2^{3/2}$ as lower boundary condition watercourse

$Q = \text{discharge}$
$w = \text{width crest}$
$h_1 = \text{height crest weir}$
$h_2 = \text{water depth on crest}$
$h = h_1 + h_2$

- Example R1 stream

R1 stream

Graph showing:
- Rain (mm/d) over time (d) from 1 Oct 1978
- Runoff (mm/d) over time (d) from 1 Oct 1978
Pesticide behaviour in TOXSWA

- Mass conservation:

 \[\text{Accumulation} = \text{input} - \text{output} - \text{sinks} \pm \text{exchange} \]

 # input = spray drift + either drainfluxes or runoff/erosion (neighbouring field + upstream area)
Processes in water and sediment

- **Water plants**
- **Suspended solids**
- **Sed. material**
- **Water phase**
- **Liquid phase**

- **Transport:** advection, dispersion, diffusion
- **Transformation**
- **Sorption**
- **Volatilization**
- **Advection (up/downward seepage)**
- **Diffusion**

Upstream area: 100 ha, 20 ha treated
Testing TOXSWA model

- testing model output against field measurements
- target variable: $c(x,t)$ in water (and sediment)
- domain: single watercourse (no network)
- no serious tests available
Importance hydrological submodel (1)

- Tracer in FOCUS ditch D1
- FOCUS scenario:
 1 ha neighbouring field
 2 ha upstr. not treated

- Dilution factor 3 as expected

Importance hydrological submodel (2)

- Tracer in FOCUS ditch D1
- Modified FOCUS scenario:
 1 ha neighbouring field
 2 ha upstr. treated

- $c(t)$ in ditch $\quad c(t)$ in drain, (except when drainflow is very low)
- So, in ditch:
 $c(t)$ strongly driven by scenario characteristics
Importance hydrological submodel (3)

- Tracer in FOCUS stream R1
- FOCUS scenario:
 1 ha neighbouring field
 100 ha upstr. area
 of which 20 ha treated

- So, dilution factor 5 expected

Importance hydrological submodel (4)

- Tracer in FOCUS stream R1

<table>
<thead>
<tr>
<th>Event</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>970</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

![Runoff graph]

![Stream graph]
Tracer in stream R1 (cont)

- Water volume R1 stream: $0.42 \times 1.0 \times 100 = 42 \text{ m}^3$
- All events (except 2 and 4): stream water replaced
- Event 2 and 4: only 9 and 0.5 m³ from 100 ha catchment

<table>
<thead>
<tr>
<th>Event</th>
<th>Dilution TOXSWA</th>
<th>Predicted dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>970</td>
<td>420</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

So, c(t) is strongly driven by scenario characteristics (100 ha upstream area of which 20 ha treated), except in case of very low runoff volumes
Conclusion for hydrology

For main uses of TOXSWA model (FOCUS sw scenarios):
Change of target variable $c(x,t)$ from input (drains/runoff) to output (end watercourse) is predictable from scenario characteristics (except for low incoming water volumes)

So, for testing the TOXSWA model:
concentrate on role processes

\textit{N.B. Testing TOXSWA testing the FOCUS sw scenarios !}

Field tests

- Ditches: 40*1.65*0.50 m
- Stagnant
- Spray drift appln
- $c(t)$ in water, sediment, macrophytes

Prosulfocarb April May 2002
Chlorpyrifos May Sept 1990
Prosulfocarb

- Herbicide in cereals, potatoes
- Use rate 3 4 kg/ha
- Appln 22 April 2002
- Shielded spray boom (5% of 3.2 kg/ha)
- $C_{ini} = 76$ g/L (1 ditch)
- Water and sediment sampled as f(t)

Prosulfocarb

- Standard lab tests:
 - $K_{om} = 1018$ L/kg, 3 soils
 - $DT_{50,system} = 335$ d (sys 1)
 - $= 147$ d (sys 2)

Estimation of separate degradation rate in water and sediment not possible (see poster Ter Horst et al).
So, use average $DT_{50,system} = 204$ d
Experimental ditches (1)

Simulation A
Input from standard lab tests

\[DT_{50,\text{water}} = DT_{50,\text{sediment}} = DT_{50,\text{system}} = 204 \text{ d} \]

\[K_{om} = 1018 \text{ L/kg} \]

test model output against field

test acceptable?

Simulation B

DT\textsubscript{50}'s optimised by PEST

\[K_{om} \text{ from standard lab tests} \]

\[DT_{50,\text{water}} = 10 \text{ d (4 to 24 d)} \]

\[DT_{50,\text{sediment}} = 178 \text{ d (4749 to 5106 d)} \]

\[K_{om} = 1018 \text{ L/kg (fixed)} \]
test model output against field

Simulation C

Both K_{om} and D_{T50}’s optimised by PEST

$D_{T50,\text{water}} = 6 \text{ d} (4 \text{ to } 9 \text{ d})$

$D_{T50,\text{sediment}} = 13 \text{ d} (3 \text{ to } 24 \text{ d})$

$K_{om} = 7185 \text{ L/kg} (4053 \text{ to } 10317 \text{ L/kg})$

Conclusions: prosulfocarb in experimental ditches

- For calibrated D_{T50}’s and K_{om} perfect fit, so concepts regarding process descriptions not disqualified

- Not possible to describe behaviour prosulfocarb in field on basis of standard lab tests (conditions not site specific)
Chlorpyrifos

- Insecticide, widely used
- Appln 8 May 1990 (Shielded spray boom)
- $C_{\text{ini}} = 40 \text{ g/L (2 ditches)}$
- Water, sediment and macrophyte sampled as $f(t)$

Chlorpyrifos

- Site specific input

 # $DT_{50,\text{water}} = f(\text{pH})$
 # $DT_{50,\text{water}} = 45 \text{ d}$
 # $DT_{50,\text{sediment}} = 181 \text{ d}$
 # $K_d = 630 \text{ L/kg}$ (om ?)
 # $K_{mp} = 1980 \text{ L/(kg dry mp)}$
test model output against field

- Agreement very moderate
- Very rapid initial decline not simulated by TOXSWA, nor peak in sediment

TOXSWA: on conservative side

water

Volatilisation most important dissipation process, probably higher than simulated:
no ideal mixing 1st day
$T_{8\ May} > 15 ^\circ C$ (monthly mean)

sed.
test model output against field

- What if:
 - # Volatilisation 1st 10 h
 - 20\% higher:
 - (5 cm water instead of 50 cm
 - 20 °C instead of 15 °C)
 - # K_{em} halved
 - Agreement improved,
 so part of disagreement
 may be explained

Conclusions: chlorpyrifos in experimental ditches

- Model concepts should correspond to experiment
 - # concept of 1 water layer ideally mixed
 - microlayer cpf
 - > concept of one water layer possibly underestimates
 - volatilisation
 - # simulated monthly mean T
 - T at first hot day
 - > underestimation of rapid decline during first day
Overall conclusions

Regarding hydrology:
• For main uses of TOXSWA model (FOCUS sw scenarios):
 Dilution produced by TOXSWA from input (drains/runoff) to output (end watercourse) is predictable from scenario characteristics

Regarding processes:
• Model concepts not disqualified
• Input from standard lab tests cannot describe behaviour in field (prosulfocarb)
• Model concepts should correspond to experiment (chlorpyrifos)
• Need for number of high quality field data sets for testing TOXSWA

Welcome to any comments and questions