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1. Introduction

Wendy B. Foden, Bruce E. Young and James Watson

Changes have already been observed in a wide range of
components of the Earth’s climate system (Garcia er al.,

2014b), and ongoing changes are predicted, including in long-

term climate patterns and trends, the magnitude and frequency
of acute extreme weather events, and secondary impacts such as
loss of sea ice and sea-level rise. Increases in atmospheric carbon
dioxide concentration and ocean acidification accompany them.
These changes are having far-reaching impacts on biodiversity
(Thomas et al., 2004; Fischlin et al, 2007; IPCC, 2014),
including at organismal, subpopulation, species and ecosystem
levels. For some species, the net impacts have been positive
(Fraser et al., 1992; Urban et al., 2007; Kearney & Porter,
2009), but for many more, the speed, magnitude and rate of
change are having negative fitness consequences for individuals
which can lead to local or even global extinction of species
(Caswell et al., 2009; Jenouvrier et al., 2009; Hunter et al.,

2010; Fordham ez al., 2013a; Settele et al., 2014). Projections
show that even under the most optimistic emissions scenarios,
climate change impacts on biodiversity will be increasingly
severe over the next century and beyond (IPCC, 2014).

Climate change impacts may manifest directly, such as
through the physiological stress experienced when ambient
summer temperatures exceed organisms’ tolerances. Direct
impacts typically include changes in behaviour, phenology and
reproduction, and ultimately in survival of the organism and
potentially its subpopulation and species. Other impacts occur
indirectly through effects on interactions with other species
including prey, predators, competitors, parasites or hosts, or on
a species’ habitat, as well as through interactions with other
threatening processes such as habitat loss. Humans’ reactions
and responses to climate change (e.g., shifting agricultural

An aerial view of Great Barrier Reef. One of the starkest examples of species and ecosystem-level vulnerability to the dual climate change

impacts of global warming and ocean acidification. © Paul Pearce-Kelly
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areas, building dams and seawalls, migration) may also have
marked impact ‘on species’ survival and capacity to adapt to
climate change (Maxwell ez al., 2015; Segan ez al., 2015). It
is likely that some mechanisms of climate change impacts on
species are yet to be discovered.

Predicting climate change impacts on biodiversity is a major
scientific challenge (Pereira et al., 2010; Pacifici ez al., 2015),
but doing so is important for a variety of reasons. Assessments
of degrees of threat or extinction risk (e.g., through the TIUCN
Red List) typically contribute essential information to inform
conservation action plans, as well as laws and regulations.
In addition, climate change adaptation planning generally
requires information on the mechanisms and patterns of
impact so that appropriate actions can be identified and
evaluated. In the few decades since the threat of climate change
has been recognized, the conservation community has risen
to the challenge of assessing vulnerability to climate change.
A range of methods have been developed for climate change
vulnerability assessment (CCVA) of species and a large and
burgeoning scientific literature is emerging on this subject. Our
motivation for preparing this document is to ease the challenge
that conservation practitioners face in interpreting and using
the complex and often inconsistent CCVA literature.

There is no single ‘correct’ or established way to carry out CCVA
of species. We have aimed here to guide users toward sensible
and defensible approaches, given the current state of knowledge
and their objectives and available resources. Considering the
rapid pace of developments in this young and exciting field,
we anticipate regularly updating and refining the document in
subsequent versions. Our intended target audiences include,
amongst others, conservation practitioners (e.g., for CCVA
of their focal species or the species in their focal area) and
researchers (e.g., for carrying out CCVA to serve conservation,
or to evaluate the rigorousness of others’ studies) (Figure 1).

We focus here on CCVA of species, but by no means imply that
assessments at habitat or ecosystem scales are less important.

This guidance document has been developed by a Climate
Change Vulnerability Assessment working group convened
under the IJTUCN Species Survival Commission’s Climate
Change Specialist Group. The authors’ collective experience
covers a broad range of ecosystems, taxonomic groups,
conservation sectors and geographic regions, and has been
supplemented by an extensive literature review. No guidance
on this topic can be exhaustive, but nonetheless, we hope that it
provides a useful reference for those wishing to understand and
assess climate change impacts on their focal species, at site, site
network and/or at broader spatial scales. Since this guidance
will be revised in subsequent guidelines versions, we would
greatly value feedback and suggestions.

CCVA is a foundation for sound and effective conservation
under climate change. Several valuable resources on broader
aspects of climate change and conservation are available,
including for climate change adaptation planning for species
and ecosystems (see Box 1). Since vulnerability assessment is an
important adaptation planning step (Stein ez al., 2014), most
of these publications have some coverage of climate change
vulnerability assessment, including of species, habitats and
ecosystems. The guidance we present, however, is more detailed
and extensive and focuses specifically on the challenging topic
of CCVA of species. We encourage readers to use our guidance
along with broader climate change and conservation literature.

These guidelines cover an outline of some of the terms
commonly used in climate change vulnerability assessment
(CCVA), and describe three dominant CCVA approaches,
namely correlative (niche-based), mechanistic and trait-based
approaches. We discuss how to set clear, measurable CCVA
objectives and how to select CCVA approaches and associated

Target Audiences

Local, National &
Reglonal
Conservation
Managers

Prolecled Area
Managers

Local, National
& Regional

Conservation
Planners

For the IUCN SSC Guidelines for Assessing
Species’ Vulnerability to Climate Change

Figure 1. The target audiences
for which these guidelines were
developed.

Academic
Rawviewers of
Assessments
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on Protected Areas (Gross et al., 2016).

etal., 2014).

by the US Fish and Wildlife Service (Johnson, 2014).

Conservancy (Groves et al., 2010).

Management (Cross et al., 2012a, 2013).

Box 1. Literature resources for climate change adaptation and vulnerability assessment

¢ Responding to Climate Change: Guidance for Protected Area Managers and Planners. Developed by the IUCN World Commission
Climate-Smart Conservation: Putting Adaptation Principles into Practice. Developed by the US National Wildlife Federation (Stein
Climate Change Vulnerability Assessment for Natural Resources Management: Toolbox of Methods with Case Studies. Developed
Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. Developed by a workgroup of US
government, non-profit, and academic institutions (Glick et al., 2011)

Climate Change and Conservation: A Primer for Assessing Impacts and Advancing Ecosystem-based Adaptation in The Nature

e The IUCN SSC Guidelines on Species Conservation Planning (IUCN/SSC 2008; updated version in prep.)
* The Adaptation for Conservation Targets (ACT) Framework: A Tool for Incorporating Climate Change into Natural Resource

Voluntary guidance for states to incorporate climate change into state wildlife action plans and other management plans.
Developed by the Association of Fish and Wildlife Agencies (AFWA, 2009).
The Climate Adaptation Knowledge Exchange (http://www.cakex.org)

methods that are appropriate for meeting these objectives. We
then provide ways for users to evaluate their data, knowledge
and technical resources, and subsequently refine their approach
and method selection. Guidance on using and interpreting
CCVA results includes suggestions on data sources and their
use, working with knowledge gaps and uncertainty, using
CCVA for Red Listing, approaches for challenging species
assessment contexts, and how to include indirect climate
change impacts such as habitat transformation. We also discuss
how best to communicate results for decision-making and
recommend possible future directions for the field of CCVA
for species. Finally, we provide case studies demonstrating
how the guidelines can be applied, including for the purpose
of IUCN Red Listing procedures. Through the guidelines, we
hope to promote standardization of CCVA terminology and to
provide a useful resource for those wishing to carry out CCVA

of species to inform conservation at species, site or site network
scales. By helping practitioners to carry out robust CCVA of
species, we believe that they will have a solid foundation for
their climate change adaptation strategies and action plans.

This guide is structured to provide readers first with background
information on definitions and metrics associated with
CCVA. A discussion on identifying CCVA objectives follows,
setting the stage for core guidance on selecting and applying
appropriate methods. The subsequent sections focus on
interpreting and communicating results, as well as suggestions
for using results in Red List assessments and addressing the
many sources of uncertainty in CCVAs. A final section
explores future directions for CCVAs and research needs. The
guide ends with ten case studies that provide essentially worked
examples of CCVAs that cover the range of methods described.
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Top and below left: Staghorn Corals (e.g., Acropora cervicornis) bleach when high sea temperatures cause them to expel their Zooxanthellae
algae and thereby to lose their food supply and colour. When sea surface temperatures are consistently above the bleaching threshold, large
coral reef areas reef die, break up and become rubble. © Emre Turak. Below right: Paul Pearce-Kelly observes coral bleaching on the Great
Barrier Reef. © Paul Pearce-Kelly



2. Setting the scene

Wendy B. Foden, Michela Pacifici and David Hole

2.1 Definitions of commonly used terms

Climate Change

The IPCC’s most recent (fifth) assessment report defines climate
change as “a change in the state of the climate that can be identified
(e.g, by using statistical tests) by changes in the mean andfor the
variability of its properties, and that persists for an extended period,
typically decades or longer” (IPCC, 2013a). Climate change
results from both natural global cycles as well as from external
drivers of change such as shifts in solar cycles, volcanic eruptions
and persistent human influences on the composition of the
atmosphere or land cover. In both the scientific literature and
a wider global context, the term is commonly used to describe
the changes that are attributable solely or predominantly to
human activities. These may be at local, regional and global
scales and are widely regarded as having begun at the onset of
the Industrial Revolution in the 18th century.

We note that the GCM community strongly advocates
using the term “scenario” rather than “prediction” to refer to
model outcomes based on emissions pathways. Essentially,
the difference is that scenarios use an explicit “if... then...”
whereas we often forget the “if...” part when using the term
“prediction”. The distinction is semantic, but it addresses the

highly likely possibility that the world will not evolve exactly as
our models indicate it could, even if socioeconomic conditions
were to conform exactly to those for any particular emissions
scenario. Given the many uncertainties inherent in CCVAs,
they should be regarded as scenario-based.

Vulnerability

Vulnerability is a central concept in climate change research
and policy, across both environment and human development
fields. Although there is broad consensus that it represents
“a measure of possible future harm” (Hinkel, 2011), use of the
term is often vague and inconsistent both within and between
these fields (Ionescu ez al., 2009; Hinkel, 2011). In the IPCC’s
fifth assessment report (IPCC, 2014), definitions for key terms
diverge from those in their previous assessment reports (e.g.,
IPCC, 2007). Because the previous definitions were widely
adopted and are pervasive in the conservation and adaptation
communities, and because they align with the [UCN Red List’s
consideration of vulnerability as a category of risk, we follow
the IPCC 2007 definition. We explore the differences and
similarities in the two sets of definitions in Box 2 (including
Figures 2 and 3), draw on the new definitions to strengthen
and highlight some aspects of the existing ones and, as far as
possible, accommodate both below.

Definitions of terms used in these guidelines
(reflects usage in IPCC 4th Assessment (2007) and by the
conservation community)

Greatest
vulnerability

Low
adaptive
capacity

Figure 2. Schematic diagram showing three
components of vulnerability in CCVAs. The greatest
vulnerability to climate change occurs when species are
exposed to large and/or rapid climate change-driven
alterations in their physical environment, are sensitive to
those changes, and have low adaptive capacity (adapted
from Foden ez al., 2013).

Box 2. Comparison of climate change vulnerability terms currently in use

IPCC 5th Assessment definitions of terms (2014)

Vulnerability

Figure 3. Risk of climate-related impacts results from
the interaction of climate-related hazards (including
hazardous events and trends) with the vulnerability
and exposure of human and natural systems (adapted

from IPCC, 2013).
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Overarching measures of concern

Vulnerability

The extent to which biodiversity is susceptible to or unable to
cope with the adverse effects of climate change. It is a function
of the character, magnitude and rate of climate change to
which the system is exposed, its sensitivity and its adaptive
capacity (IPCC, 2007a) (Differs from IPCC, 2014).

Risk

The probability of harmful consequences resulting from climate
change. Risk results from the interaction of vulnerability,
exposure, and hazard. Risk is often represented as probability
of occurrence of hazardous events or trends multiplied by
the impacts if these events or trends occur (IPCC, 2014) (not
defined in 2007).

Impact

The effects, consequences or outcomes of climate change on
natural and human systems. It is a function of the interactions
between climate changes or hazardous climate events
occurring within a specific time period and the vulnerability
of an exposed society or system (IPCC, 2014). (Differs from
IPCC, 2007, which describes impacts as potential or residual
based on adaptation potential).

Intrinsic contr

ibuting factors

Sensitivity

Sensitivity is the degree to which a system is affected, either
adversely or beneficially, by climate variability or change
(IPCC, 2007a, 2014).

Adaptive Capacity

The potential, capability, or ability of a species, ecosystem
or human system to adjust to climate change, to moderate
potential damage, to take advantage of opportunities, or to
respond to the consequences (IPCC, 2007a, 2014).

Vulnerability

‘The propensity or predisposition to be adversely affected. In
this usage, vulnerability encompasses a variety of concepts,
particularly sensitivity to harm and lack of capacity to cope
and adapt.’ (IPCC, 2014) (Differs from IPCC, 2007).

Exposure

The presence of people, livelihoods, species or ecosystems,
environmental  functions, services, and resources,
infrastructure, or economic, social, or cultural assets in places
and settings that could be adversely affected (IPCC, 2014)
(Not defined in IPCC, 2007).

External contributing factors

Exposure

Exposure describes the nature, magnitude and rate of climatic
and associated environmental changes experienced by a
species (Dawson et al., 2011; Foden et al., 2013; Stein et al.,
2014) (Not defined in IPCC, 2007).

Hazard

The potential occurrence of a natural or human-induced
physical event or trend or physical impact that may cause loss
of life, injury, or other health impacts, as well as damage and
loss to property, infrastructure, livelihoods, service provision,
ecosystems, and environmental resources. In this report, the
term hazard usually refers to climate-related physical events
or trends or their physical impacts (IPCC, 2014) (Not defined
in IPCC, 2007).

We consider climate change vulnerability to be the extent to
which biodiversity will be adversely affected by climate
change (IPCC 2007; IPCC, 2014). This description is useful
for general and conceptual purposes; when users begin making
use of the term for more specific purposes such as for assessments
of climate change vulnerability, definition of key vulnerability
variablesis required (see Figure 2). Climate change vulnerability
may describe a range of different biological hierarchy levels
or entities (e.g., from subpopulations to ecosystems), at
different spatial scales (e.g., from sites to globally), considering
different biodiversity impact types (e.g., from extinction risk
to declines in ecosystem function or evolutionary diversity),
considering different aspects of climate change (e.g., impacts
from direct climate change to indirect impacts from humans

and biodiversity responding to climate change) and covering
considerably different time frames (e.g., 5 year to 100 year
time frames). Many studies have failed to explicitly define
such variables, resulting in difficulties with interpreting and
comparing among results. In the context of climate change
vulnerability assessment, we strongly encourage users of the
term “climate change vulnerability” to explicitly define their key
variables, namely the ‘Entity (OF)’, ‘Spatial scale’ (IN), ‘Impact
type’ (TO), ‘Cause’ (FROM) and “Time frame’ (WITHIN), in
which vulnerability is being considered (Figure 4).

Vulnerability is a function of the character, magnitude and rate
of the climate change to which the species or entity is exposed
(i.e., external factors), and its intrinsic sensitivity and adaptive
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capacity. These three components of vulnerability, namely
exposure, sensitivity, and adaptive capacity, provide a valuable
entry point into climate change vulnerability assessments.
While these terms can be broadly applied at a range of scales
to both natural and human systems, we outline them below
in the context of species’ vulnerability to climate change and
highlight their relationship with climate change vulnerability
in Figure 2.

Exposure

Exposure describes the nature, magnitude and rate of changes
experienced by a species, and includes changes in both
direct climatic variables (e.g., temperature, precipitation)
and associated factors (e.g., sea level rise, drought frequency,
and ocean acidification) (e.g., Stein ez al., 2014). Changes in
habitats and regions occupied by the species are also included
(e.g., Dawson ez al., 2011). Measures of future climate exposure
are typically informed by scenario projections derived from

General Circulation Models (GCMs).

Sensitivity

Sensitivity is the degree to which a species, habitat or ecosystem
is or is likely to be affected by or responsive to changes (e.g.,
Glick er al., 2011). This depends on how tightly the species is

coupled to its historical climatic conditions, particulatly those
climate variables that are expected to change in the future (e.g.,
Dawson et al., 2011).

Sensitivity is mediated by a range of characteristics that
influence the fitness of individuals and recovery of populations
comprizingaspecies. These characteristics include physiological,
behavioural and life history traits that influence: the degree
to which species are buffered from exposure to sub-optimal
conditions; their ability to tolerate changes in environmental
conditions and cues, as well as in interspecific interactions;
and their ability to regenerate and recover following impacts.
The characteristics also include within and across-generation
plastic responses and genetic variability in traits that facilitate
regeneration and recovery.

Adaptive capacity

Adaptive capacity describes the degree to which a species,
habitat or ecosystem is able to reduce or avoid the adverse
effects of climate change through dispersal to and colonization
of more climatically suitable areas, plastic ecological responses,
and/or evolutionary responses (Williams ez a/., 2008; Nicotra
et al., 2015; Beever et al., 2016).

Figure 4. Five key parameters for describing vulnerability of biodiversity to climate change. An example of a specific use
for assessing an ecosystem is: “Vulnerability OF temperate forests IN North America TO declines in carbon storage FROM
temperature and precipitation changes and pine bark beetle damage WITHIN the next 50 years”. An example of specific

use for assessing species is: “Vulnerability OF tuna species IN the southern Atlantic TO range shifts and population declines
FROM rising ocean temperatures WITHIN the next 10 years”.
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Hazard
The magnitude of a natural or human-induced climate-related
physical event or change that may cause impacts on species.

Impact
The expected or observed loss or gain in species, habitat or
ecosystems due to a hazardous event.

Risk

'The potential consequences to species of future climate change.
Risk is often represented as probability of occurrence of
hazardous events or trends multiplied by the impacts if these

events or trends were to occur.

2.2 Climate change vulnerability
assessment approaches

Here we discuss the approaches commonly used to carry out
CCVAs. Understanding the origins, principles, advantages
and limitations of these approaches is important both for
those needing to select approaches and the methods used to
apply them, as well as those wishing to use CCVA outputs
that others have generated. The methods used to date to assess
species’ CCVA can be classified into three main approaches:
1) correlative; 2) mechanistic; and 3) trait-based. These
approaches are summarized in Figure 5, based on a review
carried out by Pacifici ez al. (2015), which should be referred to
for further details and examples. The figure includes examples
of the application of each approach, as well as combinations of
more than one approach.

2.21 Correlative approaches

The use of correlative models, also referred to as niche-based
or species distribution models, for climate change vulnerability
assessment began around the early 1990s (e.g., Busby, 1991;
Walker & Cocks, 1991; Carpenter ez al., 1993). They use
correlations between each species’ distribution ranges and
its historical climate to estimate its climatic requirements, or
climatic niche (e.g., Hutchinson, 1957). Using this information
and projections of future climates, these models predict the
potential geographic areas of suitable climate for the species
in the future (e.g., Pearson & Dawson, 2003; Beale ez al.,
2008). Consideration of whether species will be able to disperse
to and colonize such areas, as well as whether biotic and
abiotic conditions are suitable for them, are important when
interpreting whether areas predicted to be of potentially suitable
future climate could become part of species’ future distribution
ranges. Species’ climate change vulnerability is typically
inferred from predicted difference in range size and location,
and occasionally from changes in degree of fragmentation (e.g.,
Garcia et al., 2014b).

Correlative models’ assumption that species’ distributions

are in equilibrium with their climates is problematic, since

this ignores the roles that inter-specific interactions, habitats,
geographic barriers and humans play in shaping current
distributions (Guisan & Thuiller, 2005). Correlative approaches
perform poorly for narrowly-distributed species (which are
typically those most threatened and of greatest conservation
concern) both because their distributions are less likely to be
constrained by climate pressures, and because the models’
statistical requirements for many spatially independent
occurrence records cannot be met (e.g., Stockwell & Peterson,
2002; Platts ez al., 2014). Correlative methods typically ignore
the many mechanisms of climate change impacts beyond
shifting climatic suitability (e.g., loss of resource or mutualist
species) that have been shown to be important causes of climate-
change related population declines (e.g., Ockendon ez 4., 2014).
In addition, they do not consider the biological traits that are
known to play an important role in shaping species” sensitivity
and adaptive capacity to climate change (e.g., Jiguet ez al., 2007;
Dawson et al., 2011). Further discussion on the caveats and

limitations of correlative approaches is found in Heikkinen ez
al. (2006), Aratjo et al. (2012) and Franklin (2013).

Despite these drawbacks, correlative methods have been
shown to perform well in predicting observed climate change-
driven range shifts (e.g., Chen ez af., 2011; Dobrowski ez al.,
2011; Morelli ez al., 2012; Smith et al., 2013) and changes in

Figure 5. Summary of the three main CCVA approaches
(1-3) and the six categories their combinations create, as
well as published examples of their use.

1 4 2
Correlative Trait-based
6

5
3
Mechanistic

1. Correlative: e.g., Thuiller et al., 2005; Huntley et al., 2008a;
Arajo et al., 2011

2. Trait-based: e.g., Chin et al., 2010; Young et al., 2011; Foden et
al., 2013

3. Mechanistic: e.g., Kearney & Porter, 2009; Monahan, 2009

4. Correlative-Trait-based: e.g., Schloss et al., 2012; Warren et al.,
2013; Garcia et al., 2014a

5. Correlative-Mechanistic: e.g., Anderson et al., 2009; Midgley et
al., 2010; Aiello-Lammens et al., 2011; Laurance et al., 2012

6. Correlative-Trait-Mechanistic: e.g., Thomas et al., 2011; Keith
etal., 2014




2. Setting the scene

population abundance (e.g., Gregory ez a/., 2009). They do not
require information on species biology as input data, and they
deliver spatially explicit outputs that are informative for spatial
conservation planning (e.g., Hannah ez al., 2002; Aratjo ez al.,
2004; Phillips et al., 2008; Aradjo ez al., 2011). Tools with user-
friendly interfaces such as MaxEnt (e.g., Phillips ez a/., 2004;
Phillips & Dudi, 2008), BIOMOD (e.g., Thuiller, 2003) and
the Wallace Initiative (e.g., Warren e /., 2013) are available
to apply several correlative methods. They can also be applied
to assess impacts of climate change on species across networks
of sites identified for conserving particular species, such as
protected areas or Key Biodiversity Areas, by projecting species
distribution models onto individual climates for each site in a

network (e.g., Hole ez al., 2009; Bagchi ez al., 2013).

provides a summary of the types of correlative methods

available for CCVA, examples of their use, as well as the tools
available for their application. Pearson (2007) provides an
excellent and accessible reference for understanding and using
correlative methods, including for CCVA.

2.2.2 Trait-based approaches

Traitbased vulnerability assessment approaches (T'VAs) use
species’ biological characteristics to estimate their sensitivity
and adaptive capacity to climate change, typically combining
these with estimates of the extent of their exposure to climate
changes (e.g., Williams ¢t a/. 2008, Young ez al. 2012, Foden
etal. 2013a, Smith ez al. 2016). These methods require biological
data and typically also broad-scale distribution information
(e.g., a distribution range map). Biological knowledge of the
focal taxonomic group is required to parameterize how, and
to what extent, individual traits relate to climate change
vulnerability, as well as to evaluate each species according to
their possession of these traits. Exposure may be estimated
using GIS-based modelling (e.g., Foden et al, 2013), user-
friendly interfaces presenting generalized climate projections
(e.g., hetp://www.climatewizard.org/), any number of statistical
programs or languages (e.g., R, Python, MatLAB), or expert
judgment (e.g., Chin et al., 2010). Where species’ distribution
information is lacking or where simplistic or preliminary
assessments alone are required, exposure assessments are
sometimes omitted (e.g., McNamara, 2010; Advani, 2014).
Sensitivity, adaptive capacity and preferably exposure scores are
then combined to assign species to a category of vulnerability.

Appendix Table B provides a summary of the types of trait-

based methods available for CCVA, examples of their use, as
well as the tools available for their application.

Trait-based approaches are most widely used to inform
prioritization of species for conservation interventions. Because
they are unable to predict species’ suitable future climate space,
they provide more limited support for spatial conservation
planning. Further, the precise vulnerability thresholds
associated with each trait are seldom known, requiring
estimation or selection of arbitrary relative values (e.g., Foden

et al., 2013; Garcia et al., 2014a). There is little consensus

David Bickford with a Fordonia Mangrove Snake (Fordonia
leucobalia). This species is found almost exclusively in mangroves,
which are vulnerable to inundation when sea levels rise faster than

they are able to cope with. Countless other species will also be

affected. © David Bickford

on approaches for combining trait scores to assess exposure,
sensitivity or adaptive capacity scores, nor for combining these
into overall CCVA scores, and many methods simply weight
traits equally (e.g., Laidre ez al., 2008; Foden ez 4l., 2013) even
though some characteristics are likely to be more important
than others in determining climate change vulnerability (e.g.,
Pacifici et al., 2015). Because many traits tend to be taxon-
group specific, most methods don’t allow direct comparison of
vulnerability among taxonomic groups.

Although TVAs were amongst the earliest proposed approaches
(e.g, Herman & Scott, 1994), they have only gained
prominence recently (e.g., Williams ez 4/., 2008; Graham ez al.,
2011; Young ez al., 2015) and hence remain largely unvalidated.
They are becoming increasingly used by conservation
organizations and management agencies, however (e.g., Bagne
et al., 2011; Glick ez al., 2011; Carr et al., 2013; Foden et al.,
2013; Johnson, 2014; Young et al., 2015; Hare ez al., 2016), since
they allow relatively rapid vulnerability assessment for multiple
species, do not necessarily require modelling expertise (e.g.,
Pacifici et al., 2015), and because their involvement of experts
and easily understood and applied methods promote buy-in and
use. They allow consideration of many mechanisms of climate
change impacts on species, and their consideration of species’
biological traits meets the growing recognition of the need to
consider species’ individualistic responses to climate change.
Finally, they are applicable to all species, irrespective of their
distribution size; this and their relatively low requirements for
detailed distribution information mean that they can be widely
applied to all members of entire taxonomic groups, making them
particularly useful for broad-scale conservation assessments.

2.2.3 Mechanistic approaches
Mechanistic or process-based models predict species’ likely

responses to changing environmental conditions by explicitly
incorporating known biological processes, thresholds and


http://www.climatewizard.org/

ITUCN SS8C Guidelines for Assessing Species’ Vulnerability to Climate Change

interactions (e.g., Morin & Thuiller, 2009). Mechanistic
niche models use estimates of species’ physiological tolerances,
typically from laboratory and field observations (e.g.,
Jenouvrier ez al., 2009; Radchuk ez al., 2013; Overgaard ez al.,
2014) or from energy balance equations (e.g., Molndr e# al.,
2010; Huey et al., 2012), to estimate niche parameters. This
provides an approximation of species’ potential or fundamental
niche, thereby avoiding the limitation faced by correlational
approaches due to their assumption that species are at

equilibrium with their environments.

Mechanistic models are able to accommodate a broad range
of climate change impact mechanisms including changes
in resource availability (e.g., Hoffmann e 4/, 2010), land
use (e.g., Mantyka-Pringle et al., 2014; Martin et al., 2015),
predation, competition (e.g., Urban ez /., 2012), stream flow
(e.g., Crozier ez al., 2008) and changes in habitat suitability (e.g.,
Hunter et al., 2010; Aiello-Lammens et al., 2011; Forrest et al.,
2012). They can include species-specific characteristics such as
dispersal distances (e.g., Kearney ez al., 2008; Keith ez al., 2008),
longevity, fecundity (e.g., Saltz ez al., 2006), density dependence
(e.g., Leroux er al, 2013), morphological factors, genetic
evolution, phenotypic plasticity (e.g., Chevin ez al., 2010; Huey
et al., 2012) and demographic stochasticity (e.g., Hunter ez al.,
2010). They can also include interactions between mechanisms
such as land use change and climate change (Mantyka-Pringle
et al., 2014, 2016). Other mechanistic models consider the
changes in vegetation distribution and dynamics using groups
of species (e.g., plant functional types), based on bioclimatic
and physiological parameters (e.g., Morin & Thuiller, 2009).

Appendix Table  provides a summary of the types of

mechanistic methods available for CCVA, examples of their
use, as well as the tools available for their application.

Key strengths of mechanistic models include their ability to
inform a mechanistic understanding of the processes driving
climate change vulnerability (Kearney & Porter, 2009),
provide a credible way to forecast response to novel situations
(e.g. extrapolate rather than interpolate) and form the basis for
identifying responses implications for management actions
(e.g., Fordham er al., 2013a; Mantyka-Pringle ez al., 2016).
They include a range of climate change impact mechanisms,
consider species’ individual biological traits and may be applied
to narrowly distributed species. However, their generally
intensive requirements for physiological, demographic and
distribution knowledge and data (Morin & Thuiller, 2009), and
hence their relative costliness (Kearney & Porter, 2009; Chevin
et al., 2010), is a significant limiting factor in their application
which, to date, is restricted to only a few well-studied species.

2.2.4 Combined approaches

The approaches discussed above are those most commonly
used in vulnerability assessments. However, there is a growing
consensus that combining approaches may yield models
that capture the advantages of each. Here we briefly discuss
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combinations of the approaches that have been applied to
date, noting that, to our knowledge, no studies of combined
trait-based and mechanistic approaches have been published.

Appendix Table D| provides a summary of the types of

combination approach methods available for CCVA, examples
of their use, as well as the tools available for their application.

Correlative-TVA approaches

Correlative and trait-based approachesare typically combined in
two ways. In the first, traits are used to create more biologically
realistic correlative models, and data such as dispersal distances,
generation lengths and habitat preferences are used to refine
estimates of species’ exposure and/or range dynamics. Schloss
et al., (2012), for example, used natal dispersal and generation
length to predict the future distribution of terrestrial mammals
in the Western Hemisphere under climate and land-use changes,
and Warren et al., (2013) have applied a similar approach to
a range of taxonomic groups. Prevalence of certain traits has
also been used to identify species and regions where correlative
models may under- or over-predict climate change vulnerability
(e.g., Garcia et al., 2014a). In the second approach, correlative
model results may be included in trait-based approaches to
contribute to overall measures of vulnerability (e.g., Young ez
al., 2012). By integrating exposure calculated with correlative
models, the indices derived from TVAs acquire more reliable
estimates of the risks posed by climate change, accounting for
both intrinsic and extrinsic factors (Willis ez a/., 2015).

Correlative-Mechanistic approaches

Outputs of correlative models may be used to project the location
of a species’ suitable climate space in various time steps into
the future, while mechanistic models project resulting impacts
on habitat suitability and population dynamics resulting from
these changes across landscapes (Keith ez /., 2008; Anderson
et al., 2009; Midgley ez al, 2010; Aiello-Lammens ez al.,
2011). Some studies have integrated life-history characteristics
into models to produce more accurate projections of species’
responses to climate change (e.g., Midgley er /., 2010) while
others have additionally included inter-species interactions
(e.g., Harris et al., 2012; Fordham ez al., 2013).

Criterion-based methods: a combined Correlative-
Mechanistic-Trait approach

Thomas et al. (2010) used combinations of species’ observed
changes (e.g., recorded population declines), projected changes
(potentially from correlative and/or mechanistic models) and
life history traits (e.g., generation length) to estimate climate
change vulnerability of a range of UK species. Similar to
the JUCN Red List, the various information sources were
combined through a criterion-based system that classified
species into vulnerability categories based on quantitative
thresholds. Such criterion-based methods can account for
several factors known to affect species’ relative extinction risk
(e.g., decline in extent of occurrence, reduction in population
size), and are able to accommodate species for which different

amounts of data are available.
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Criteria that predict vulnerability to climate change can overlap
extensively with those used in IUCN Red List assessments.
Pearson et al. (2014) found that characteristics predisposing a
selection of North American herpetofauna to climate change
vulnerability are also included in the information already
compiled to assess species’ extinction risk through the IUCN
Red List categories and criteria. In related studies, Pearson ez al.
(2014), Stanton ez al. (2015) and Keith ez 2l. (2014) showed that
TUCN Red List extinction risk category is a good predictor of
climate change vulnerability for six groups of North American
reptiles and salamanders, and for an Australian frog species.
Akgakaya ez al., (2014) concluded that these studies suggest that
TUCN Red List assessments, if sufficiently frequently updated,
reflect extinction risk owing to climate change vulnerability,
and can provide decades of warning time before species go
extinct. Further research is needed to extend the approach to
other taxonomic groups. For IUCN Red List assessments to
give results comparable across taxonomic groups, it is essential
that the thresholds and time periods used in the criteria are not
altered (Akgakaya et al., 2006), and the guidelines developed
by IUCN are followed (IUCN Standards and DPetitions
Subcommittee, 2014).

2.3 Metrics for estimating climate change
vulnerability

The three approaches produce different measures or metrics of
climate change vulnerability as outlined in Figure 6. These are
discussed in Pacifici e al. (2015) and highlighted below.

2.3.1 Vulnerability indices and other relative
scoring systems

Vulnerability indices can be derived from the outputs of all
approaches, integrating across multiple indicators or metrics.

They may be a direct output (e.g., for most trait- and criterion-

Figure 6. The four main metrics or types of information
derived from CCVA and the approaches that produce

them. The metrics increase in detail from left to right.

Trait-based Correlative Mechanistic

Geographic
range
changes

Extinction
probability

Vulnerability
indices

Population
changes

Increasing detail
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based approaches) or they may be developed by classifying any
of the other quantitative measures of vulnerability (i.e., range
changes, population changes or extinction probabilities) into,
for example, categories of high, medium and low vulnerability.
Although these measures are typically unitless, combine
different sorts of information and are often subjective, they
are easily communicated to high-level decision-makers and the

lay public.
2.3.2 Range changes

Predictions of changes in suitable climate space are products of
both correlative and mechanistic niche models and are used to
infer potential distribution changes based on climate suitability
for focal species within a landscape, or at one or more sites.
Species’ ability to disperse to, colonize and survive in the newly
climatically suitable areas are important considerations when
interpreting and using such metrics, and explicit inclusion
of these can provide more robust predictions. Metrics of
distribution change typically include the change in overall
range size (calculated by subtracting future potential range
size from current range size, and adding future potential range
gained; (Thuiller ez /., 2011; Schloss ez al., 2012), the overlap
(and potentially distance) between current and future ranges,
and the rate at which species’ climate space is projected to shift
across the landscape.

2.3.4 Population changes

Population changes, often in a detailed spatial context, can
be inferred from projected changes in suitable habitat that are
estimated by correlative and mechanistic models (Nenzén &
Aratjo, 2011). It is important to consider, however, that species
may be unevenly distributed within their ranges, and hence the
relationship between projected habitat loss and range change
may not be linear. Population changes may also be explicitly
projected by using past trends, climate and other driver data as
input to mechanistic models (Jenouvrier ez al., 2009; Regehr
et al., 2010), which consider the effects of changes in model
parameters (e.g., distribution patterns, life history), and usually
combine forecasts from different scenarios to estimate the
magnitude of the projected reduction.

2.3.5 Extinction probabilities

Extinction probabilities can be derived from the use of
mechanistic models (Hunter ez 4/., 2010; Thompson ez al.,
2012) evolutionary models (Vedder et al., 2013) or Population
Viability Analyses (PVAs) when the life-history characteristics
of populations are known (Maschinski ¢t a/., 2006; Jenouvrier
et al., 2009). For calculating extinction probabilities within a
given time interval, population vital rates are usually coupled
to changes in environmental parameters (e.g., temperature,
precipitation, CO, levels).
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The Haleakala Silversword (Argyroxiphium sandwicense subsp. macrocephalum) grows on volcanos in the Hawaiian chain of islands. Having
survived near extinction from grazing and human depredation, it now faces climate change driven declines in rainfall, as well as rising
temperatures which affect the inversion layer over the mountains, further reducing moisture. © Paul Krushelnycky




3. Setting Climate Change Vulnerability
Assessment goals and objectives

Bruce E. Young, Tara Martin, James Watson, Wendy B. Foden, Stephen Williams and Brett Scheffers

3.1 Defining your goal

Clear goals facilitate the establishment of well-structured
objectives and promote clear, verifiable CCVA outputs and
effective conservation impacts. Being clear about the needed
outcomes before initiating research will help ensure: i) that
the outputs of the analysis will fulfil needs; i) that assessments
will not need to be repeated soon; iii) that the project can be
completed in a reasonable amount of time without cost overruns;
and iv) that the results will influence the intended audience. We
reiterate the importance, when setting goals, of distinguishing
between CCVA (which this document describes) and adaptation
planning (which is not this document’s focus). Climate change
vulnerability assessments are carried out to help identify what
is at risk and why, while climate change adaptation planning,
which is informed by CCVA information, focuses on how to
respond to these risks.

A well-defined goal answers the following questions:

1. Why are you carrying out this CCVA?

2. Who is your audience?

3. Which decisions do you hope to influence using the results?

3.1.1 Why are you carrying out this CCVA?

Start by answering this basic question. Knowing in a general
sense the achievements anticipated by the vulnerability
assessment will then guide answers to other questions about the
audience addressed and the decisions to be influenced, as well
as the specific objectives that will further define the project.
Examples of goals you may have for your CCVA are:

* To determine the degree of vulnerability to climate change
of one or more species in a particular region or across their
entire ranges.

* To perform an academic exercise.

* To provide input into a specific adaptation planning process
(designed to address a single species, a suite of species, a
geographic area, or something else) that is either underway
or planned.

* To obtain quantitative information about a species’ response
to a changing climate as input into a demographic model.

* To use a vulnerability assessment as a means to learn more
about how climate change might influence species of interest
to a particular group of people.

Regardless, answering this basic “why” question will help
address the subsequent questions, which in turn will guide you
in choosing an appropriate methodology for your assessment.
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3.1.2 Who is your audience?

Vulnerability assessments may be targeted at one or more
audiences, including policymakers, land/resource managers,
scientists or the general public. Audiences can vary widely in
their objectives, as well as in their management and decision-
making processes, and these differences can affect the specifics
of the vulnerability assessment, including the choice of
methods, level of needed rigor, the reporting styles and the
objectives of the assessment itself. For example, language
used to address the public will be less technical than that
used to address the scientific community. Similarly, resource
managers and policymakers will require information to be
communicated in a language that is directly relevant to the
contexts (e.g., biological, legislative) in which they work.

3.1.3 Which decisions do you hope to
influence using the results?

Understanding how the audience for an assessment engages
in planning and management processes is key to developing
the objectives of a vulnerability assessment. The results of an
assessment are more likely to have an impact if they align with
the management needs of the intended audience. For example,
at the local level, managers might develop site conservation
plans for the planning, implementation and monitoring of
management actions at a single site. By contrast, government
entities such as a national parks agency may develop
management plans for a network of sites. A subnational
government may be interested in prioritizing species that
occur within their jurisdiction for management consideration.
In each situation, the management process is different and
requires vulnerability assessments with different objectives.

3.2 Defining your objectives

Objectives describe the one or more specific action steps needed
to achieve your CCVA goal. We describe six broad CCVA

objective categories.

To identify, for specified taxonomic groups, regions AND

time frames:

* Which species are most vulnerable

* How much — how vulnerable species are (i.c., the magnitude
of vulnerability)

* Why species are vulnerable

® Where species are vulnerable
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* When species become vulnerable
* What’s missing (i.e., what data and information are needed
to be able to carry out a good CCVA).

Scale is a fundamental consideration in ecological and
conservation science (Levin, 1992). Patterns exist at multiple
levels of organization across a wide range of taxonomic, spatial
and temporal scales. Identifying appropriate scales of focus
for a given CCVA and defining objectives in terms of each are
critically important steps in setting clear, effective objectives
since they will directly influence the approaches, methods and

resources required to address them.
3.2.1 Selecting a taxonomic focus

CCVAs

metapopulation, population or individual levels, as well as

can be carried out at species, subspecies,
at higher taxonomic levels (e.g., genera) or for species from
multiple taxonomic groups (e.g., all vertebrate species occurring
in a particular area or belonging to a specific functional group
or guild). Most assessments, however, focus at the species level
or below since these entities tend to (though do not always)
have relatively consistent biological characteristics (e.g.,
climatic tolerances and dispersal abilities). We encourage users,
as far as possible, to make use of widely accepted taxonomic
classification systems (e.g., see the [IUCN Red List taxonomic
standards and references') in order to maximize applicability

and comparability of outputs.

A checklist is provided below to assist practitioners in setting
clearly defined objectives (Table 1). Examples of objectives,
grouped according to their taxonomic focus, spatial extent and
objective categories, are shown in Table 2.

3.2.2 Selecting a spatial focus

An assessment’s spatial focus may be a taxon’s range (e.g., the
entire distribution of a species, subspecies or subpopulation), a
site (e.g., an individual protected area or discrete area containing
a subpopulation of a species, such as a Key Biodiversity Area)
or a network of such sites, a political or administrative unit
such as a state or nation, or a larger spatial scale (including a
land- or sea-scape, region, continent or even the world). Some
CCVA approaches and methods have specific requirements for
setting spatial foci, so a more detailed discussion of selection of
CCVA focal extent is included in Section 5.1.1 (Spatial extent

and resolution)

3.2.3 Selecting a timeframe

Time frames of assessments are most often shaped by users’
specific interests or needs (e.g., a 10-year planning horizon for

site manager) in conjunction with the following important
For

considerations. taxon-focused  assessments, species’

' http://www.iucnredlist.org/technical-documents/information-sources-
and-quality#standards
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Table 1. Checklist to aid identification of clear, quantitative objects.

i) Select an objective category:

Which? | How Why? Where? |[When? |What's
much? missing?
i) Select a taxonomic focus (for example):
Population Species | One taxonomic | Multiple taxonomic
group groups
Select a spatial focus:
ili) | Taxon’s range | Site Network of Larger spatial scales
sites

iv) Select a time frame (for example):

20 years

| 100 years | 50 years | 5 years | Present

generation lengths should be an important consideration.
For shorter-lived species, shorter projection intervals are more
appropriate (e.g., as per the IUCN Red List guidelines, three
generations, but with a minimum of 10 years), while for
longer-lived species, longer projection intervals are needed to
adequately consider vulnerability (e.g., three generations, but
to a maximum of 100 years).

Uncertainty in climate projections is considerably higher further
into the future, so the range of plausible results increases over
very long time frames (e.g., >50 years). However, confidence in
projecting whether a species is vulnerable is most likely going
to increase with time for many species. Because projections
are calculated as means, those for shorter time periods (e.g.,
<20 years) are more prone to bias by extreme values. In the
IPCC’s latest (2013) projections, for example, 20-year intervals
are reflected, namely 201635 (2025 mean), 204665 (2055
mean) and 2081-2100 (2090 mean). While obtaining detailed
model output and compiling projections for custom periods is
possible, this requires considerable processing and appropriate
expertise. Using the readily available means does, however,
limit the time frames that can be considered when computing

the CCVA.

A Rbacophorus angulorostris frog from Mt. Kinabalu, Borneo. These
frogs require clean, fast-flowing montane rivers to breed so any
disruption to typical seasonal rainfall can have pronounced effects
on reproductive success. Conditions on the mountains are becoming
drier and hotter and a protracted drought could spell disaster for this
and many other amphibian species. © David Bickford
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Table 2. Heuristic examples of CCVA objectives, grouped according to six objective categories, and their scope of focus.

Examples of CCVA objectives. To identify, for specified taxonomic groups, regions and time frames:

Taxonomic focus

Which? ¢ Which species (e.qg., birds, amphibians, plants) are most and least vulnerable to climate change across their global distribution
ranges
e Which of the organisms (e.g., marine fishes, rainforest seed-dispersers, migratory animals) are most and least vulnerable to
climate change
¢ Which population of a threatened species is most and least climate change vulnerable

How much? ¢ How much is the focal species’ suitable climate space likely to contract or expand over the next 10/25/50/100 years
¢ How far and fast will the species need to move to track their climate space by 2050

Why? e Which impact mechanisms will the species face
e |s the species sensitive, exposed and/or poorly adaptive to direct/indirect climate change
¢ Which components of the changing climate pose the greatest risk to the focal species (e.g., maximum temperatures vs. water
availability in the dry season, increased discrete events vs. long-term continuous events)

Where? o Which areas will be climatically suitable for the focal species in 10/25/50 years’ time
e Which regions or countries contain species most vulnerable to climate change
e Whether the most climate change vulnerable species occur in areas where humans are also most vulnerable to climate change

When? o Whether climate change is likely to affect the species within the next 10 years

¢ When the climate within a specific section of the species’ range will no longer be suitable
What'’s ¢ Which are the key uncertainties that require additional data collection and/or research for better assessing vulnerability to
missing? climate change of the species

Spatial focus on multiple species at a single site

Which? e Which species currently occurring in a protected area are most and least vulnerable to climate change
e For which currently occurring species the site will remain or become climatically suitable in 10/25/50 years’ time
e For which species not currently occurring at the site it may become suitable in 10/25/50 years’ time

How much? e \What is the predicted turnover (i.e., loss and gain) of species at the site by 2050
Why? e Which aspects of vulnerability (i.e., sensitivity, exposure and/or poor adaptive capacity) are most prevalent for the species at
the site

¢ Which aspects of projected climate change play the greatest role in driving climate change risk for species at the site
e Which biological characteristics of species at the site are enhancing and/or reducing their resilience and/or adaptive capacity
e Which biological characteristics of species at the site are enhancing and/or reducing their resilience and/or adaptive capacity

Where? e Which areas within the site are expected to change the least and therefore provide potential refugia for species
e Whether areas around the site could be suitable as corridors or stepping stones for species with shifting ranges
When? e \When the site will no longer be climatically suitable for its flagship species
o Will the site remain suitable for its focal species in 10/25/50 years’ time
What’s e Which are the key uncertainties that require data collection and/or research for better assessing vulnerability to climate
missing? change of the species at the site

Spatial focus on multiple species occurring in a network of sites or at larger spatial scales

Which? ¢ Which of the protected areas in the region/country currently contain the greatest and lowest numbers of climate change
vulnerable species
e Which sites are likely to undergo greatest and least turnover in species due to climate change
e At which sites are local climates projected to remain suitable for the species currently occurring there
e Which species currently not occurring at the site may potentially colonise it owing to the climate becoming suitable in future
e For which sites and species is improved connectivity between sites most important

How much? ¢ How much extinction risk of focal species will be increased by climate change by 2030
¢ How many species are predicted to lose all suitable climate space within the site network
How much of focal species’ future distributions are contained in the current protected area network

Why? ¢ Which aspects of projected climate change play the greatest role in driving climate change vulnerability across the landscape
e Which aspects of vulnerability (i.e., sensitivity, exposure and/or poor adaptive capacity) are most prevalent for the species
¢ How many and which species face extrinsic and intrinsic barriers to tracking their shifting climates

Where? e Where will the climate be suitable for species currently occurring in the site network or region in 10/25/50 years’ time
¢ The location of potential refugia and/or corridors for species range shifts
e Which areas are most important to add to the conservation network

When? ¢ When will the greatest shifts in species composition across the protected area network occur
e When is a species likely to lose all suitable climate within the site network

What’s missing? e Which data and/or research is of greatest priority for better assessing vulnerability to climate change of species in the site network
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Koalas (Phascolarctos cinereus) only feed on a few species of eucalyptus trees, choosing those whose leaves contain less tannin and more
protein. Increasing CO, levels cause increases in leaf tannin levels while decreasing protein, thus lowering the nutritional value of the
leaves. In addition, during very hot and dry periods Koalas descend from the trees searching for water, which puts them at greater risk from

predators. © Flickr - Erik K. Veland
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4. Selecting and evaluating CCVA
approaches and methods

Wendy B. Foden, Raquel A. Garcia, Philip Platts, Jamie Carr, Ary Hoffmann and Piero Visconti

4.1 Steps for selecting your CCVA
approach and methods

After the essential first step of setting clear CCVA goals
and objectives, conservation practitioners face a range of
considerations for choosing how to proceed toward obtaining
the results needed to meet them. This section identifies these
and provides steps to systematically guide users through the
necessary decisions (see Figure 7).

Step 1. Identify and evaluate existing CCVAs

Growing numbers of CCVA studies have been conducted to
date and many are published in academic and management-

related literature, as well as online. Before embarking on a
CCVA, we therefore recommend carrying outa literature search
to establish whether your focal species, site(s) or region(s) has/
have already been assessed, if the assessments are accessible, and
whether they are suitable for your purpose. Even if they don’t
prove suitable, such assessments may still provide information
about previously unknown data and expertise, as well as on how
region- or context-specific challenges were addressed. Table 3
(over) lists examples of CCVA assessments that are generally
freely available. For studies where only high-level syntheses of
results are publicly available and assessors require more detailed
(e.g., per species) results, we recommend contacting authors to
request access to species-level results and data. On the same
note, we urge assessors to make their own results and, where

Define your CCVA objectives

[Tabkes ¥ & 33

1. Has a CCVA
already been
carried out?

Tabde 1)

Mo

1
Carrying out a new CCVA

2, ldentify CCVA approaches

that meet your objectives
(Tnbia 4 & 7)

3. Identify CCVA approaches for
which you have sufficient
FresSouUrces (Tabies 3@

4, Do steps 2 and 3
identify any of the
same approachs?

5. Select your approachies) and
the method(s) for applying them

suitable?

Follow guidelines for using CCVAs
& interpreting their results

Figure 7. Conceptual steps for CCVA
of species, including setting objectives,
identifying and evaluating existing
assessments, carrying out new ones
and interpreting their results. Resources
include data, time and expertise.
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Table 3. Examples of species-level open-access CCVA studies and/or results that may be useful for meeting users’ goals.

CCVA Coverage Description

Reference

African Birds
2085, (correlative approach)

Maps of species’ projected ranges by 2025, 2055 and

BirdLife International and Durham University: http://www.
africa-climate-exchange.org/maps/

Global birds, amphibians,
warm-water reef-building

Vulnerability scores for each species (highly
vulnerable/less vulnerable); maps of areas of high

(Foden et al., 2013). Scores available in appendices at:
http://www.plosone.org/article/

corals concentrations of highly vulnerable species (trait- info%3Adoi%2F10.1371%2Fjournal.pone.0065427; Trait data
based approach) available upon request to IUCN.
African Albertine Rift Vulnerability scores for each species (highly (Carr et al., 2013). Scores available in appendices: http://

mammals, reptiles,
freshwater fishes, some

plants based approach)

vulnerable/less vulnerable); maps of areas of high
concentrations of highly vulnerable species (trait-

www.traffic.org/non-traffic/SSC-0P-048.pdf

Australian birds

Rankings of species’ sensitivities, adaptive capacities

(trait-based) and maps of projected exposure

(correlative)

(Garnett et al., 2013) http://www.nccarf.edu.au/sites/default/
files/attached_files_publications/Garnett_2013_Climate_
change_adaptation_strategies_for_Australian_birds.pdf

Arctic and sub-Arctic
mammals

Vulnerability scores (trait-based)

(Laidre et al., 2008) http://www.esajournals.org/doi/
pdf/10.1890/06-0546.1

European birds

(correlative approach)

Detailed species’ accounts and maps of species’
current and projected (late 21st century) ranges

(Huntley et al., 2007) http://www.lynxeds.com/product/
climatic-atlas-european-breeding-birds

possible, their data publicly available in useable formats for use

on other CCVAs.

This step is intended to guide evaluation of the suitability and
rigorousness of CCVAs both by those needing to use the results
for conservation planning and more broadly, for example
during peer-review. We outline a series of important guiding
questions (see Figure 8), and since several of these overlap with
the steps needed to develop and interpret CCVAs, we refer
users to those sections. The important first step is to identify
the CCVA authors’ objectives, which may be explicitly stated,
implicit, or sometimes difficult to determine. Classifying these

according to the six objective categories outlined in

(Defining Your Objectives) and specifying the taxonomic and

regional focus and time frame focus is advisable, since each of
these must be applicable.

If the study’s objectives support users” own goal(s) then the next
step is to ensure that appropriate methodological approach(es)
have been used (i.e., correlative, trait-based, mechanistic, or
combined approaches). This, and the subsequentstep of ensuring
the specific methods used to apply the approach are appropriate,
are described in Steps 2—5 below. Users should then explore
whether these have been responsibly applied, which includes
evaluating the species data, climate data, bioclimatic variables
and spatial and temporal scales used (Section 5 (Using CCVAs
bnd Interpreting their Resulti)). Next, users should consider

how the study has dealt with uncertainty, including from
species and climate data, from the inherent characteristics of
selected approach(es) and method(s) (1Section 6 (Understanding
bnd Working with Uncertaintyb). Finally, although this has

been rare to date, some CCVA authors endeavour to test or

validate their assessments based on observed species changes,
including population changes (e.g., Foden ez 4l., 2007; Gregory
et al., 2009; Sinervo ez al., 2010) or range changes (e.g.,
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Mitikka ez al., 2007; Tingley ez al., 2009, 2012). Validation can

clearly boost confidence in original findings
(CCVA validation))). In the more common case of unvalidated

results, users may wish to examine population data and any
observed range shifts to establish whether these data support or
contradict the assessments.

These steps are intended to provide generalized guidance to help
users evaluate suitability-for-use of existing CCVA assessments.
Recognizing the value and resource-saving that sound, ‘ready-
to-use’ assessments can provide for the conservation community,
we strongly encourage those carrying out CCVAs to make their
data, methods and results publicly available.

Emperor Penguins (Aptenodytes forsteri) live most of their lives on sea
ice in Antarctica. Reductions of sea ice due to rising temperatures
have already been recorded and look set to continue, threatening
their habitat. Reduced sea ice also correlates with reduced krill

populations, which will have negative consequences for all species
higher up the food chain including Emperor Penguins. © Antarctic
Legacy of South Africa
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4. Selecting and evaluating CCVA approaches and methods

Will this existing
CCVA meet my needs?

IDENTIFY THE OBJECTIVE(S)
of exisiting CCVA

1

Do these support my goals?

Yes

Was the methodological approach
appropriate for the objectives

Are the selected methods appropriate?

Has the approach & method been correctly
applied, including: species & climate data,
spatial scale, etc.

Have the authors explored the extent of
uncertainty in the results?

+
CONSIDER

Have the authors
validated their results?

Yes <+

Are you

able to — Mo

validate
them?

The study
is NOT
SUITABLE

The study

Is this CCVA rigorous
andl/or defensible?

Step 1 (Sec 4.1)

Step 6 (Sec 4.1)

Figure 8. Steps for evaluating the
suitability of existing CCVA studies
for use in adaptation planning or for
publication during peer-review.

Step 2. Identify CCVA approaches that meet
your objectives

Assuming there are no existing studies that meet your objectives,
the next step is to design your own CCVA. With objectives
clearly set, you will now determine which CCVA approaches
can deliver the results needed to meet them. We described
the types of information or metrics produced by each of the
three dominant CCVA approaches in lSection 2.3 (Metrics fok
kstimating climate change Vulnerability)| and Figure 6 and
elaborate on this here. Table 4 provides examples of CCVA
objectives (by type) and the approaches that can be used to

meet them. At this stage, all potentially applicable approaches
should be noted since subsequent evaluation of input resources
(Step 3) may preclude the use of some approaches, and the use
of multiple approaches and combined approaches should be
considered where feasible (discussed in more detail in Step 5).

In broad summary, well-calibrated mechanistic models of
sufficient complexity (that is, that simulate all relevant and
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biological and ecological processes) provide arguably the most
robust answer to any of the questions above, as they relax all
of the assumptions of correlative models while maintaining the
rigour and objectivity of data-driven statistical models (Fordham
et al., 2013b, but see Buckley, 2010; Olsson & Jénsson, 2014).
Where insufficient empirical data exist to build a mechanistic
model, researchers can turn to expert elicitation to fill these gaps
(Martin e al., 2012; Mantyka-Pringle ez al., 2014; Martin ez
al., 2015). In other cases where there is an absence of sufficient
data, ecological understanding and/or modelling skills, users
may find that for meeting objectives for which spatially and
temporally explicit information is required, and where shifting
climate suitability is likely to be an important direct driver
of vulnerability, correlative approaches provide appropriate
information. Where species-level objectives do not require
spatially explicit information and where considering a broad
range of climate change impact mechanisms is important (e.g.,
changing inter-species interactions, disruption of environmental
triggers) then trait-based approaches may be most appropriate.
In many cases, it may be possible to use multiple or combined
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Table 4. CCVA objective categories, examples of outputs required to meet them, and the approaches potentially able to deliver
these. We note that combined CCVA approaches may also be applicable for meeting the examples specified. The suitability of each
combination type (see Appendix Table D) for meeting objectives is typically dependent on that of their specific component approaches.

CCVA Objective
categories
(from Table 1)

Examples of CCVA outputs needed for addressing objectives

Q
2
>
Y}
h=}
k=
=
o
5}
)
=
@
177}

Trait

Species vulnerability rankings

<

Which?

Subpopulation vulnerability rankings or extinction probabilities

Species invasion potential rankings

=< | < | =< | Correlative

<

Extinction probabilities of species and/or populations

How much?

Estimates of range shifts / change in suitable climate-space (magnitude, distance, rate)

Dispersal potential

Intrinsic climate change susceptibility (i.e., sensitivity and/or adaptive capacity)

Why? Identity of climatic drivers of vulnerability

Identity of biological drivers of vulnerability

Location of areas with greatest concentrations of most or least vulnerable species

Location of climatically suitable or unsuitable areas for species in future

Where? Location of potential corridors and/or refugia

Subpopulations outside projected suitable climates

<|=<|=<|=<

interactions and human responses to climate change

Location of areas most impacted by specific vulnerability drivers including disruption of inter-specific

<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|=|= | Mechanistic

Time frame of projected risk to species, sites and landscapes

When? Rate of shift in climate space

Species/subpopulation potential turnover rate

Key gaps and uncertainties — climatic

<|=<|=<|=

Key gaps and uncertainties — biological

What’s missing?

Key gaps and uncertainties — in our understanding of impacts and their driving mechanisms

<

Key gaps and uncertainties — human responses to climate change as a driver of vulnerability*

<|=<|=<|=
<|=<|=<|=<|=<|=<|=<

Species for which more information is needed to enable CCVA

#This is an active research area — each approach may inform at least some aspects of how human responses may drive vulnerability.

approaches, thereby taking advantage of the strengths of
component approaches (see Step 5 for further discussion).

Step 3. Identify the CCVA approaches for
which you have sufficient resources

CCVA approaches and the methods used to apply them
differ markedly in the resources they require, so the guidance
we provide here is necessarily general. Very broadly, however,
mechanistic approaches tend to be most resource intensive,
with the simplest trait-based and tool-facilitated correlative
approaches least so. In Table 5, we highlight the resources often
required and/or desired to apply each of the three main CCVA
approaches, discussing in turn: species distribution, trait and
molecular data; climate data; ecological data; information on
climate change impacts manifested indirectly through humans;
expertise requirements; and final technological requirements.
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We discuss each of these requirements briefly below in the
context of this step, providing explanations using terminology
and descriptions that are as simple and clear as possible; more
detailed and rigorous guidance on selecting input data is
provided later under [Section 5.1 (Selecting and using input
We highlight examples of free resources that may be of
help to users (Table 6). Users may want to make use of Table 5

to record or highlight each resource type and information
requirement evaluated, thereby noting where their resource
strengths and gaps lie, and facilitating completion of this step.
We include a row at the end of the table to record your feasibility
conclusions. Finally, we note that, during evaluation of species
data, users may recognize that their focal species is particularly
poorly-known, small-range or a declined-range species (see

Box 3), in which case users should see[Section 4.2 (Approaches

for three challenging CCVA situations: pootly-known, small{

range and declined-range species)]
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Table 5. Summary of the data resources generally required by each CCVA approach. We note that these are broad
generalizations and that within each approach, some methods range from resource demanding to more user-friendly. Freely available

data sources meet some of the needs described.

Resource type Input requirements Correlative Trait-based Mechanistic
Species distribution Point localities; and/or May be used May be used May be used
data* Gridded/raster distributions; and/or Required May be used Generally required
Polygons/maps May be used (less  Generally May be used (less
desirable) required desirable)
Species trait data* Demographic traits; and/or Not used Required Required
Morphological traits; and/or
Behavioural traits; and/or
Ecological traits
Physiological traits (e.g., thermal tolerances, energy Not used May be used Required by some
requirements) methods
Molecular data May be used May be used May be used
Climate data Distant past or paleoclimate projections May be used May be used May be used
Recent past/baseline climate projections Required Generally Required
required
Future projections Required Generally Required
required
Ecological data Spatial projections of land cover (reflecting ecosystem/ May be used May be used May be used
habitat)
Spatial projections of ecological processes (e.g., fire, May be used May be used May be used
hydrology, sea level rise)
Data describing exacerbation of other threats (not caused  May be used May be used May be used
by climate change)
Indirect Impacts Data describing human responses to climate change Not generally used May be used May be used
Data describing climate change interactions with other Not generally used May be used May be used
threats
Expertise Tools and/or user-friendly interfaces available? For some methods For some For some methods
methods
Species distribution modelling (assuming a tool is not used) Required Not used Not used
Geographic Information Systems (assuming a tool is not Required Generally Required
used) required
Species biology Not used Required Required
Climate projections and global scenarios Required Generally Required
required
Technological Hardware (e.g., computer) Required Generally Required
requirements required

Software (additional to an operating system and
spreadsheet application)

GIS software often
required

GIS software
may be required

GIS software often
required

Do your available resources meet the resource requirements?*

* IMPORTANT: If you know or suspect that your focal species may be or include a poorly-known, small-range or declined-range species then please see Box 3 and

Bection 4.2 (Approaches for three challenging CCVA situations)!

Species distribution range data

Species distribution range data are typically found in three forms.
Point localities represent a collection of data points indicating
locations where a species has been found to occur. They may have
been collected as direct observations in the field (from atlases,
surveys or citizen science programmes), or as spatial references
for specimen collections held in museums or herbaria. These
and other sources of distribution data may be accessible through
portals or databases such as the Global Biodiversity Information
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Facility (GBIF). Gridded data (or ‘raster data’) are based on
presence and/or absence of a species within a mapped grid of
variable size. Range polygons typically represent the maximum
known extents of species’ distributions, whether globally or
within a smaller geographical unit. If you know or suspect that
your focal species may be or include a poorly-known, small-range
or declined-range species then please see Box 3 and Section 4.2
(Approaches for three challenging CCVA situations: poorly-
known, small-range and declined-range species).
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Box 3. Types of species that pose challenges to CCVA

their CCVAs in Section 4.2.

We consider three types of focal species that cause particular challenges for CCVA, and discuss approaches for carrying out

1. Poorly-known species are those for which few data are available due to low sampling of their distributions and/or poor knowledge

of their biology. This may be due to funding shortages, inaccessibility of these species’ habitats, low densities throughout their
ranges or otherwise low detectability. Poor data availability is a serious challenge to CCVA using any of the conventional approaches,
and is particularly acute in tropical regions (Feeley & Silman, 2011), which is also where the greatest biodiversity typically occurs
(Gaston, 2000).

. Small-range species may or may not be locally common but occur only in a small area due to, for example, high climatic specialization
(Ohlemidiller et al., 2008), specific non-climatic requirements (Damschen et al., 2010), competition with other species, or geographic
isolation (e.g., on islands). Small-range species can potentially be assessed using trait-based and mechanistic approaches, but
assessments using correlative methods are inadvisable if the numbers of their occurrence records fall below the recommended
thresholds (see Bection 4.2]for further detail).

. Declined-range species have extant ranges that are substantially smaller than their known ranges in recent history (nominally
post-1750; longer or shorter timescales may be appropriate depending on the species); this decline may or may not have ceased.
For the purposes of this discussion, we consider only those cases where declines are not caused by anthropogenic climate change.
Declined-range species can generally be assessed using trait-based and mechanistic approaches, assuming that required data
are available and that such approaches meet the assessors’ CCVA objectives (see Section 4.2; Tables 4-5). They pose particular
challenges, however, to correlative approaches because the extant range is unlikely to reflect the full breadth of the species’
environmental niche. Where ranges have declined such that the species occurs only in a small area, assessment challenges are

compounded by those for small-range species.

Table 6 presents examples of sources of species distribution
information. The IUCN Red List of Threatened Species is
the largest repository of range polygons; other sources are
also available, including field guides, action plans and journal
papers. It is important to be aware that both range polygons
and gridded data may include areas where a focal species does
not occur (e.g., where a species occurs around a mountain but
noton it, the map will typically include the mountain) and they
therefore represent the limits of species’ distributions rather
than the areas of occupancy. It may be desirable, depending
on the intended use, to modify such data by removing areas
of, for example, unsuitable habitat or elevation, that are known
to exclude the species in question (e.g., Boitani ez /., 2007;
Beresford ez al., 2011).

Species trait data

Demographic traits include information such as generation
times, reproductive outputs, and longevity, while
morphological traits relate to organisms’ sizes and shapes.
Information on many of these per-species traits have been
gathered from ex situ collections (e.g., zoos and botanical
gardens); databases housing these data include Utheria (www.
utheria.org) and the Zoological Information Management
System (ZIMS; www.isis.org). It is important to recognize,
however, that ex situ individuals may not always accurately
reflect traits found in the wild (e.g., species may live much
longer in captivity). Behavioural traits cover migratory,
breeding, and dispersal habits, amongst others, and ecological

traits provide information on species’ interactions with their

Table 6. Examples of data resources available for use in CCVA (adapted from Pearson, 2010). Those listed tend to focus at global or
continental scales, but many regional- and national-scale resources are also available.

Examples of open access data sources for CCVA

Species data

Point locality
distribution data

Global Biodiversity Information Facility (GBIF):

point data available for ~1.5m species globally
(data need to be ‘cleaned’ before use, e.g., see
Chapman, 2005)

www.gbif.org

Gridded distribution  Finnish Bird Atlas http://atlas3.lintuatlas.fi/background/copyrights
data South African Bird Atlas data http://sabap2.adu.org.za/index.php
South African Frog Atlas data http://adu.org.za/frog_atlas.php
Distribution polygons/ 1UCN Red List Database (Species Information www.iucnredlist.org/technical-documents/spatial-data
maps System): polygons available for ~50,000 species

globally, including all mammals, birds, amphibians,

cartilaginous fish and corals

NatureServe: polygons available for Western
Hemisphere mammals, US fishes and Listed and
imperilled species

www.NatureServe.org

BirdLife: polygons available for all the world’s bird

species (>10,000)

www.birdlife.org/datazone/info/spcdownload
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Table 6 cont’d. Examples of data resources available for use in CCVA (adapted from Pearson, 2010). Those listed tend to focus at
global or continental scales, but many regional- and national-scale resources are also available.

Examples of open access data sources for CCVA

Species trait data IUCN Red List Database (Species Information www.iucnredlist.org/
System)
IUCN: climate change sensitivity and adaptive See supplementary information of www.plosone.org/article/
capacity related traits for all birds, amphibians info%3Adoi%2F10.1371%2Fjournal.pone.0065427. Raw data available
and corals on request from redlist@iucn.org
Utheria: mammal traits http://www.utheria.org/
TRY: plant traits http://www.try-db.org/
Traitnet: plant traits http://traitnet.ecoinformatics.org/
BirdLife Data Zone http://www.birdlife.org/datazone/home
Amphibiaweb http://amphibiaweb.org/
Biotraits: thermal responses of physiological and  http://biotraits.ucla.edu/
ecological traits, especially consumer-resource
interactions (1,508 spp)
African Albertine Rift mammals, reptiles, (Carr et al., 2013). Scores available in appendices: http://www.traffic.
freshwater fishes, some plants org/non-traffic/SSC-0P-048.pdf. Raw data available on request from
redlist@iucn.org
Molecular data Genbank: annotated collection of all publicly http://www.ncbi.nim.nih.gov/genbank/
available DNA sequences
Climate data
Distant past or NOAA http://www.ncdc.noaa.gov/data-access/paleoclimatology-data
paleoclimate Climate Research Unit (University of East Anglia)  http://www.cru.uea.ac.uk/cru/data/paleo/
projections
Recent past or Various datasets based on meteorological and See Table 8 for details.
baseline climate satellite data.
projections

Future projections

IPCC Data Distribution Centre

http://ipcc-data.org/

WORLDCLIM http://www.worldclim.org/

AFRICLIM for African climate https://www.york.ac.uk/environment/research/kite/resources/
Ecological data
Landcover and Global Landcover Facility: landcover and other http://glcf.umd.edu/data/

ecological processes

products, floods

NASA (MODIS): Landcover, cloudcover, fire

frequency

https://Ipdaac.usgs.gov/products/modis_products_table/modis_
overview

USGS: Elevation and related variables for the globe

(1 km?)

http://edc.usgs.gov/products/elevation/%20gtopo30/hydro/index.html

SRTM: Digital elevation model (90m?)

http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-
database-v4-1

Soil type: UNEP

http://www.grid.unep.ch/data/data.php?%20category=lithosphere

Watersheds (or hydrobasins): Lehner and Grill

(2013)

http://hydrosheds.org/

NOAA: Various oceanographic products

http://www.nodc.noaa.gov/access/

Human responses to
climate change

Human vulnerability to climate change in Southern
Africa by 2050 (Midgley et al.,, 2011)

http://www.parcc-web.org/parcc-project/documents/2012/12/
climate-risk-and-vulnerability-mapping-for-southern-africa-status-
quo-2008-and-future-2050.pdf

Technical resources

Geospatial analyses

Quantum GIS http://www.qgis.org/en/site/
GRASS GIS http://grass.osgeo.org/download/
WorldMap http://worldmap.harvard.edu/

R https://www.r-project.org/
Python https://www.python.org/

Software for Assisted Habitat Modelling (SAHM)

https://www.fort.usgs.gov/products/sh/5090

Correlative modelling
software

Maxent

https://www.cs.princeton.edu/~schapire/maxent/

openModeller

http://openmodeller.sourceforge.net/
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environments and include their habitat requirements, inter-
species interactions and reliance on environmental triggers.

Traits of relevance for CCVA frequently differ between
taxonomic groups; for corals, for example, the types of
species’ algal symbioses are of importance for climate change
vulnerability, while for aquatic plants, salt tolerance may be
key. Sources of trait information include online databases (see
Table 6), formal and grey literature, field guides, the IUCN’s
Species Information Service (SIS), and experts’ knowledge.
In cases where specific data are not available, it may be
possible to infer traits from closely related taxa or from other
characteristics (e.g., inference of dispersal ability and feeding
guild from morphological traits) (see Hespenheide (1973)
for a review), providing a potentially very valuable source of
information for poorly known species.

Data on physiological traits such as thermal tolerances and
energy requirements can be extremely valuable for climate
change vulnerability assessments since they allow more
confident predictions of species’ fundamental niches and hence
more robust range predictions (Kearney & Porter, 2009). These
data are, however, amongst the most challenging to source.
Laboratory experiments and records for species held ex situ
provide the main sources of such information, but studies of
in situ physiological responses may also be found in formal and
grey literature. As with demographic trait data, physiological
trait data tend to be restricted to a few well-studied species,
and caution should be exercised in extrapolating data from
ex situ records. Physiological traits are valuable for trait-based
approaches, essential for mechanistic approaches, and can be

incorporated in correlative-mechanistic approaches.

Molecular information

Molecular data, including on neutral genetic markers, can help
to determine population processes including dispersal and
population size fluctuations. Recent advances in sequencing
technology now allow these processes to be accurately traced
based on thousands of genetic markers — an increase of three
orders of magnitude over recent years. Moreover, the markers
can be linked to genes under selection and involved in
adaptation. This can be used to investigate both past adaptation
to different environments (using a correlative approach) and
potential for future adaptation (informing mechanistic models
and viability analyses).

Molecular data may be used to estimate species’ potential
for adaptation but they do not easily indicate the extent
to which adaptive shifts will impact upon the traits that
influence species” distribution and abundance. This requires
quantitative genetic assessment of variation within and
among populations, which can be more difficult to undertake
than molecular studies, particularly in species with long
generation times. However, there is potential to combine
genomic data with phenotypic studies to evaluate the extent
to which traits might be shifted by rapid evolution. Genetic
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data are generally available for small numbers of species only

(e.g., see Table 6).

Generally applications of correlative models assume that
populations of species respond to climate change in the same
manner across their range. However, local adaptation can
enhance fitness of populations to their immediate environment
at the expense of reducing their niche breadth compared to
the species as a whole (Shaw & Etterson, 2012). When this
occurs, applying a correlative model to a species as a whole
could overestimate the species’ ability to withstand anticipated
climate change (O’Neill er al., 2008; Pearman ez al., 2010;
Valladares ez al., 2014; Hillfors et 4l., 2016). In this context,
molecular data can be used as a proxy for the spatial scale of
local adaptation within a species by, for example, allowing
assessors to divide species into mutually exclusive subgroups
(lineages) and estimating vulnerability for each group
separately (e.g., Pearman ez al., 2010; Hillfors ez al., 2016).

Climate data
We briefly discuss three categories of climate data here, but
provide more detailed explanations, including on their use, in

Section 5.1.3 (Climate datasets)| Distant past or paleoclimate

projections can extend climate records from hundreds to
millions of years, and are derived using proxy methods such as
dissolved isotopes in sediments and ice, or from plant growth
rates inferred from fossilized tree rings (Folland ez 4/, 2001).
They can be used to train and test correlative models’ predicted
species distributions by developing climatic correlations based
on longer, historical time scales (Lawing & Polly, 2011). In
order to achieve this, historical species distribution data,
typically inferred from fossil evidence, are also required. Both
data types are subject to uncertainties associated with reliability
of the original samples and the interpolation techniques used,
and these should be borne in mind when using them to make
inferences about current and future species distributions.
Various paleoclimatological data sets are available (sce Table 6).
They may potentially be used by all CCVA approaches, but
have most often been associated with correlative approaches
(e.g., Huntley ez al., 20006).

Recent past or baseline climate data aim to represent the
conditions at the onset of the impacts of anthropogenic
climate change (i.e., typically from the half-century prior to
2000). A fundamental distinction is that baseline climate data
are derived from actual meteorological station observations
whereas future climate projections are derived from models
(GCMs). Baseline climate data are used to infer the climatic
conditions at which species’ distributions are assumed to
have been at equilibrium, and hence are important for
identifying the variables by which each species is theoretically
constrained. As such, they are used to train correlative models
as a basis for future projections, and they form an essential
reference point for all measures of projected future change.
All CCVA approaches require the use of baseline climate
observations, with the occasional exception of some trait-
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based approaches in which distribution range data are lacking
or where assessments of biological susceptibility alone are
required. We discuss baseline climate datasets in more detail

in Section 5.1.3 (Climate datasets)] and provide examples of

available datasets in Table 8.

Future projections of climate are produced by GCMs,
which are compurtationally intensive mathematical models
that simulate atmosphere and ocean processes, including sea
ice and land-surface components, for weather forecasting and
projecting climate change. Many groups and laboratories
around the world run GCMs to produce projections of
future climates, and each model is run multiple times to
accommodate uncertainties in natural components such as
cryospheric (snow and ice) feedback (i.e., the amplification or
moderation of physical changes by snow or ice environments),
as well as uncertainties in anthropogenic variables including
future greenhouse gas emissions. Uncertainty from different
emissions scenarios is modelled according to a series of plausible
scenarios of expected atmospheric CO, concentrations, the
most recent of which are those defined by the Representative
Concentration Pathways (RCP’s) associated with the Fifth
(latest) IPCC report (Moss ez al., 2010; IPCC, 2013b).

While the various models and their runs all produce projections,
none perfectly reproduces the climate systems being modelled
and numerous uncertainties remain. As a result, use of a
number of models and runs is recommended. Maintaining
and using a measure of the disagreement between models is
extremely important for understanding the uncertainties in
predictions and accommodating and communicating them in

subsequent use (see Section 5.1.3 (Climate datasets) for further

discussion, including on selection of model, emissions scenarios

and bioclimatic variables).

The IPCC’s Data Distribution Centre (http://ipcc-data.org/) is
a portal for access to a broad range of future climate datasets.
Reference to the associated ‘Guidance on use of data’ section
(including technical guidelines, fact sheets, supporting material,
scenario processes, definitions, etc.) is strongly recommended.
As with baseline climate data, future climate projections are
needed for all CCVA approaches, except where trait-based
methods are used either in the absence of distribution range
data or for simplistic, preliminary CCVAs. For correlative and
mechanistic models, future climate projections are used to
project future climatic suitability of landscapes, and for trait
based approaches, to project climate change exposure across

species’ current ranges.

Ecological data

Spatially-explicit landcover (representing ecosystems and/
or habitats), elevation and soil type datasets have been used
in various ways in CCVAs, and are relevant for all three
CCVA approaches. We discussed previously how habitat
and elevational associations may be used to refine species’

distribution range maps (i.e., by removing areas of unsuitable
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habitat and elevation where the species is known not to be able
to occur (Boitani et al., 2007; Beresford et al., 2011; Foden ez
al., 2013)). They may also be used in combination with future
climate projections to create more refined estimates of future
suitability of each landscape component/grid cell for focal
species. Spatial projections of ecosystem processes such as fire,
sea level rise and hydrology may also be used for this purpose.
For example, Aiello-Lammens ez a/. (2011) used landcover,
elevation, projected sea level rise and a range of site-specific
information including erosion rate, storm frequency and tidal
trends to predict sea level rise impacts on Snowy Plovers in
Florida. These land- and seascape-scale physical and ecological
data have been used in correlative, mechanistic, trait-based and
combined approaches. Uncertainties in such data should be
carefully noted. Further discussion on this subject is included

in Section 5.1.6 (Accounting for habitat availability).

Indirect climate change impacts

Biodiversity threats caused by indirect impacts of climate
change have been poorly recognized in CCVA to date, despite
their potential to overwhelm direct climate change impacts
on species (Turner er al., 2010; Maxwell ez al., 2015). We
consider such indirect impacts to include those due both to
human responses to climate change (e.g., expansion of biofuel
plantations; construction of dams and sea walls, expansion into
newly suitable agricultural or fishing zones) and to the natural
systems that focal species inhabit (e.g., increased exposure
and susceptibility to pathogens and invasive species; declining
resource availability). These impacts can interact with non-
climatic threats, potentially greatly magnifying their impacts.
Mechanistic and trait-based approaches typically accommodate
consideration of changes in inter-species interactions and all
approaches implicitly incorporate aspects of changing habitat
suitability. Few, however, consider human responses to climate
change, or the interacting effects of climate change on non-
climatic threats. This important yet neglected aspect of CCVA

is discussed in more detail in Eection 5.2.1 (Direct versu#

indirect impacts of climate change))

Expertise

We assume that practitioners have the expertise to make use
of conventional computer software (e.g., Microsoft Excel),
and here distinguish two main additional types of expertise,
namely technical and biological. We note that CCVAs are
often carried out by teams, making assembling suitable
combinations of expertise easier.

The technical expertise needed to apply trait-based approaches
is often relatively low, involving gathering information in,
for example, a spreadsheet, and using simple calculations to
combine these into overall rankings or scores. The level of
expertise needed to assess species’ exposure to climate change
varies from very low where, for example, simple overlays of
pre-processed climate surfaces (e.g., www.climatewizard.org
for the USA) are used, to more complex with the requirement
of proficiency in Geographic Information Systems (GIS) for
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others. NatureServe’s Climate Change Vulnerability Index
(CCVI, Young et al., 2011) is a well-documented, user-friendly
tool that provides a low-technical-expertise CCVA option.

The numerous methods available to carry out correlative
and mechanistic CCVA approaches preclude generalization
about the levels of technical expertise they require. Some
statistically ~complex approaches provide user-friendly
interfaces (e.g., MaxEnt; BIOMOD) and hence require little
technical expertise to run, while others require a knowledge
of programming languages such as R and/or extensive GIS
skills. We strongly urge users to familiarize themselves with
the technical aspects of even user-friendly methods since this
is essential if their settings are to be correctly parameterized,
sensitivity tested and their results responsibly interpreted. It is
also advisable for assessors to understand the methods used to
prepare climate projection data for use, since their assumptions,
uncertainties and downscaling approaches are all important
CCVA parameters. More information on these is available in
Section 5.1.3 (Selecting and using climate datasets).

Biological expertise is highly desirable and in many cases
essential for CCVA. In their most simple form, correlative
approaches can be based purely upon distribution data, but
without biological expertise errors may not be identified and
results can easily be misinterpreted. A thorough understanding
of a species’ dispersal mechanisms, dispersal and colonization
potential, and its biological requirements are all important
aspects of translating correlative model outputs into vulnerability
assessments. Trait-based assessments require, by definition,
knowledge of a species’ biology and ecology, and mechanistic
(including  combined  correlative-mechanistic) — approaches
generally have the most intensive requirements for biological
expertise, since users must select not only which variables to
include but also how these should be parameterized and how they
interact with each other. Biological expertise is also particularly
important for evaluating where and how information gaps may

be filled using, for example, inferred or proxy traits.

Technical requirements

A spreadsheet application may be all that is required for simple
assessments (e.g., trait-based; NatureServe’s CCVI (Young ez al.,
2012)), but where datasets become large (e.g., 100,000 records),
storage capacity and functionality of such software may become
limiting. Databases such as Microsoft Access and Microsoft
SQL Server are more stable, much faster, allow bulk processing
of large repeated calculations and have easily customizable
functions. The benefits of more sophisticated software must be
traded, of course, against purchase costs and the time and effort
needed to learn to operate it. The statistical language and
programming environment R (also called GNU §) is gaining
increasing popularity and use as it is an open-source software
package which allows storage and analysis of large datasets.

A number of software packages are available which are

designed specifically for the analysis and prediction of species
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distributions  (i.e., correlative approaches); these include
MaxEnt, ModEco and many R packages, among numerous
others. Each of these packages requires some training for
responsible application and for interpreting their outputs, and
each has a range of advantages and disadvantages relative to the
others. Examples of different method and models are provided

in lAppendix Tables A—D.‘

Finally, although many software packages include a spatial
component, assessors will often find it useful to work with
a standalone GIS software package, particularly when
constructing maps to display assessment results. The most
commonly used GIS software package is ArcGIS, but open
access GIS packages such as QGIS, DIVA-GIS (designed with
species distribution modelling processes in mind), PostgreSQL
and PostGIS, among others, will often be more than sufficient.
A range of additional software packages designed to link to
GIS software and to conduct specific CCVA-relevant analyses
are available. One such package is RAMAS GIS, a programme
designed to combine geographic and demographic species
darta in order to conduct spatially-explicit population viability
analyses. Again, we reiterate that the software packages listed
here are only a handful of examples of a much wider available
range, and we encourage assessors to explore other options
that may be available to suit their needs.

The specifications of computing hardware required are mostly
governed by the total size of the data to be processed, and
the complexity of the operations to be undertaken. Data
size is, in turn, determined by numerous factors, including
the spatial resolution of geospatial coverages (e.g., climatic
data, land cover), the geographic scope of the assessment,
and the number of species under assessment, among others.
In general, the greater the storage capacity available, and the
faster the processing power of the computer, the better, and
in some cases it may be necessary to use external data storage
devices and advanced ‘supercomputer’ hardware. At worst,
undertaking assessments with insufficient data storage or
processing capacity will mean that operations fail to execute,
although often it can simply result in processes taking large
amounts of time. Assessors with limited hardware capacity
may need to compromize between the time they are willing to
allow for processes to compute and the scope or complexity of

their assessment.

Step 4. Do Steps 2 and 3 identify any of the
same approaches?

The objective of this step is to identify the one or more CCVA
approaches that both meet objectives and for which suflicient
resources are available. Under ideal circumstances, users may
find overlap in multiple approaches, and under somewhat
less ideal circumstances, users might find overlap in only
one approach between those selected according to objectives
and those by resources. Nonetheless, both of the above
circumstances allow practitioners to proceed to the next steps.
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Under poor circumstances, users might find no overlap between
approaches selected according to objectives and those based
on resources. This may be due, firstly, to having set objectives
that are overambitious given resources available. For example, a
practitioner may wish to assess the climate change vulnerability
of each individual population of a particular species at a site
using a mechanistic approach, but not have the demographic
or fine-scale distribution data nor the GIS expertise needed
to implement these. In this case the best strategy is to revisit
objectives, making them broader and hence achievable using
less resource-demanding approaches.

A second possible scenario for failure to achieve overlap between
objective- and resource-selected approaches is because available
resources are insuflicient for any CCVA approaches. Under low
resource data scenarios, it may be necessary to evaluate options
for collecting or compiling the data needed, improving technical
resources (i.e., purchasing computer hardware and software)
and increasing capacity and expertise for implementing CCVA
approaches.

Step 5. Select your approach(es) and the
methods for applying it/them

Given the relative strengths and weaknesses of each CCVA
approach and the current scarcity of studies validating the
accuracy of each in different contexts, a wise way for users to
proceed may be to apply more than one approach and to use
the spread of CCVA results to gain an understanding of the
resulting uncertainty. In practice, however, the number of
overlapping approaches emerging from Step 4, as well the time
and resources available for the CCVA, will inform users’ choice
of whether to select one or multiple approaches.

Option 1: Using a single CCVA approach

Since comparison with results from other approaches is
impossible, it is particularly important for users to understand
the strengths, limitations and biases of the selected approach,
and to interpret results in the context of the focal species’ biology
and ecology. Using multiple methods for applying the approach
is strongly advised since, where possible, this will provide the
spread of results needed to explore the uncertainty in assessment
due to the method(s) selected. Box 4 provides guidance on
selecting appropriate methods. Option 2a describes ways in
which the results of multiple methods may be used for CCVA.

Option 2: Using multiple CCVA approaches

Under the ideal circumstances where more than one approach
emerges as both suitable for meeting CCVA objectives and
applicable given available resources, users have two options for
proceeding, one or both of which may be applied (see Cruz ez

al., 2015).

2a. Carry out assessments separately using multiple approaches and/
or methods

This is best carried out in the context of a thorough
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Box 4. Selecting the method(s) for applying
CCVA approaches IMPORTANT

We provide classifications and examples of some of the main
methods available for correlative, trait-based, mechanistic
and hybrid approaches in Appendix Tables A, B, C and D
respectively. These include explanations of how each method
type works, their particular resource requirements, examples
of their use, and whether user-friendly tools are available for
application. We note, however, that with the rapid pace of
development in this field, these tables are likely to become out-
of-date relatively rapidly, potentially well before the next version
of these guidelines is released.

We encourage users to carry out two important tasks

when selecting their method(s):

1. Conduct a thorough literature review to find out the
latest available methods for your CCVA approach(es)
of interest. Key aspects to note include the prevalence
of their use, their resource requirements and their key
advantages and limitations.

2. Read Sections 5 and 6 of these guidelines, which discuss
some of the choices and challenges that lie ahead in
applying methods, as well as the uncertainties likely to
arise from them, including due to method choice.

understanding of the key advantages and limitations of each
method, and in the context of the biology and ecology of the
focal species. Using a common sense approach, we suggest
four ways in which the results from multiple approaches and
methods may be combined.

i) Atthe broadest level, a consensus approach may be applied.
Results may be used, for example, to allocate focal taxa into
categories of concern based on a combination of the degree
of vulnerability predicted and the proportion of models (and
hence certainty) of predictions (see Figure 9).

ii) Where the CCVAs undertaken produce results that
are quantitatively similar (e.g., a series of distribution
range projections from different correlative methods), an
ensemble approach may be used. These produce both
measures of central tendency (e.g., mean, median) and
of dispersal (e.g., variance, coeflicient of variation) of the

Figure 9. Framework for interpreting the results of
multiple CCVA approaches and methods according to a
consensus approach.
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CCVA results. We note that the results of methods from
within the same approach are likely to be correlated, and
that between-approach comparisons are likely to introduce
a broader spread of results, suggesting that varied weighting
of results might be appropriate.

iii) Using upper and lower projection bounds or extremes to
propose best and worst case scenarios (with a plausible
range of possibilities between these), may be useful when
CCVA results are qualitatively different, and this may
be applied in conjunction with a consensus approach
(suggestion (i)).

iv) In cases where CCVA results differ markedly and evidence
supporting either is lacking, users could choose to follow the
precautionary principle and take the highest vulnerability
assessment as the basis for determining the level of concern
for the focal taxa.

Irrespective of which of the above approachi(es) is selected, it is
important to investigate the reasons for the inevitable spread in the
results. This may expose any errors in the assessment and greatly
increases the strength of conclusions drawn from the results.

2b. Combine approaches

Hybrid CCVA approaches which combine elements from two or
more approaches have begun to emerge, and these potentially
draw on the strengths of their component methods. We
summarize six emerging types of these, briefly describing how
they work, tools available, resources required and published

examples (P\ppendix Table D[); they include combinations of

correlative-trait-based, correlative-mechanistic and correlative-
mechanistic-trait-based approaches. Willis ez al. (2015)
identify the multiple ways in which correlative and trait-based
approaches may be integrated, including for use for spatial
conservation planning; they suggest that correlative approaches
may benefit from trait-based measures of sensitivity (e.g.,
known climatic tolerances) and adaptive capacity (including
dispersal capacity) (e.g., Warren ez al., 2013), while trait-based
approaches may be strengthened by using correlative-derived
distribution range projections to quantify climatic tolerances
and climate change exposure (e.g., Thomas ez al., 2011; Young
et al., 2011a; Smith ez al., 2016).

The use of traits to inform projections of species’ dispersal and
colonization capacities in particular has begun to receive
attention. Estrada ez a/. (2016) outline framework highlighting
how four key range-shift processes are affected by seven trait
types, namely (with traits in brackets): (i) emigration (site
fidelity); (ii) movement (movement ability); (iii) establishment
(avoidance of small population effects, persistence under
unfavourable conditions); and (iv) proliferation (reproductive
strategy; ecological generalization and competitive ability (these
three traits apply to processes (iii) and (iv)). Garcia ez al. (2014) use
traits to identify regions where correlative-based range projections

may under- or overestimate assessments of climate change
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The Keel-billed Toucan (Ramphastos sulfuratus) in Costa Rica
has moved its habitat from the lowlands and foothills up to at
least 1,540 m following increased cloud-base levels due to climate

change. © Andy Morffew

vulnerability for species, while Visconti ez a/. (2015) used species-
specific dispersal distances and generation length estimates to
account for species’ ability to keep track of their projected shifting
bioclimatic ranges. We discuss some of the challenges and
uncertainties in the use of such trait data in Section 6.5
(Uncertainty from biological trait and demographic data).

4.2 Approaches for three challenging
CCVA situations: poorly-known,
small- and declined-range species

Availability of suitable data is a prerequisite for the conventional
CCVA approaches outlined so far in these guidelines.
Three types of species present particular challenges for their
application: poorly known, small-range and declined-range
species (see Box 3). “Poorly-known species” are problematic
when scarce data on occurrences, traits or physiology preclude
application of correlative, trait-based or mechanistic approaches,
respectively. Challenges also arise in the particular case where
occurrence data exist, but the characteristics of the focal species
render the data inadequate for application of correlative CCVA
approaches. This is the case for “small-range species” that have
naturally small ranges due to, for example, high specialization,
as well as for “declined-range species”, whose ranges have
become smaller due to anthropogenic (non-climatic) threats.

Large numbers of poorly-known species lack biological data for
trait-based or mechanistic approaches, particularly those with
smaller body sizes and more restricted ranges (Gonzdlez-Sudrez
et al., 2012). Many pootly-known species, as well as small-
and declined-range species, also lack sufficient occurrence
data for correlative modelling. Because correlative approaches
must statistically characterize the relationships between a
species’ current range and the bioclimatic variables historically
occurring there, they require a minimum number of species
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occurrence records to ‘learn’ from in order to produce reliable
results. The ITUCN Standards and Petitions Subcommittee
(IUCN, 2014) recommends that, as a general rule, at least five
species occurrence records or ‘presence’ grid cells are required

for each bioclimatic variable used (see lSection 5.14 (Selectiné

and using species distribution data)); other authors suggest

a minimum of 10, 50 or 100 records in total, depending on
the model type and complexity, and the species under study
(Stockwell & Peterson, 2002; Wisz ez al., 2008). Species with
occurrence data that do not meet these requirements are thus
usually not modelled.

Many broad-scale assessments to date have been based on
multi-species correlative approaches (e.g., Thomas et al., 2004;
Aratjo et al., 2006; Thuiller et al., 2011; Warren ez al., 2013).
While in some cases the species coverage is excellent (e.g., 90%
of native European breeding birds; Huntley ez 4/., 2008), it is
more typical for a high proportion of species to be omitted due
to insuflicient records, especially in the most biodiverse regions.
For example, in an assessment for African vertebrates (Garcia ez
al., 2012), only 33% of recorded species were modelled. Platts e#
al. (2014) found that species omitted from correlative CCVA in
sub-Saharan Africa represented 92% of the region’s threatened
amphibians, and that records for the omitted species spanned
different climatic conditions and different rates of climate
warming, compared to modelled species. These examples
highlight that conventional CCVA methods are potentially
restricted to a biased sample of species, rendering conclusions
about the impacts of climate change on biodiversity incomplete
(Schwartz et al., 2006; Platts et al., 2014).

The spatial resolution of the climate data used in correlative
models is of strong importance, since distribution data will
need to be modelled at the same scale. For climate data at one-
degree resolution, for example, a small-ranged species may
occur in only a handful of ‘presence’ grid cells (111 x 111 km
at the equator), even though hundreds of locality records may
exist within these. This challenge may be alleviated for some
species by increasing spatial resolution (and hence decreasing
grid size) of the climate data using process-based, statistical
or empirical downscaling. However, for species with very few
locality records or particularly small ranges, and those for
which lower spatial resolutions are necessary (e.g., fine-scale
occurrence data not available, or data processing capacity is
limited), this challenge remains.

We outline below five broad approaches for addressing the
challenges of carrying out CCVA on poorly-known, small-
range or declined-range species. The first (3) is to gather data
to allow conventional approaches to be used. The second (72)
considers a situation where time-series of population and
climate data are available. The other three describe alternative
CCVA approaches that allow CCVA to be carried out despite
poor information. They include (7i7) modifications of
familiar correlative techniques, (i») sclecting alternative

taxonomic foci for the models, and (») implementing
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assessments that consider exposure of geographical areas
rather than particular species’ distributions. The five alternative
approaches are summarized in Table 7 (over).

i) Fill data gaps

Poorly-known species

The first option is to gather the missing data that are required
for application of conventional correlative, trait-based or
mechanistic models. For missing trait data, expert inference
can often be made from related species, for example from
higher taxonomic ranks (Foden ez al., 2013). Data gaps can
be filled through either eliciting expert opinion (Murray ez
al., 2009a; Flockhart ez al., 2015) or using data imputation
techniques applied to datasets covering related species (Buckley
& Kingsolver, 2012; Swenson, 2014; Taugourdeau ez /., 2014;
Schrodt ez al., 2015). Where the option of filling data gaps is
pursued, it is advisable to assess the sensitivity of the results to
different opinions/techniques, by comparing inference derived
under sets of ‘optimistic’ versus ‘pessimistic’ assumptions. For
example, an unknown trait can be scored as either detrimental
or beneficial to a species’ chances of survival under climate
change; the extent to which these opposing assumptions
affect the overall outcome of the CCVA provides a measure of
uncertainty associated with the gap filling undertaken (Martin
et al., 2012; Penone et al., 2014; Meng et al., 2016).

In cases where, based on expert opinion or literary accounts, it
is suspected that the distribution records available for CCVA
under-represent a species’ true range, the estimation of the range
could be systematically improved through iterative application
of modified correlative techniques (see ¢), or by reference to
literature, together with targeted fieldwork (Williams ez al.,
2009; Platts ez al., 2010).

Declined-range species

In cases where threats unrelated to climate change are known
to have reduced the species’ range significantly, inclusion of the
historical range can render conventional modelling applicable
while allowing for a wider range of suitable environmental
conditions to be captured in the model. However, here it
becomes essential to control for the likely reasons for range

decline in the model or in post-modelling analyses.
ii) Temporal analysis of population variability

Small-range and declined-range species

For species with insufficient occurrence records for correlative
modelling, or for which the recorded or modelled spatial
distribution does not provide a good representation of the
climatic niche (e.g., edaphic specialists), temporal analysis of
population variability could provide useful information about
the vulnerability of populations, and species as a whole, to
projected changes in climate (Damschen ez /., 2010). This
approach requires robust time-series of inter-annual population
variability, both in terms of sampling rigor and in the length
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Table 7. Approaches for three challenging CCVA situations.

Poorly-known species

Small-range species

Declined-range species (not climate related)

Conventional approaches

Correlative Statistically problematic Statistically problematic due to Problematic since extant range cannot be used
models where occurrence records are insufficient occurrence records to infer environmental niche

insufficient
Mechanistic Problematic where mechanistic Applicable if mechanistic data available  Applicable if mechanistic data available
models information is insufficient
Trait-based Problematic where trait Applicable if trait data available Applicable if trait data available
models information is insufficient

Alternative approaches

i) Fill data gaps  High priority; data addition
or inference may render all
conventional approaches

applicable

Beneficial for correlative approaches

if new data extend known distribution
range

New trait data may render conventional
trait-based and mechanistic
approaches applicable

Additional data on extinct localities or

range are advisable to complement extant
occurrence records for correlative modelling
(thus increasing environmental niche
coverage). Additional trait data likely to render
conventional trait-based and mechanistic
approaches applicable

ii) Temporal

Problematic where time-series

Potentially applicable, if robust

Potentially applicable, if robust time-series of

analysis of information is insufficient time-series of inter-annual population inter-annual population variability are available.
population variability are available. Underlying Underlying demographic processes should be
variability demographic processes should be carefully considered
carefully considered
iii) Modified Potentially applicable; Potentially applicable, and Potentially applicable, but important to ensure
correlative advantageous when species-level advantageous when species-level that predictors associated with decline are
techniques results are essential, although results are essential included in model or used to filter model
results will be less reliable projections
iv) Alternative Assessing assemblages of Apply correlative models to interacting  As for ‘small-range species’. Assessing
taxonomic focus associated species is applicable species, particularly where closely assemblages is particularly relevant where they
when species-level results are coupled to the focal species (e.g., share a common reason for decline. Ensure that
not essential. This can be applied  specialist resource species or close predictors associated with decline are included
using conventional correlative and  competitors). Assessing assemblages  in model or used to filter model projections
trait-based approaches of associated species is applicable
when species-level results are not
essential; this can be applied using
conventional correlative or trait-based
approaches
v) Exposure Potentially applicable if region of  Applicable when species-level results Applicable when species-level results not
assessment of  occurrence is known and when not essential; potential to make results  essential; potential to make results more

geographic area species-level results not essential

more species-specific by using traits to
interpret likely threats and opportunities
arising due to region’s exposure to

climate changes

species-specific by using traits to interpret likely
threats and opportunities arising due to region’s
exposure to climate changes and by considering
impacts on drivers of species decline

of the record, and thus will apply to a relatively small subset of
species. Assessors should be aware that, especially for species
with naturally high inter-annual population variability, short
time-series and/or few time-points could result in spurious
detection of a climate change effect (McCain et al., 2016).

Given sufficient data, a typical approach is to perform a linear
regression, wherein the dependent variable is the change
in population size relative to the previous year (often log-
transformed), and the independent variables are measures of
climate experienced by the population in the preceding year(s).
Annualized climate data are available for most parts of the
world, in some cases dating back to the beginning of the 20th
century (e.g., CRU goes back to 1901; satellite products back to

30

the 1980s (CHIRPS, TAMSAT) or early 2000s (MODIS); see
Table 8 and lSection 5.1.3.3 (Historical (baseline) datasetsD).

To control for density-feedback, the population size in the

previous year is sometimes included as a covariate in the
model. If population data are available for more than one
site within the species’ range, these can be included in the
same model, with differences across sites controlled for by
including site as a random factor (mixed modelling; e.g.,
Bennie et al., 2013).

Temporal analysis of population variability has been used to
assess climate change impacts on bird communities (Pearce-
Higgins ez al., 2015) and Lepidoptera in the United Kingdom
(Bennie ez al., 2013; Martay et al., 2016). Most examples to
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date have not specifically targeted small-range or declined-
range species, but the approach is applicable regardless of
range size. A representative sample across the known species’
range will, however, increase confidence in the climate drivers
identified (Cayuela ez 4/., 2016).

If a climate change signal is reliably detected from historical
time-series, vulnerability to projected future changes in
climate may be inferred from long-term trends in the aspects
of climate identified as potentially important in driving
population change (e.g., increased seasonality or inter-annual

variability in rainfall, or mean annual warming).
iif) Modified correlative techniques

Small-range species

Species with low numbers of occurrence records have in
some cases been modelled using the simplest of “envelope”
correlative techniques (Busby, 1991a), defined by the range of
values occupied by a species across a set of relevant predictors.
One example is the application of multidimensional niche
envelopes to African amphibians (Plates er al, 2014). In
order to include even those amphibians with a single, coarse-
resolution, gridded occurrence record, the envelopes were
defined by the interquartile range of finer-resolution climatic
conditions within those cells. Drawbacks of this highly
simplified approach include that model performance (i.e.,
the model’s ability to accurately predict across space or time)
is difficult to assess, that all predictors are given equal weight
in limiting the species’ distribution, and that environmental
conditions beyond the observed niche are generally considered
wholly unsuitable, which is problematic if the species has been
under-sampled. Most other correlative methods permit non-
zero predictions beyond the observed niche, but are still subject
to high model uncertainty, particularly when applied to small
sample sizes (Thuiller ez al., 2004; Pearson ez al., 20006).

In another application (Hof ez al., 2011), also for amphibians
but at a global scale, the assessment of all species was possible
with the use of simple distance-based correlative models
(Euclidean and Mahalanobis distance, which measure the
similarity of species’ occurrences to the mean or centre of the
available climatic space). More complex correlative modelling
techniques can also be adapted to cater for small numbers of
occurrences; adjustment of the “regularization multiplier” in
MaxEnt, which controls the degree of model overfitting, is
an example (Hof ez al., 2011). Alternatively, models can be
restricted to small numbers (e.g., two) of relevant environmental
predictors, before combining many such models into one
consensus model for the species (Lomba ez /., 2010). This
approach overcomes the limitation that sparse occurrences
and many predictors may lead to model overfitting, thereby
extending the application of correlative models to small-range
species. Rare plants in Switzerland with numbers of occurrence
records as low as 10 have been successfully modelled following
this approach (Breiner ez al., 2015).
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Small-range and declined-range species

When applying modified correlative techniques to species
known to be narrow-ranging due to specific non-climatic
factors (e.g., proximity to water, rare soil-type, declined-range
due to forest loss), it is important to take this into account when
calibrating the model. For example, absences (background
data) generated within regions of unsuitable soil or land use
could result in an under-estimation of the species’ climatic
niche. In some circumstances, this issue can be overcome by
controlling for the relevant non-climatic factors in the model,
or else by restricting absence data to sites where the species
might plausibly have been recorded if climatic conditions were
suitable — ideally, absence data should be chosen to mirror
spatial, environmental and taxonomic biases in the presence
data (Huntley ez al., 2008; Phillips ez al., 2009; Platts et al.,
2013a).

iv) Alternative taxonomic focus

Poorly-known, small-range and declined-range species
Another way to account for small-range, declined-range and
poorly-known species in CCVA is to define an alternative
taxonomic focus for the models. The first possibility is to focus
on resource requirements of the species of interest. For example,
assessment of the vulnerability of an endangered lizard in South
Australia was based on the modelled distribution of two native
grassland plant species that support populations of spiders on
which the lizard depends (Delean ez 4/., 2013).

The second possibility is to model biotic communities or species
assemblages rather than individual species. Community-level
assessments combine data from multiple species to describe
the spatial pattern in the distribution of those species as a
collective (Ferrier & Guisan, 2006). Different entities can
be modelled under this approach, such as community types
with similar species composition or groups of species with
similar distributions. Biome-level assessments (Midgley ez
al., 2003; Midgley & Thuiller, 2007), for example, help to
identify regions within the species’ biome(s) that are most
vulnerable to climate change. Applications of this approach
include the modelling of suitable areas under future climate
change for cloud forests in Mexico (Ponce-Reyes et al., 2013)
and the Succulent Karoo biome in southern Africa (Midgley
& Thuiller, 2007). For poorly-known species, community-
level models borrow strength from multiple species to optimize
model parameterization (Ovaskainen & Soininen, 2011) and
model selection (Madon et /., 2013). In the latter case, the
variable set yielding the highest average performance across
many species, as opposed to individual selection for each
species, led to increased performance for small-range species
(Madon et al., 2013).

Species assemblages can also be identified on the basis of
shared traits or associated habitats, under the assumption that
such groups of species will respond in a similar way to climate
change. Aggregating all occurrence records for the species in
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the assemblage means that conventional correlative modelling
techniques can be applied. Examples of modelled assemblages
include climatically associated tree species in Mexico (Golicher
et al., 2008), species with common traits (Vale & Brito, 2015),
and darter species in the USA clustered on the basis of their
locations and abundances (McKenna, 2003; McKenna ez 4/.,
2013) or their associated abiotic conditions (McKenna, 2001).

Community-level models can be combined with species-
level models, in hierarchical or multi-level approaches where
information from one model type is combined with, or
informs, the other. Three such applications focus on the
endemic flora of California (Loarie et 4/, 2008), diatoms in
Finland (Ovaskainen & Soininen, 2011) and darter species in

the USA (McKenna ez al., 2013).
v) Exposure assessment of geographic areas

Poorly-known, small-range and declined-range species
When familiar or alternative CCVA approaches are not
feasible, or when the aim is to obtain a first-approximation
of the potential impacts on poorly-known, small-range or
declined-range species, assessments focused solely on exposure
of geographic areas to climate change are a viable option.
Such assessments should be based on the association between
multiple dimensions of climate change and the different threats
and opportunities that such changes represent for species
occurring in that region (Garcia ez al., 2014b). For example,

the disappearance of specific climatic conditions threatens
species with loss of suitable habitat, whereas high velocities of
climate change (Loarie ez a/., 2009) may require species to track
suitable climates at a fast pace. Application of detailed exposure
assessments allows for the identification of geographic areas
most exposed to particular changes in climate (Ohlemiiller ez
al., 2006; Williams ez al., 2007; Beaumont ¢z al., 2010; Watson
et al., 2013), and a qualitative assessment of the threats and
opportunities for biodiversity that might be associated with
those climate changes (Garcia ez al., 2014b).

When locations or extents of occurrence of small-range species
are known, such exercises can have a more specific geographical
focus. For example, rarity areas at the continental level have
been shown to coincide with disappearing climates in the
future (Ohlemiiller ez 4/., 2008). Conversely, in a more local
application of exposure assessment, which also considered
barriers to dispersal, plant endemism rates in the Eastern Arc
Mountains of Tanzania and Kenya were found to be highest in
sites where familiar climates were projected to remain accessible
under climate change (Platts ez @/, 2013a). When trait data
are available, they can be used to explore which species might
be more or less sensitive and adaptive to identified climate
changes (Garcia ez al., 2014b) (see Section 2b). For example,
the disappearance of climates poses a greater threat to species
that are highly specialized to such conditions, whereas high
velocities of climate change particulatly threaten species that
are both climate-limited and poor dispersers.

'The rare Lungless Frog (Barbourula kalimantanensis) from Borneo absorbs oxygen entirely through its skin. This adaptation makes it

especially sensitive to rising temperatures and lower oxygen levels in the water. Climate change driven increases in the severity and frequency
of extreme weather conditions such as storms and droughts may also threaten the species. © David Bickford




5. Using CCVAs and interpreting

their results
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5.1. Selecting and using input data

Section 4.1 (Steps 2-5) discussed ‘Carrying out your own CCVA’,

including selecting appropriate spatial, taxonomic and temporal
scales for meeting your CCVA objectives and considerations of
the data needed to meet them. This section covers the extent
and resolution of data needed to meet these objectives.

5.1.1 Spatial extent and resolution

Spatial extent is the total area under consideration for a CCVA.
If a specific area such as a country, subnational unit or site is
specified as the objective of a CCVA, then that area will often
form the spatial extent of the analysis. If the focal species’
vulnerability is not to be over-estimated, it is important to
include areas that are contiguous with or close to the species’
present range and those that may become climatically suitable
for the species in future.

When using many correlative modelling approaches, however,
spatial extent should include at least the entirety of a focal
species’ geographical distribution, thereby encompassing the
full range of climatic conditions in which it currently occurs.
Depending on the time frame, it may be necessary to include
areas quite distant from the current distribution to identify
future habitat. Including a large spatial extent is important,
firstly, because if only parts of the distribution of a focal species
are considered, estimates of niche characteristics such as niche
breadth are likely to be underestimated and misrepresented, and
are thus likely to result in overestimated vulnerability. Secondly,
since the magnitude of projected climate changes is not uniform,
some sites, countries and regions are projected to experience
relatively limited changes, whereas others are projected to
experience conditions unlike those found currently in any part of
the given area today by the end (and in many cases the middle) of
the 21st century. If the spatial extent is set to a limited part of the
focal species’ range, assessments may overestimate species’
vulnerability. If thatarea is projected to contain only novel climates
(i.e., with combinations of variables not found in the area today)
then in the future it will appear unsuitable for all species currently
present in the area, even though that combination of conditions
may well occur currently outside the focal area. The correlative
CCVA results are therefore likely to be an overestimation of
species’ vulnerability and fail to account for influx of species not
currently occurring in the focal area. If, however, the projected
climate changes within the limited area considered are of smaller
magnitude than those across the species’ range as a whole, then
the assessment may underestimate vulnerability.
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Spatial grain or resolution is relevant when a CCVA is to be
performed using a modelling approach that requires gridded
data, and refers to the area or linear dimension(s) of the grid
cells used. The appropriate grain size will often be determined
by the resolution of the available data such that the essential
dataset with the coarsest resolution generally determines the
limit to which grain size can be reduced. For example, whilst
a digital elevation model may be available on a 50 m grid (i.e.,
50 x 50 m), if species’ distribution data are recorded for a 1 km
grid, (i.e., 1 x 1 km) then the latter is the finest practical grain

size for most analyses.

Whilst a very fine grain (e.g., 10 m) might be used in principle,
in practice a number of considerations will determine the
appropriate resolution. Species’ distribution data may have been
recorded as presence/absence in cells of a grid at a particular
grain size or be derived from point records with limited spatial
precision; the grid resolution or point precision then effectively
determines the minimum grain size at which modelling can
be performed. The scale of spatial heterogeneity in the region
being considered will also influence the appropriate grain size;
a coarser grain may present few problems in areas of relatively
low spatial heterogeneity (e.g., flat terrain or uniform land-
surface properties), whereas finer grains may be necessary in
areas of higher spatial heterogeneity (e.g., topographically
complex, varying land-surface properties).

In many cases the overall extent of the species’ range will impose
a practical limit on the grain size because of the computational
demands of finer grains. Moving from a 0:5° to a 30” grid
increases by a factor of 3,600 the number of grid cells for which
data must be stored and processed, and hence increases both
computation time and memory requirements for modelling by
at least this factor. Even if computation time scales only linearly,
a model taking 1 second to fit at 0-5° will require 1 hour to fit at
307, whilst if processing scales by the square of the data size, as it
often does, then the 30” model will take 150 days to fit.

Additional issues need to be taken into account when adopting
finer grains. Firstly, whereas the majority of the spatial patterns
in a species’ distribution and abundance at grain sizes greater
than ~20 km can generally be explained by bioclimatic variables
alone (Luoto ez al., 2007), at finer grains it will generally be
necessary also to include non-climatic variables related to
habitat availability (e.g., land cover, geology, soil type,
hydrological features). At very fine grains, however, habitat is
less important and microclimate becomes the dominant factor

determining the distribution and abundance patterns of species
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that experience the boundary-layer climate rather than the
macroclimate (Gillingham ez al., 2012a, 2012b). Furthermore,
modelling such species at coarser grains can lead to a severe
over-estimation of their vulnerability to climate change
(Gillingham ez al., 2012a).

In this context it is important to note that the interpolation of
climatic variables performed to produce the finest grain datasets
generally available assumes that grid cells are flat and
uninfluenced by their neighbours. Even at the 30” grain of the
WorldClim dataset it is arguable that topographic factors such
as slope and aspect ought to have been taken into account.
Already at this grain (0.855 km? at the equator; 0.000126 km?
at the poles) the effect of insolation on temperature can be
extremely important and is determined principally by slope
and aspect. These topographic variables also influence drainage
patterns, and hence the redistribution of precipitation that runs
off rather than percolating into the soil. In many high-relief
landscapes the shading effect of surrounding areas of higher
elevation further impacts upon local temperatures, as do
phenomena such as cold-air drainage and lake effects (see
Bennie ez al., 2008, 2010; Maclean ez al., 2012; Hodgson ez al.

For species occupying habitats with short vegetation, or the
tops of forest canopies, models have been developed to estimate
microclimatic conditions based on macroclimate records,
taking into account topographic factors such as slope, aspect
and shading by adjacent areas at higher elevation (Bennie ez 4.,
2008, 2010). In principle such models might be extended to
estimate microclimatic conditions under forest canopies where
temperatures experienced by understorey species generally are
cooler and humidity higher than in open areas (De Frenne e#
al., 2013; Hardwick ez al., 2015). As a “rule of thumb”, such
approaches ought to be applied to generate estimates of relevant
microclimatic variables in any CCVA or other study that uses a
grain size of -1 km or less. In order to do so, however, it should
be noted that a suitably fine-grained digital elevation model
(DEM) will be required for the study area to enable estimation
of the necessary topographic variables. It is also worth noting
that at fine spatial scales, increased stochasticity in the data will
mean that model performance may appear worse than when

larger spatial scales are used.
5.1.2 Time frames
Temporal extent refers to the time frame under consideration

(e.g., climate changes by 2050 or 2100). As discussed in Eection
B (Setting climate change vulnerability assessment goals and

fora CCVA, as only a minority of species likely to be considered
have a generation length of less than a year. Temporal resolution
should not be confused with the period which relevant climatic
variables may represent; the mean temperature of the warmest
month of the year may, for example, be a relevant variable,
for which an annual time series will enable a CCVA to be
performed with annual temporal resolution.

5.1.3 Climate datasets

The choice of which projection(s) of future climatic conditions
to use is one of the most important in CCVA (Snover et al.,
2013). That decision in turn is influenced by four key questions:
(i) which model(s) of the climate system should be used?
(i7) which emissions scenario(s) are appropriate? (i) which
historical or baseline climate dataset is suitable? and (Z») which
bioclimatic variables should be used?

5.1.3.1 General Circulation Models (GCMs)

Choice of climate model should favour those most recently used
and recommended by the IPCC (e.g., thelatest IPCC Assessment
Report), and that are either fully coupled atmosphere-ocean
general circulation models (AOGCMs, e.g., HadCM3 (Gordon
et al., 2000) or preferably earth system models (ESMs, e.g.,
HadGEMI (Pope et al., 2007) that typically have improved
representations of land-surface atmosphere interactions, as well
as coupled simulations of terrestrial vegetation cover. Where
the spatial extent of the planned CCVA is relatively limited,
and especially in regions of complex topography, a Regional
Climate Model (RCM (Morales ez al., 2007), e.g., PRECIS) is
likely to provide more accurate projections, provided that the
boundary conditions used are from an appropriate AOGCM
or ESM simulation, because RCMs operate mechanistically
on horizontal resolutions of tens, rather than hundreds, of
kilometres. The island of Madagascar, for example, is spanned
by over 300 RCM squares (of side 55 km) but only a dozen or
so squares at a typical GCM resolution.

The Coordinated Regional Climate Downscaling Experiment
(CORDEX) has made available a series of regional datasets
derived from RCM simulations. These are of continental scale
and have a grain size of 0.44 DD (-55 km at the equator). Even
regional models, however, are unable adequately to resolve
fine-scale climatic variability across regions of high relief. A
subsequent, non-mechanistic, downscaling step may therefore
be desirable to recover fine-scale spatial variation at sub-RCM
scales, as well as to remove model bias compared to the baseline

climate data (see[Section 5.1.3.5 (Understanding and preparing

objectives)l, this will be informed by assessors’ needs, the biology
(e.g., generation length) of focal taxa, and the length of the
temporal time series of projected climatic data that are available
(mostly to 2100 but some IPPC AR5 simulations extend to 2300).

Temporal resolution refers to the unit of time sampled within
the temporal extent considered (e.g., daily, monthly, annual). A
temporal resolution of less than annual will rarely be required
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lfuture climate scenariosi). In most cases it will be preferable

to carry out CCVA using equivalent projections from each of
several (at least three) climate models. These models should be
selected so as to encompass the range of uncertainty amongst
models; choosing a number of models which each give
projections close to the ensemble mean of all models included
by the IPCC has little value, and simply increases the amount
of computation required.
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Having made assessments using each climate projection, the
model outputs may then be combined into an ‘ensemble’ or
mean which is generally regarded as the main output, while
the various individual assessments provide an indication of
the spread of potential values and hence of uncertainty in the
results. Note that combining the climate model projections in
an ensemble mean climate projection at the outset and then
making a single assessment is inadvisable, because this will
provide no insight into the range of uncertainty in outputs.
Since different models may generate qualitatively different
circulation patterns, it could also result in an ensemble
mean climate projection that is mechanistically unrealistic
or physically impossible. For example, a major atmospheric
circulation feature, such as a persistent front, a jet stream or
the path of monsoon winds, can be simulated by different
models to occupy markedly different geographical locations,
especially if a major topographic feature, such as a mountain
range, ‘steers the feature to one side or the other of that
feature. Taking a mean of two such contrasting simulations
will tend to obliterate the spatial patterns in climatic variables
associated with the circulation feature, such as the steep spatial
gradient in temperature associated with a persistent front or the
concentration of rainfall associated with the path of monsoon
winds, resulting in mechanistically unrealistic mean climatic
patterns. Doing so also can cover up year-to-year variance,

which may be an important driver of vulnerability.

5.1.3.2 Emissions scenarios

It is tempting to advocate that greenhouse gas emissions
scenarios should be selected to represent a plausible range of
possible futures; alternatively, adoption of the precautionary
principle might be advocated. In support of the lacter

Clownfish (family: Pomacentridae) have close relationships with
sea-anemones, relying on them for protection. Clownfish are
believed to locate their particular host sea-anemone using a sense
of smell, but laboratory experiments suggest that this sense may be

impaired by more acidic ocean water. In addition, both clownfish
and sea-anemones depend on coral reefs for habitat, and hence
are threated indirectly by reef bleaching and ocean acidification
impacts on them. © Flickr - Alfonso Gonzalez

approach, the evidence of the past 25 years is that emissions
have continued more or less along the worst case trajectory
considered plausible by the IPCC in 1990 (Raupach ez al.,
2007). Hence it can be advocated that one should take the
worst-case amongst plausible emissions scenarios (i.e., that
corresponding more or less to ‘business-as-usual’) as the basis
for performing a CCVA. Whilst some may argue that this
is likely to exaggerate the problems faced by species and by
biodiversity generally, improvements in climate models over
the same period have not reduced the magnitude of disparities
between climate changes projected by different models and
under different emissions scenarios. Indeed, if anything the
upper bounds on the range of uncertainty of future climate
change magnitudes have increased (Stainforth er al, 2005).
Add to that the acknowledged fact that a number of key
positive feedbacks in the climate system, notably the effects of
the snow-vegetation interaction on the snow-albedo feedback
at higher latitudes, and the complex soil-moisture-vegetation-
precipitation feedback in semi-arid areas such as the Sahel,
are not adequately represented in current climate models, and
the argument for adopting the precautionary principle when
selecting plausible emissions scenarios to use when performing

CCVAs is strong,.

Whichever approach to selecting emissions scenarios is
adopted, it is important that only potentially realistic scenarios
such as those developed over the past ~25 years by the IPCC
should be included. The Representative Concentration Pathway
(RCP) scenarios used in the IPCC’s Fifth Assessment Report
(IPCC, 2013a) should be favoured wherever possible over the
older SRES scenarios used in the Fourth Assessment Report
(IPCC, 2007b). The earlier 1S92 and SA90 scenarios should
generally no longer be used since evidence that emissions since
1990 have emerged as close to the highest ‘business as usual’
SA90 scenario means that the emissions range they consider is
not realistic.

IPCC’s Fifth Assessment Report includes four trajectories
for atmospheric emissions and radiative forcing in the 21st
century: RCP 2.6, RCP 4.5, RCP 6 and RCP 8.5 (the forcing
in W.m? determines the number proceeding RCP). Most
optimistically, RCP 2.6 assumes that greenhouse gas emissions
are multilaterally reduced with immediate effect, such that
atmospheric concentrations peak and decline by the year 2100,
with the global mean temperature anomaly remaining below
2 °C relative to pre-industrial levels. Although technically
feasible (Vuuren ez al., 2011), this trajectory is unlikely
given recent trends. The other scenarios project global mean
temperature anomalies of up to -5 °C by 2100. In terms of
temperature anomaly, the closest SRES equivalents are Bl
(RCP 4.5) and AIF1 (RCP 8.5) (Rogelj et al., 2012). If the
precautionary principle is not adopted, then inclusion of at
least three scenarios is recommended and two is regarded as
the absolute minimum number to consider, in which case they
should represent the overall range of plausible uncertainty about
future emissions (i.e., a ‘high’ and a ‘low’” emissions scenario,
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e.g., RCP8.5 and RCP4.5). If the precautionary principle is
adopted, then RCP8.5 is recommended.

In contrast to working with climate models, it is almost always
inappropriate to calculate any kind of ensemble mean of the
CCVA results for two or more emissions scenarios. Instead,
individual CCVAs should be made for alternative emissions
scenarios so as to obtain insight into the uncertainty in the
CCVA that relates to uncertainty about future emissions. There
is a fundamental difference between this uncertainty related to
unknowns about future human population growth, standards
of living and global economic, energy and other policies, and
the uncertainty related to different climate models, which
arises from uncertainties in climate science, differences in
model formulation and the need for simplification of systems
by all models.

5.1.3.3 Historical (baseline) datasets

The most widely used datasets representing baseline climate
observations, as well as three satellite-derived rainfall datasets
with potential for use, are shown in Table 8. Choice of dataset
will depend upon the spatial extent and grain size at which
the CCVA is to be performed, as discussed above under

lSection 5.1.1 (Spatial extent and resolutionj, as well as the

most appropriate time period in relation to the period when
species’ data were collected. In particular, where mean climatic

values for “custom” periods are required, the best available
option is to use the 0-5° CRU TS§3.22 dataset (Harris et al.,
2014) of monthly means for 1901-2014, complemented, if
appropriate, by rainfall and/or temperature data from one of
the satellite-derived datasets (recent decades only). In the case
of the datasets based on observed climate records from weather
stations around the world, it is important to recognize that
such stations are more sparsely distributed in the developing
world, particularly in the tropics (e.g., Saharan and tropical
Africa), and also are much sparser at higher elevations globally.
Projections for such regions made using these baseline datasets
are thus subject to greater uncertainty.

5.1.3.4 Bioclimatic variables

The choice of bioclimatic variables used for a CCVA should
be tailored to the focal species. Although there are very few
species for which autecological studies have identified the
precise bioclimatic variables that are important and/or their
mechanisms of action (e.g., Pigott & Huntley, 1981), the
general biological knowledge accumulated for a range of
taxonomic groups and climatic regions, as well as the results
from the many studies that have fitted species-climate envelope
models of various types, provides a basis for an informed and
intelligent choice of bioclimatic variables for most species. As
a general observation, notwithstanding many studies in which
it has been used, mean annual temperature is unlikely ever

Table 8. Examples of the most widely used and generally available climate datasets representing historical (baseline or recent

past) climatic conditions.

Dataset name Spatial extent Temporal extent

Spatial resolution

Data available at: (URL)

Datasets using meteorological station data interpolated with respect to longitude, latitude and elevation

CRUCLv.2.1 Europe 1961-90 10 minutes Available on request

(Mitchell et al., 2004) (30-year means) (~18.4 x 18.6 km = 342 km?)*

CRUTSv.3.22 Global 1901-2013 0.5degrees http://www.cru.uea.ac.uk/cru/data/hrg/
(Harris et al., 2014) (annual data) (~55 x 56 km = 3,077 km?)*

WorldClim Global 1950-2000 30 seconds http://www.worldclim.org/

(Hijmans et al., 2005) (period means) (~922 x 928 m = 0.855 km?)*

Prism (Daly et al., United States ~ 1895-ongoing 30 seconds http://prism.oregonstate.edu/

2002) (~922 x 928 m = 0.855 km?)*

Datasets using satellite remote-sensed data, usually processed through some form of model that often includes assimilation of data

from meteorological stations

CHIRPS v2.0 50°S-50°N
(Funk et al., 2014) (Rainfall only)

1981—present 0.05 degrees
(daily, 10-day, monthly (~5.5 x 5.6 km = 30.8 km?)
& annual data)

http://chg.geog.ucsh.edu/data/chirps/#plus7

MODIS Land Surface  Global March 2000—present 1 km to 0.05 degrees http://modisland.

Temperature/Emissivity (daily, 8-day, gsfc.nasa.gov/temp.htmi

Global monthly)

TAMSAT/TARCAT v2.0  Africa 1983—present 0.0375 degrees http://www.met.reading.ac.uk/~tamsat/cgi-
(Maidment et al., 2014; (Rainfall only)  (10-day, monthly & (135 seconds) bin/data/rfe.cgi?type=clim

Tarnavsky et al., 2014) seasonal data) (~4.15x 417 km = 17.3 km?)*

TRMM/3B42 50°S-50°N March 2000—present  0.25 degrees http://pmm.nasa.gov/data-access/

(Rainfall only)

(daily, 10-day, 30-day) (27.6 x 27.8 km = 769 km?)

downloads/trmm

*Average near the equator
CRU: Climate Research Unit
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to be mechanistically important (Huntley, 2012; Placts ez al.,
2013b). In contrast, coldest and/or warmest month means
or annual extremes (where these are available), and annual
thermal sums above or below relevant thresholds, have well
understood mechanistic roles in determining the performance
and/or survival of species from a wide range of taxonomic
groups. It may also be useful to include species or taxon-
specific measures that relate to particular periods of high
sensitivity to weather conditions, such as the breeding season
(Pearce-Higgins ez al., 2015).

Similarly, although mean annual or seasonal precipitation values
have often been used, there is little, if any, evidence showing
that the amount of precipitation is mechanistically relevant to
any species. Instead, higher plant species respond principally to
the balance between precipitation and evaporation, seasonally
or annually, as measured by such variables as precipitation
minus evaporation (P-E) or the ratio of actual to potential
evapotranspiration (AET/PET). Members of other taxonomic
groups, in contrast, may be influenced principally by the
distribution of precipitation through the year (e.g., number of
rain days or wet days); many amphibians, leafy liverworts and
filmy ferns, for example, need their skin or foliage to remain
moist, whilst some overwintering insects may be detrimentally
affected by wet conditions which may promote fungal attack
(Conrad et al, 2003). Other variables become important
only under certain climatic regimes or for particular species.
For example, in seasonally arid tropical regions, the intensity
of the dry or wet season is often extremely important; while
for many boreal and Arctic species, seasonal snow depth, for
which snow water equivalent (SWE) provides an appropriate
and widely available proxy, is important. Given the importance
of altered inter-species interactions in causing climate change
impacts, we note that climatic measures important for lower
trophic levels may also affect populations and distributions of
higher predators (e.g., Huntley ez al., 2008; Pearce-Higgins ez
al., 2015).

For some taxa no specific information is available to guide
selection of bioclimatic variables. For tropical species, the
best default choice is a combination of coldest and warmest
month mean temperatures, annual ratio of actual to potential
evapotranspiration and a measure of the intensity of the dry/
wet season. Measures of biseasonality (i.e., measures of two
rainy seasons in a year) may also be appropriate (e.g., ratio
of water availability in the less wet rainy season to the more
rainy season, length of the longest dry season). For temperate
species, the best default bioclimatic variables would minimally
be the coldest month mean temperature, annual thermal
sum above 5°C and the annual ratio of actual to potential
evapotranspiration. For some cool temperate species that
have a ‘chilling’ requirement, a measure of the length of the
period with temperatures below 0°C or the (negative) annual
thermal sum below 0°C can be an important additional
variable. For Arctic and boreal species, snow water equivalent

(SWE) might be added, and for the highest latitude species,
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the annual thermal sum above 0°C may be substituted for

that above 5°C.

It is important to note that correlative models giving a high
goodness-of-fit and/or statistical significance can be, and
often have been, fitted using climatic variables that are not
mechanistically relevant. Such good fits generally reflect
correlations between the mechanistically relevant variables and
those mechanistically irrelevant variables used in the model.
However, such correlations are not persistent in space as one
moves from one climatic regime to another (see e.g., Huntley,
2012; Dormann et al., 2013; Huntley ez a/., 2014) and also
cannot be expected to be persistent in time as climatic patterns
change. As a result, models fitted using inappropriate variables
will often give inaccurate projections for future climates. It is
for this reason that it is extremely important to attempt, as
far as possible, to identify and use only variables for which a
plausible mechanistic role can be identified.

Asa general rule, no more than one bioclimatic variable should
be used for every five species occurrence records or ‘presence’
grid cells (ITUCN SSC Standards and Petitions Subcommittee,
2016). This avoids the risk of model ‘over-fitting’ which occurs
where highly complex models begin to describe or ‘fit’ random
error or noise, instead of the relationship between meaningful
variables. Some correlative methods (e.g., Maxent and Boosted
Regression Trees) automatically select a parsimonious number
of variables, and in such cases users need not be concerned
with supplying too many bioclimatic variables. However,
especially with such methods, where the variable selection
algorithms select on the basis of statistical contribution/
power, it is extremely important that only variables that are
at least potentially mechanistically relevant are included in
the overall set of variables. In cases where a limited number
of variables must be selected and several are candidates, it is
advisable to investigate the correlations amongst them (e.g.,
through Principal Components Analysis) and select a reduced
number of uncorrelated variables, thereby reducing potential
problems of co-linearity (Aradjo & Guisan, 2006; Dormann
et al., 2013), or to condense multiple correlated predictors into
uncorrelated PCA axes (e.g., Loarie ez 2/., 2008).

5.1.3.5 Understanding and preparing future climate
scenarios

Climate models, whether General Circulation Models,
Regional Circulation Models or Earth System Models, can be
used to simulate past, present or future climatic conditions.
In all cases, however, the model simulations will give biased
estimates of climatic variables because no model is a complete
and precise representation of the climate system. In order to
construct changed climate scenarios from the model outputs, it
is therefore necessary to take certain minimal steps to remove

or reduce these model biases.

The most common approach to this assumes that these biases
will not change when a model is used to simulate an altered
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climate, and thus that any changes in conditions between a
simulation by the model of present climate and of some altered
climate will be robust. Changed climate scenarios for CCVA
are thus best prepared by first using a model’s simulations of
‘present’ climate and of the altered climate of the selected time
in the future to calculate the projected change or ‘anomalies’
in the climatic variables of interest. The ‘present” in this case is
that period covered by the chosen baseline climatic dataset. The
changes, or anomalies, are then combined with the baseline
dataset to obtain the required scenario of projected future
climatic conditions. This ‘change-factor’ or ‘delta’ procedure
for addressing biases in climate models when developing future
climate scenarios for impact studies is well-established, and has
been described in the literature in relation to the use of correlative
models to project species’ potential future distributions on a
number of occasions (e.g., Huntley ez /., 1995, 2006, 2007)
and also in relation to the generation of spatially downscaled
climate change scenarios for various regions (e.g., Ramirez-
Villegas & Jarvis, 2010; Tabor & Williams, 2010; Platts ez al.,
2015); it is discussed in more detail below.

Where they are available, users may prefer to select projections
from lists of available climate datasets, but in doing so they
should take care to establish that these have been constructed
using appropriate methods. Alternatively, users may need to
carry out the following steps themselves. In either case, it is
important to understand the way that climate model outputs
and baseline climatic data are used together to derive future
climate scenarios.

Step 1. Calculate projected changes or anomalies from
climate model outputs

To work out the degree of change projected by a climate model
for a particular emissions scenario and time period, ‘anomalies’
or ‘change fields’ are calculated for each climatic variable of
interest. Anomalies are generally calculated as the change
between the model’s simulations of mean values of the climatic
variable for ‘present’ (ideally the same period as is spanned by
the baseline dataset to which the anomalies will be applied) and
for the selected future time period, and are calculated for each
climatic variable of interest and for all model grid cells relevant
to the area of interest.

For temperature variables, anomalies are normally calculated
as the arithmetical difference between future and ‘present’
values (i.e., additive anomalies; e.g., if a cell’s ‘present’ July
mean temperature is 20 °C and the projected future value is
22°C, the anomaly will be +2°C). For precipitation-related
variables such additive anomalies, although sometimes used
(Tabor & Williams, 2010), generally are not recommended
because climate models often have consistent ‘wet’ or ‘dry’
biases that result in large differences between models in
absolute precipitation changes. This can readily be overcome
by calculating anomalies as the ratio of the future to ‘present’
precipitation (i.e., multiplicative anomalies; e.g., if a cell’s
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‘present’ mean January precipitation is simulated by two models
to be 200 mm and 100 mm and the projected future simulated
values are 300 mm and 150 mm, the anomaly will be 1.5 in
both cases, whereas the additive anomalies would be 100 mm
and 50 mm respectively). Problems arise if the projected future
precipitation value is exactly zero; this is most readily overcome
by adding a small amount (e.g., 1 mm) to both the ‘present’
and future values (Ramirez-Villegas & Jarvis, 2010; Platts ez
al., 2015). Because all climate models differ in their inherent
biases, anomalies must be calculated separately for each model,
as well as for each emissions scenario and time period being

considered.

Step 2. Combine anomalies with baseline data to obtain
future climate scenario

Having obtained the anomaly fields, the second step is to use
these to calculate future climate scenarios by applying relevant
anomalies to the baseline climatic data, cither additively or
multiplicatively, as described above. The selection of baseline
climatic data at an appropriate grain was discussed above in

Section 5.1.1 (Spatial extent and resolution). If, as is likely,

the grain of the climate model, and hence of the derived
anomalies, is coarser than that of the baseline dataset selected
as appropriate for the CCVA, it is necessary to downscale
the anomalies appropriately so as to obtain values to apply
to the baseline data. Downscaling is usually performed by
ficting spline surfaces to the anomalies in longitude-latitude
space and using these surfaces to obtain interpolated values
for the cells of the target grid. This approach is generally
preferable to performing simple bi-linear or distance-weighted
interpolation of the anomaly values for the climate model grid
cells surrounding the target grid cell in the observed data,
because of the generally large differences in grain and the
inappropriateness of an assumption that anomalies are varying
spatially in a simple linear fashion.

In terms of spatial downscaling, it is worth emphasizing
that the change-factor method described here assumes
temporal stasis in local spatial patterns of climatic variation,
as inferred from the higher resolution baseline climatic data.
For example, within an RCM grid square, and depending
on the elevation contribution in the above interpolation,
present patterns of temperature change with elevation, or of
variation in precipitation arising from interactions between
the orientation of mountain slopes and the prevailing wind
direction, will be preserved. This assumption of temporal stasis
of local spatial patterns is likely to be valid unless the GCM
simulates changes (e.g., shifts in position, changes in strength,
changes in orientation) in major features of the atmospheric
and/or ocean circulation that strongly influence the climate of
the region of interest. Even in such cases, however, until such
time as global simulations of climate are available with a spatial
resolution as high as or higher than that achieved by current
RCM:s, this assumption generally represents the most practical
and pragmatic approach.
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In regions with sufficiently dense observational time-series
of climatic data, however, an alternative to change-factor
downscaling is directly to correlate RCM outputs with local
climatic conditions over time (statistical downscaling), and
to use those relationships to project future fine-scale changes,
correcting where appropriate for scenario-based changes in
land-surface feedbacks (e.g. cloud base shifting upslope due
to deforestation) or in the microclimatic regulation provided
by vegetation or snow cover. Such statistical downscaling
relies upon an assumption that the relationships between
fine-scale climatology and features of the climate system at
coarser resolution will persist under changed general climatic
conditions; this is both untested and unlikely.

5.1.4 Species distribution data

For CCVA approaches that rely heavily on occurrence records
for characterizing species’ climatic tolerances (i.e., correlative
and mechanistic niche modelling approaches), it is particularly
important that these data are of good quality (IUCN SSC
Standards and Petitions Subcommittee, 2016). Occurrence
records should have accurate locations, the acceptable spatial
precision of which will be determined by the spatial resolution
at which the CCVA is to be performed (e.g., accurate locations
with a precision of <~-100m will be required for an analysis at
a resolution of 1 km?). For best accuracy, the projection (e.g.,
WGS84) should be specified. Identifying spatially inaccurate
records is often difficult, but two procedures can help. Firstly,
mapping the records (in a GIS or Google Earth) will allow
anomalous or outlying records to be identified and investigated
(Pearson, 2007). Comparison with the expert-mapped
distribution polygons (see Table 6 for examples of sources)
or published maps, where available, may also be helpful, but
care needs to be taken that accurate records are not removed
unnecessarily, simply because they are located outside of such
distribution polygons. Where available, good quality survey or
atlas data, or a set of well-validated records, is likely to be more
accurate and useful than an expert-based polygon. Secondly,
where records give altitude as well as longitude and latitude,
overlaying the longitude-latitude location onto a high-resolution
DEM allows the consistency of the altitude to be checked;
records for which the match in altitude is unacceptably poor
can then be investigated or rejected.

Further uncertainty can be introduced into analyses if
occurrence data are spatially biased. Many datasets, for
example, will have higher densities of records from areas closer
to human settlements or roads. This can introduce important
biases with respect to the sampling of environmental space
that will result in inaccurate models. However, if information
on such sampling biases can be collected, then appropriate
selection of absence data can allow modelling approaches to
take some account of such biases (see Phillips ez /., 2009).
When this is not possible, other methods such as thinning
(subsampling records) in geographic space (Aiello-Lammens
et al., 2015) or environmental space (Varela et al., 2014), or
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weighting presences by the inverse of their local density (Stolar
& Nielsen, 2015) can be used to remove bias.

Identification uncertainty should be minimized. For less
well-known or difficult-to-identify taxa, occurrence records
should ideally be associated with vouchered specimens or,
if appropriate, photographs that have been identified by
relevant taxonomic experts, although modelling approaches
increasingly allow uncertainty in record identification to
be accounted for (Johnston ez al, 2015). Data from large
distribution databases (e.g., GBIF, HerpNET) may be used,
but only with caution and following careful review for accuracy,
coverage and sampling intensity (IUCN SSC Standards and
Petitions Subcommittee, 2016). Although concern is sometimes
expressed about the validity of records derived from citizen
science approaches (e.g., e-Bird, BirdTrack, SABAP), in practice
such schemes often provide the only practicable manner to
obtain large-scale and extensive biological recording data, and
include inbuilt verification mechanisms to ensure that unusual
records are vetted by experienced recorders and verifiers.
Such data have underpinned the majority of assessments of
distribution and projected range change for many bird species
(Huntley ez 4l., 2008).

Further discussion on this topic is presented below in
Section 6.1 (Uncertainty from species’ distribution and

abundance dataj.

5.1.5 Species trait data

There is growing recognition and understanding of the role
that species’ biological characteristics play in exacerbating or
mitigating sensitivity and adaptive capacity to climate change
(Jiguet ez al., 2007; Dawson ez al., 2011; Nicotra et al., 2015).
These include traits relating to species physiology, demography
and ecology (Keith er al., 2008; Visser, 2008; Williams ez al.,
2008). Studies examining associations between biological traits
and climate change-driven changes in population abundance,
extinction risk and range shifts for a range of taxa contribute to
a growing knowledge base (e.g., Cardillo ez a/., 2008; Murray ez
al., 2009; Thaxter er al., 2010; Angert ez al., 2011; Newbold ez
al., 2013; Chessman, 2013; Pearson ez al., 2014a; Estrada et al.,
2015). These trait associations provide the basis for using traits
for CCVA, and they present, at this stage, one of the few ways
of accounting for the multiple pathways in which species may
be impacted by climate change. Because they require ecological
knowledge without strong statistical and modelling expertise,
they are being adopted by many conservation organizations,
particularly asitis possible to make assessments for large numbers
of species relatively rapidly. A number of recent CCVAs have
adopted a trait-based approach to assessing species’ vulnerability
to climate change at either regional (Gardali ez a/., 2012; Trivino
et al., 2013) or global (Foden ez al., 2013) scales. We discuss the
application of the approach, as well as some of its challenges

and uncertainties, below, and in lSection 6.5 (Uncertainty from‘
Ibiological trait and demographic data)].
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5.1.5.1 Trait selection

To date, selection of traits for both trait-based and mechanistic
models has been largely expert-based, drawing on a priori
assumptions about the mechanisms by which focal species
are likely to be impacted. An example of a framework for
guiding such trait selection is shown in Table 9, and examples

of the types of traits used in five recent trait-based CCVAs
are shown in Table 10. Since this expert-based approach may
introduce certain biases (Burgman ez al., 2011), particularly
in combination with the omissions of certain traits due to
the realities of data availability and collection, we encourage

users to document the rationales for their trait choices, desired

Table 9. Trait categories associated with species’ heightened sensitivity and low adaptive capacity to climate change (from
Foden et al,, (2013) and Estrada et al. (2016)). Assessors may choose, for their focal species, the one or more traits that describe each
category (e.g., under D, for corals, users might select “susceptible to bleaching”).

SENSITIVITY

A. Specialized habitat and/or microhabitat requirements

As climate change-driven environmental changes unfold, species that are less tightly coupled to specific conditions and requirements are likely

to be more resilient because they will have a wider range of habitat and microhabitat options available to them. Sensitivity is further increased for
species with several life stages, each requiring different habitats or microhabitats (e.g., water-dependent larval amphibians). We note, however,
that this does not hold in all cases, and extreme specialization may allow some species to escape the full impacts of climate change exposure (e.g.,
deep sea fishes).

B. Environmental tolerances or thresholds (at any life stage) that are likely to be exceeded due to climate change

Species with physiological tolerances that are tightly coupled to specific environmental conditions (e.g., temperature or precipitation regimes, water
pH or oxygen levels) are likely to be particularly sensitive to climate changes (e.g., tropical ectotherms) (Deutsch et al., 2008; McCain, 2009).
However, even species with broad environmental tolerances may already be close to thresholds beyond which physiological function quickly breaks
down (e.g., drought-tolerant desert plants (Foden et al., 2007)).

C. Dependence on environmental triggers that are likely to be disrupted by climate change

Many species rely on environmental triggers or cues to initiate life stages (e.g., migration, breeding, egg laying, seed germination, hibernation
and spring emergence). While cues such as day length and lunar cycles will be unaffected by climate change, those driven by climate and season
may alter in both their timing and magnitude, leading to asynchrony and uncoupling with environmental factors (Thackeray et al., 2010) (e.g.,
mismatches between advancing spring food availability peaks and hatching dates (Both et al., 2006)). Climate change sensitivity is likely to be
compounded when different sexes or life stages rely on different cues.

D. Dependence on interspecific interactions that are likely to be disrupted by climate change

Climate change-driven alterations in species’ ranges, phenologies and relative abundances may affect their beneficial inter-specific interactions
(e.g., with prey, pollinators, hosts and symbionts) and/or those that may cause declines (e.g., with predators, competitors, pathogens and
parasites). Species are likely to be particularly sensitive to climate change if, for example, they are highly dependent on one or few specific resource
species and are unlikely to be able to substitute these for other species (Mgller et al., 2011).

E. Rarity

The inherent vulnerability of small populations to Allee effects and catastrophic events, as well as their generally reduced capacity to recover
quickly following local extinction events, suggest that many rare species will be more sensitive to climate change than common species. Rare
species include those with very small population sizes, as well as those that may be locally abundant but are geographically highly restricted.

LOW ADAPTIVE CAPACITY

F. Poor dispersal ability:

Intrinsic dispersal limitations: Species with low dispersal rates or low potential for long distance dispersal (e.g., land snails, ant and raindrop
splash-dispersed plants) have lowest adaptive capacity since they are unlikely to be able to keep up with a shifting climate envelope.

Estrada et al. (2016) outline a framework highlighting how four key range-shift processes are affected by seven trait types, namely (with traits in
brackets): (i) emigration (site fidelity); (i) movement (movement ability); (iii) establishment (avoidance of small population effects, persistence
under unfavourable conditions); and (iv) proliferation (reproductive strategy; ecological generalization and competitive ability (these three traits
apply to processes (iii) and (iv))).

Extrinsic dispersal limitations: Even where species are intrinsically capable of long distance or rapid dispersal, movement and/or successful
colonization may be reduced by low permeability or physical barriers along dispersal routes. These include natural barriers (e.g., oceans or rivers
for terrestrial species), anthropogenic barriers (e.g., dams for freshwater species) and unsuitable habitats or conditions (e.g., ocean currents and
temperature gradients for marine species). Species for which no suitable habitat or ‘climate space’ is likely to remain (e.g., Arctic ice-dependent
species) may also be considered in this trait set.

G. Poor evolvability:

Species’ potential for rapid genetic change will determine whether evolutionary adaptation can result at a rate sufficient to keep up with climate
change-driven changes to their environments. Species with low genetic diversity, often indicated by recent bottlenecks in population numbers,
generally exhibit lower ranges of both phenotypic and genotypic variation. As a result, such species tend to have fewer novel characteristics that
could facilitate adaptation to the new climatic conditions.

Since direct measures of species’ genetic diversity are few, proxy measures of evolvability such as those relating to reproductive rates and outputs,
and hence the rate at which advantageous novel genotypes could accumulate in populations and species (Chevin et al., 2010), may be useful.
Evidence suggests that evolutionary adaptation is possible in relatively short timeframes (e.g., 5 to 30 years (Bradshaw & Holzapfel, 2006)) but

for most species with long generation lengths (e.g., large animals and many perennial plants), this is likely to be too slow to have any serious
minimizing effect on climate change impacts.
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traits or mechanisms that were omitted, and where possible,
to account for uncertainty in trait choice assessments through
sensitivity analyses.

A key requirement in order to implement the trait-based
approach is a database of species traits. For many taxonomic
groups, such information is increasingly being collated, and
may be empirically available from various data sources and

organizations (see Table 6 and [Section 4.1, Step 3 (Species trait
. However, for many species, particularly for less-well

studied taxa, such information may be lacking, and obtaining

it must therefore rely upon an expert-based assessment, or
potentially, the use of data from similar species. This flexibility
makes the use of trait-based assessments attractive, as they
can be conducted for any species and location given either a
database of traits, or a number of species experts.

5.1.5.2 Trait threshold selection

Quantifying thresholds for categorizing the climate change
vulnerability associated with each selected trait poses a major
challenge to most trait-based methods. Thresholds of concern
are clear for some traits (e.g., confined to a small island), but
since most traits are described by continuous variables (e.g.,
body mass, fecundity, degree of habitat specialization), users
must infer such thresholds. In rare cases, empirical studies are
available to inform robust estimates of such thresholds (e.g.,
established growth performance curves and thermal extreme
tolerances for Australian Drosophila (Overgaard et al., 2014)),
but for most, users must make subjective choices based on their
own observations, ecological understanding or even arbitrarily
(e.g., the 25% worst-affected species, (Foden ez al., 2013)).
These challenges highlight the need for more empirical studies
on species’ physiological limits.

5.1.5.3 Trait scoring

Trait-based assessments to date have tended to quantify the
per-species climate change vulnerability associated for each
trait in one of three ways. Species have been assigned scores for
each trait (e.g., from -1 to 1 (Bagne ez a/., 2011), 1 to 3 (Gardali
et al., 2012), or 0-3 (Thomas ez 4l., 2011), ordinal categories
(e.g., “High/Medium/Low” (Chin ez al., 2010) or “High/Low”
(Foden et al., 2013)); or ranks (e.g., based on a hierarchical
decision framework (Smith ez /., 2016)).

i) To date little attention has been devoted toward scoring
systems and the manner in which scores are combined
(Willis ez al., 2015), but these have important consequences
for overall outcomes of TVA. A preliminary series of “best
practices” for developing a scoring system includes these
aspects:

ii) The number of graduations in the scoring system should
reflect the amount of trait information available. For
example, a finer scale (e.g., 0 to 10) allows for more nuanced
distinction between trait states than a coarser scale (e.g.,
high/medium/low). Although it is conceptually easier to
populate a scoring system with fewer graduations, coarser
scales generally require more concerted thought about
critical thresholds because the distinction between any
given pair of scores is greater (e.g., on a zero-to-ten point
system there is less relative difference between a score of 6
versus 7, whereas on a 3-point low-medium-high scale there
is much greater distinction between “high” and “medium”
or “medium” and “low”). Regardless of the scoring system,
assessors should clearly document selected trait thresholds
and provide justifications where possible.

iii) The scoring system should include a “neutral” score
above/below which climate change is expected to be

Table 10. Examples of the traits considered by five trait-based CCVAs (adapted from Willis ef al, 2015).

(Foden et al., (Garnett et al., (Gardali et al., (Thomas et al., (Graham et al.,
2013) 2013) 2012) 2011) 2011)

Habitat specialization X X X X
Dietary specialization X X
Environmental / climatic tolerance X X X
Inter-specific interactions affected X X
Sensitive to environmental triggers X
Rarity X X X
Dispersal X X
Evolvability X
Exposure X X X
Reproductive/recruitment capacity X X
Migratory status X
Other threats X
Body size X
Brain size X
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harmful/beneficial to a species. Though climate change
promises to cause large-scale disruption of species’ ecologies,
not all effects will necessarily be negative; some species will
benefit. Thus, it is important to reflect this potential in a
scoring system and avoid assuming climate change will have
only negative impacts. Even if no species in an assessment
will actually benefit or be unaffected by climate change,
neutral scores serve as a mental benchmark to anchor scores
to a meaningful state (a state of no effect). They also allow
for easier comparison between studies since a neutral score
serves as a common denominator between different scoring
systems. Inclusion of neutral scores is considered standard
practice in fields where score-based systems are used as a
basis for analysis (Ragin & Becker, 1992).

iv) Assessors should collect and store data in forms that
make re-assessment possible should the understanding
of climate change mechanisms underpinning the
trait threshold selection change. Climate science and
vulnerability assessment are rapidly-advancing fields; even
though decisions are being made that are relevant to time
periods many decades in the future, our understanding of
consequences of climate change progresses every year. Thus
it is very likely that an active management program will
need to update its assessment as time progresses (and our
knowledge of what climate and species may do becomes
greater).

v) Assessors should include measures of confidence in each trait
score (e.g., Bagne ez al., 2011; Thomas ez al., 2011; Gardali ez
al., 2012).

5.1.5.4 Calculating overall measures of vulnerability

Before combining trait scores into overall measures of climate
change vulnerability, many authors have weighted the scores,
either by expert judgement of trait importance (e.g., Graham ez
al., 2011; Gardali et al., 2012; Young ez /., 2012) or according
to confidence in score accuracy (e.g., Thomas ez al., 2011). The
resulting scores are then typically combined in one of two ways.
The final score may be derived computationally (e.g., through
additive (Bagne ezal., 2011; Graham ez al., 2011) or multiplicative

(Gardali et al., 2012) rules; see below) in which case the overall
CCVA output may be scores and, often resulting from these,
fall into overall vulnerability categories (e.g., Young ez al., 2012)
or ranks. Overall scores may also be reached through a rule-
based logic framework which typically assigns species into
overall vulnerability categories (e.g., Chin er a/., 2010; Bagne
et al., 2011; Foden ez al., 2013). We encourage users to carry
out sensitivity analyses to identify the uncertainty potentially
introduced by their selected scoring system.

Score-combining systems have received almost no attention
in the CCVA literature even though, like scoring systems, they
have a direct impact on the final outcome of an assessment
(Willis ez al., 2015). In general, there are two “levels” of scoring
rules, one used to combine scores within a module (reflecting,
for example, exposure, sensitivity, or adaptive capacity) and
another across modules (combining exposure, sensitivity, and
adaptive capacity). Combining rules reflect how traits interact
to convey overall vulnerability. Though there are many ways to
combine scores computationally, we review here two relatively
common and simple rules based on addition and multiplication.

Additive rules (score #1 + score #2 + score #3 + ...) reflect
situations where traits do not interact and can stand in for one
another to enhance vulnerability or counter one another to
reduce vulnerability. For example, a plant species’ sensitivity
might be reflected by scores for two traits, one reflecting
the lethal effects of high temperature on pollen and another
reflecting the need for low winter temperatures necessary for
seed stratification to break dormancy in the spring. Using a
summation rule assumes traits can substitute for one another
to confer the same amount of sensitivity to climate change
(e.g., the species could have the same sensitivity regardless
of whether it was sensitive to high temperatures or lack of
low temperatures). Mathematically, summation rules retain
symmetry around neutral scores (e.g., on a 7-point scale
from -2 to 2, with 0 as the neutral score, adding two scores
yields a new scale from -4 to 4 with 0 still being neutral). In
this context a “mean” rule that averages across scores has the

This biodiversity conservation workshop in far northern Queensland included facilitated discussions in small groups about the challenges,
opportunities and strategies for biodiversity conservation in the Wet Tropics in the light of the latest climate science. Researchers, local
technical experts and experienced members from conservation based community groups participated in the discussions. © Terrain NRM




5. Using CCVAs and interpreting their results

same properties, though it also tends to reduce the influence
of extreme scores, which would reflect the assumption
that deleterious traits could offset the beneficial effect of
combinations of others (and vice versa).

Multiplicative rules (score #1 * score #2 * score #3 * ...)
implicitly assume that traits can ameliorate or exacerbate the
state of others. For example, dependence on a particular rare
habitat is worsened when that habitat type becomes invaded due
to climate-induced spread of non-native species. Multiplicative
rules are not appropriate for all situations — to continue the
example from above where a plant species is scored according
to its sensitivity of pollen to high temperatures and need for
seeds to experience cold temperatures — the presence of a low
threshold to pollen-lethal temperatures would not seem to
directly modify a species’ need for cold temperatures for seed
stratification. Thus, multiplying the scores for these two traits
would be inappropriate.

Multiplicative rules are appropriate for three cases: (i) scored
aspects represent independent probabilities, in which case the
product reflects the probability of all aspects occurring (e.g.,
probability of too-high temperatures and too-low temperatures);
(ii) a probability times an outcome, in which case the product
reflects expected utility (Arponen, 2012); e.g., one minus the
probability of too-high temperatures times seed set yields the
mean expected number of seeds); and (iii) as in situation (i)
or (i) but where the values reflect indices of probabilities or
outcomes (Arponen, 2012), in which case the product is an
index of probabilities or expected utility. Unlike additive rules,
multiplicative rules do not retain symmetry around a “neutral”
score. Likewise, if zero and/or negative values are part of a
scoring system, multiplicative rules could have unintended
effects (e.g., multiplying by 0 reduces the influence of all other
traits to 0, and multiplying a negative score connoting harm
by a positive score connoting benefit produces a negative score
suggesting overall harm — and multiplying an even number of
negative scores produces a positive score). Hence, we suggest
careful use of multiplicative combining rules.

Other scoring systems (especially rule-based systems) can
reflect more nuanced interactions between traits. For example,
a “trumping” rule is appropriate when the state of a particular
trait makes other traits irrelevant (e.g., inundation of habitat by
sea level rise makes large amounts of standing genetic diversity
irrelevant). “Maximum” and “minimum” rules, which take
the maximum or minimum value across traits, are an extreme
version of a trumping rule because they assume that any one
trait can override the effect of all others. In some cases, series
of contingencies can trump one another (e.g., failed pollination
obviates dispersal of propagules, and lack of animals to serve
as dispersal vectors obviates the presence of available habitat
nearby). In these cases, a hierarchical series of trumping rules
may be necessary to reflect ecological contingencies (e.g., Smith
et al., 2016). Midway between “trumping” and arithmetic
rules is weighting of scores to reflect different magnitudes
of importance to climate vulnerability. For example, the
Standardised Index for Vulnerability and Value Assessment
(SIIVA) allows users to weight each criterion by its expected
importance prior to combination of scores (Reece & Noss,
2014). After weighting the summation, multiplication or other
rules can be applied.

We encourage users to carefully consider the effects of their
combining rules when designing their CCVA and to convey
justification for the particular combining rule system they use.

5.1.5.5 Missing data, uncertainty, variability,

and inapplicability

Nearly all trait-based assessments will suffer from the problem
of missing data, uncertainty about trait states and scoring,
and trait variation within species. In this context “missing
data” refers to situations where a trait could be assessed if its
state were known, “uncertainty” refers to lack of confidence
about the assessment of a state of a trait (e.g., should the trait
be assigned a value of 1, 2, or 3?), and “variability” refers to
intraspecific variation across a species in a trait related to
climate vulnerability. While conceptually related, each of these
situations requires importantly nuanced procedures to handle.

Left: Conservation practitioners and land use planners held a workshop to assess climate change vulnerability of biodiversity in western
Tanzania. © Wendy Foden. Right: Concerns include Katavi National Park's hippos which begin to congregate in the last remaining pools in
June. By the end of the dry season (October), several thousand are confined there, causing stress and mortality. The rivers supplying the park
vary greatly in flow between seasons, but the bottleneck is exacerbated by recent increases in cultivation upstream from the park as well as by
reported warming temperatures and more erratic rainfall. © Miho Saito
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Missing data can be imputed (e.g., Schrodt ez al., 2015) or
replaced with targeted research. Nonetheless, there will remain
situations in which trait states cannot be assigned. In this case,
one option is to assign a particular score to missing values (e.g.,
a “no effect” score; Young ez al., 2015). However, this implicitly
makes an assumption about the strategy by which uncertainty
is managed by the users of the CCVA. For example, assigning
a “no effect” score for missing cases will tend to down-weight
the final scores of species for which little is known (Anacker e#
al., 2013). In turn, this can have profound effects on the overall
assessment of vulnerability across species (e.g., Platts er al.,
2014). Another approach is to calculate overall vulnerability
multiple times assuming different scores for missing data each
time (e.g., reflecting benefit, no effect, or harm from climate
change; Smith ez 4l., 2016) and report the results as a range.
A third option is to standardise scores within a module by,
for example, dividing by the maximum possible score for
each species; Reece & Noss, 2014). In this way missing scores

become non-influential on the final outcome.

Missing data is just one aspect that contributes to uncertainty;
other causes of uncertainty include lack of confidence about the
state of a trait (versus complete lack of knowledge), difficulty in
determining thresholds (i.e., assigning the appropriate score to
a trait state), and conflicting accounts of trait states, amongst
other causes. Again, several approaches have been used to
address uncertainty, including independent assessment by
multiple experts (i.e., a Delphi-like system; Runge ez /., 2011)
or assigning a range of scores. The CCVA can then be analysed
multiple times using, for example, “optimistic” or “pessimistic”
values of scores (e.g., Foden et al., 2013) or using Monte Carlo
randomization (Reece & Noss, 2014). Another alternative
is to design a separate “information availability” module
which reflects completeness of knowledge about each species
(Benscoter ez al., 2013). Regardless, in most cases uncertainty
should be reflected in the vulnerability assessment as a separate
aspect (e.g., as a separate score — e.g., Moyle ez al., 2013) —
or as error bars — e.g., Benscoter er al., 2013 — or as distinct

optimistic or pessimistic “scenarios” — e.g., Foden e al., 2013;
Smith et al., 2016. Some trait-based assessments weight final
scores by uncertainty by, for example, assuming species with
more uncertainty around their scoring are inherently of lower
priority (e.g., Thomas et al., 2011; Shoo ez al., 2013), which
in this case is directly contradictory to the precautionary
principle. Hence, we advise reporting uncertainty separately
from “mean” (expected) vulnerability.

Variability in traits within species is similar to —yet importantly
distinct from— uncertainty about traits (cf. Lehmann & Rillig,
2014a). Intraspecific variation is probably the rule rather than
exception, yet trait-based (and other) approaches often assume
that species act as homogenous units in response to climate
change. Indeed, intraspecific variation can confer greater
vulnerability to climatic variation if it reflects local adaptation
(e.g., Valladares ez al., 2014) or less vulnerability if it reflects
ability to adapt genetically or through phenotypic plasticity
(Avolio & Smith, 2013). Regardless, assigning a single score to
an intraspecifically-varying trait ignores this important aspect
of vulnerability. In this case the most appropriate practice
would be to assign a range of values and calculate overall
vulnerability multiple times to reflect intraspecific variation in
traits. Alternatively, “variation in trait” can be treated as a trait
itself to indicate increased/decreased vulnerability as a result of
variation in the given trait.

In a related vein, some traits may be inapplicable for some
species but applicable to others, a situation likely to arise when
large suites of taxonomically diverse species are evaluated (e.g.,
Foden ez al., 2013). For example, stream discharge rate is highly
relevant to lotic fish but not to most birds. One option is to
design separate CCVAss for each suite of species (e.g., Foden ez
al., 2013 evaluated corals, birds, and amphibians separately),
but in some situations comparing vulnerability of disparate
suites of species (e.g., in the same management unit) is desirable.
In this context some of the methods used to handle missing
data can be used (especially standardization). When there is

Leatherback Turtles (Dermochelys coriacea), already a critically endangered species, are being impacted by rising beach sand temperatures.

At higher temperatures their buried eggs hatch a disproportionately high proportion of female turtles, leading to populations with strongly
skewed sex ratios. Their nests and nesting habitat are also threatened by rising sea levels and increases in storm activity. Left: © Roderic Mast
/ Oceanic Society. Right: © Brian Hutchinson
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little overlap between species’ traits used for scoring, then the
assessment of different suites of species might approach the
situation in which they are effectively scored separately. In this
case the inclusion of a neutral score in the scoring system can
still serve as a benchmark against which to compare different
groups of species since it serves as a common measure of “no
harm” even if comparison of non-zero scores across disparate

groups is somewhat ambiguous.
5.1.6 Accounting for habitat availability

Any non-climate factor that restricts the climate space occupied
by a species may influence our ability to evaluate effects of
climate change. Species’ vulnerability to climate change will,
of course, be influenced by the availability of suitable habitat,
both now and in the future. In particular, a species may not be
realizing parts of its present potential climatically-determined
range because all suitable habitat has been destroyed in some
areas; models fitted to the realized range (which is smaller
than the potential range) are then likely not to predict full
occupation of the climatically suitable area now or in the
future. Conversely, large parts of a species’ potential future
climatically-determined range may lack suitable habitat; if
this is not taken into account then the species’ vulnerability
to climate change may be underestimated. Under limited
circumstances, statistical methods can help to describe
relationships between species’ occurrence and climate whilst
accounting for such spatial bias (Beale 2014; an alternative
approach is to attempt to model the impacts of such non-
climatic variables directly. Although climate is widely regarded
as the main determinant of occurrence at large spatial scales
(Thuiller et al., 2004; Huntley ez al., 2007), at finer spatial
scales, the inclusion of additional non-climatic variables such
as land-cover or information about species interactions may
improve model performance (e.g., (Aratjo & Luoto, 2007;
Luoto et al., 2007)). When modelling species’ abundance, the
inclusion of non-climatic variables may be even more important
(e.g., Renwick ez al., 2012). However, even though models of
species abundance at individual sites may have low explanatory
power at the site level, predictions from the model may account
for large-scale population changes when summarized at larger
spatial scales (Johnston ez /., 2013).

Whilst it may be desirable to incorporate measures of non-
climatic variables in models of climate suitability, particularly
when considering fine spatial resolutions or modelling
abundance, attempts to construct and use models that
incorporate habitat availability or suitability alongside climatic
suitability face two serious problems. Firstly, if habitat variables
(e.g., land-cover types, topographic variables) are combined
with climatic variables in a single model, correlations between
the habitat and climatic variables will influence the precise
form of the relationships with climate variables. Although
it may be argued at one level that such models may better
describe the relationship with climate because they account for
other potential drivers of species occurrence which may also
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(spuriously) be correlated with climate, it is equally plausible
that at least some of these correlations will break down under
climate change (e.g., vegetation structure at a locality may
change as climate changes). As a result, projections for future
climatic conditions made using such models may be inaccurate.
Of course, if some of the distribution of a particular land-cover
or other non-climatic variable is a least partly climatically
related, it could be argued that allocating some of that variation
to land-cover rather than climate would provide a conservative
assessment of the likely impacts of climate change on a species.

Secondly, land-cover projections for the future are much more
problematic than climate change projections. Nonetheless,
preparation of the Representative Concentration Pathways
developed for the IPCC 5th Assessment Report included
production in a consistent way of half-degree gridded data
on past, present and projected future land-use (Hurtt ez al.,
2011). These data are now in principle available for use in
making more realistic CCVAs that incorporate likely future
changes in land-use and how these will impact species’ ability
to realize their future potential climatically-determined ranges.
To date, however, we are unaware of any such studies, although
as Hannah ez 4/, (2013) demonstrated, the potential that
future agricultural land-use changes in response to climate
change will lead to intensified conflicts with biodiversity
conservation is considerable. Alternatively, projections may
be made from models that also incorporate land-cover, but
without including any element of projected changes in land-
cover, or in other non-climatic variables (e.g., Renwick ez al.,
2012). In this instance, although such projections may be
unlikely to be realized, as some degree of land-cover change is
likely due to direct human influence, such projections may be
best regarded as indicating how the suitability of existing land-
cover for a species is likely to change in response to climate
change (Pearce-Higgins & Green, 2014). Such models may
then be used to address other questions, such as considering
an optimum land-cover in order to reduce the negative impacts
of climate change, or to explore potential interactions between
climate and different scenarios of land-cover change (e.g., Vos
et al., 2008; Barbet-Massin ez a/., 2012).

For the present, it is likely that other problems faced by species
as they attempt to adjust to climate change, especially the
impermeability of many landscapes to dispersal due to land
use change, will be more important over coming decades
than longer-term problems resulting from changes in land
use in response to climatic and economic changes. The simple
observation that climate changes seem to be outpacing the
capacity of species and ecosystems to respond (Devictor ez
al., 2008) is an even more pressing problem, although one
that likely is exacerbated by the extent of habitat loss and
fragmentation as a result of human land use in many regions of
the globe. Incorporation into CCVAs of assessments of realistic
rates of dispersal by species to newly climatically suitable areas
is at least as urgent and important as efforts to incorporate

potential changes in land use.
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5.2 Challenges to applying current CCVA
approaches

5.2.1 Direct versus indirect impacts of
climate change

A primary focus of many CCVA studies is to examine the
direct impacts of changes in climate on focal species. To
date, however, far less attention has been given to the indirect
impacts of human and ecosystem responses to climate change,
including both the new and interacting threats and stressors
they introduce to species. We describe these effects as ‘indirect
impacts’ of climate change and here distinguish two types.

Indirect impacts from humans result from efforts both to
mitigate and adapt to climate change (Paterson ez al., 2008;
Turner et al., 2010; Maxwell ez al., 2015). Human mitigation
responses are typically proactive actions taken to reduce
greenhouse gas emissions, and include REDD+, forest
restoration and increases in renewable energy (e.g., biofuels).
Adaptation responses may be proactive, including actions such
as construction of sea defences to protect coastal areas from
rising sea-levels and increased storminess, construction of
hydro-electric, wind and solar infrastructure for low emissions
power generation, and increasing extraction of water to irrigate
crops and augment drinking water supplies. Some responses
may be reactive alone, or both reactive and proactive; these
include human migration, shifting land use, increased reliance
on wild species (e.g., Hazzah er al., 2013), and human-wildlife
conflicts for water resources (Ogutu et a/., 2009).

Indirect impacts may also arise from climate change-driven
disruptions in natural systems, including in interspecies
interactions (e.g., in mutualist, host-parasite, predator-prey
or competitive relationships), and in habitats and ecosystems
(e.g., declines in habitat quality or suitability; changes in
ecosystem type, such as elevated CO,-driven woody plant
encroachment into savannas and grasslands (Midgley & Bond,
2015)). Such indirect impacts should not be confused, however,
with the indirect mechanisms that mediate many of the direct
impacts of climate change on species (Ockendon ez 4l., 2014).
As the palaeoecological record amply documents (Blois e# /.,
2013), climatic conditions frequently modulate the outcome of
competitive (e.g., Woodward, 1975; Woodward & Pigott, 1975)
and other biotic interactions (e.g., Spiller & Schoener, 2008).

The roles that these indirect impacts play in exacerbating
existing biodiversity threats and stressors are often ignored. The
global species extinction rate currently exceeds the background
rate by at least an order of magnitude (Woodruff, 2001;
Barnosky ez al., 2011) and probably by -1,000 times (Pimm
et al., 2014). An estimated 26%, 14% and 41% of mammals,
birds and amphibians respectively are listed as threatened
on the JIUCN Red List (IUCN, 2015), predominantly due
to threats that are historically unrelated to climate change.
Mammals, for example, were found to have at least 40% of
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species affected by habitat loss and degradation, and 17% of
those affected by hunting or harvesting (Schipper ez a/., 2008);
other stressors driving species endangerment include over-
exploitation, invasive species, spread of disease and changes in
fire regimes. The relative importance of different stressors varies
both geographically and across taxonomic groups (Ceballos &
Ehrlich, 2002; Ehrlich & Pringle, 2008), as, correspondingly,
do their potentially magnifying effects on climate change
impacts.

Including indirect climate change impacts on species is clearly
an important priority for CCVAs. Mechanistic and trait-
based approaches typically consider changes in inter-species
interactions, while assumptions about changing habitat
quality are implicit in most approaches. Studies assessing
human-mediated indirect impacts are beginning to emerge,
and Maxwell ez al. (2015) discuss approaches for integrating
these into species- and site-based CCVAs. Segan ez al. (2015)
combined a correlative CCVA approach with data on the
projected impact of climate change on human populations
in Southern Africa (as assessed by Midgley ez al., 2011), and
found that one-fifth of threatened bird species and one-tenth of
Important Bird Areas previously thought to be at relatively low
vulnerability to climate change shifted to high vulnerability
when the likely indirect impacts of climate change were
considered. Some trait-based approaches (e.g., Young ez al.,
2012) allow for consideration of indirect human impacts on
species, and some combined approaches (e.g., Thomas ez al.,
2011) include assessment of the severity of non-climatic threats.
However data on potential and realized indirect climate change

impacts are currently scarce.

Trait-based, mechanistic and combination approaches all have
good potential to include indirect climate change impacts, but
at present, practical methods to include them into CCVAs
are generally poorly developed. Method development and the
compilation of datasets describing indirect impacts presets
important CCVA development priorities. At present, we
recommend that users recognize the potential for such indirect
effects to greatly affect climate change vulnerability, and to
take this into account when carrying out and interpreting
CCVA assessments.

5.2.2 Interpreting spatially explicit model
outputs

5.2.2.1 Inferring range changes from model projections
The output of most correlative approaches measures the
‘suitability’ of grid cells, or the ‘probability of occurrence’” of
a species in each grid cell. In order to transform these outputs
into qualitative projections of the species’ potential future
presence or absence, and hence obtain estimates of potential
changes in the species’ range, it is necessary to apply some
threshold value of suitability or probability of occurrence,
above which the species is considered likely to be present and
below which it is considered likely to be absent. Even some



‘The Quiver Tree (Aloe dichotoma) of southern Africa, although adapted to its Namib desert environment, is experiencing a poleward
(southward) range shift, probably due to increasing temperatures and drought severity. While northern populations are declining to
extinction, southern range expansion is limited, leading to a contraction in the species’ range. Lower right: Wendy Foden measures a Quiver
Tree to determine the age structure and extent of mortality in its local population. All photos © Wendy B. Foden
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of the earliest applications of correlative models recognized
the need to optimize this threshold value (see e.g., Huntley
et al., 1995) rather than to use an arbitrary value (e.g., 0.5 as
is conventional in logistic regression). The most widely used
approach is to select that threshold value that optimizes
some measure of goodness-of-fit of the correlative model, the
problem being that a large number of such measures have been
proposed and used. Liu ez a/., (2005, 2013) have explored the
performance of alternative measures for determining threshold
values, both for models fitted to presence—absence data (Liu ez
al., 2005) and for models fitted to presence-only data (Liu ez
al., 2013). They conclude in both cases that the threshold value
that maximizes the sum of sensitivity and specificity is the only
threshold among those they analysed that will have the same
value regardless of whether it is calculated using true absences
or randomly selected background sites (and also assuming that
presences are randomly sampled from the species’ range). This
measure is equivalent to one plus the value of the True Skill
Statistic (Allouche ez al., 2006); maximizing the latter thus
gives identical optimal threshold values to maximizing the sum
of specificity and sensitivity as proposed by Liu et /. (2005,
2013). Hence, if thresholding is to be performed using a single
measure, we recommend that the optimal threshold be selected
as that which maximizes the value of the True Skill Statistic.
However, as different threshold rules can yield dramatically
different conclusions about whether a species will decline or
expand under climate change (Nenzén & Aratjo, 2011), we
recommend carefully experimenting with alternative threshold
rules with consideration as to whether optimistic or pessimistic
outcomes are more appropriate for the analysis. Furthermore,
thresholding will often obscure important differences in
environmental suitability between sites — i.e., a site that is
moderately suitable and just above the threshold cannot be
distinguished from a site that is highly suitable and far above
the threshold (Guillera-Arroita ez al., 2015). An alternative
to thresholding, therefore, is to retain the raw predicted
(unthresholded) values of suitability to use in assessing whether
environmental conditions improve or degrade for the species
(e.g., Still er al., 2015). Furthermore, such assessments of
change in overall suitability are a valuable complement to,
rather than an alternative to, the use of thresholds to assess

potential changes in range extent or degree of range overlap.

5.2.2.2 Inferring population changes from range changes
Population changes are unlikely to be linearly related to
changes in distribution extent because individuals will rarely be
evenly spread throughout a species’ overall area of distribution.
Nonetheless, in the absence of more specific information,
this is an allowable assumption (IUCN SSC Standards and
Petitions Subcommittee, 2016), although it should be explicitly
stated. Loucks ez 4/, (2010), for example, made such an
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assumption when projecting the impacts of future sea-level rise
on the population of Panthera tigris (Tiger) in the Sundarbans
mangroves. An essential step, however, if such an assumption
has to be made, is also to consider firstly whether habitat
patches are large enough to support viable subpopulations,
given demographic stochasticity and Alee effects, and secondly
whether patches projected to be newly available in the future are
likely to be colonized by individuals from currently occupied
patches (IUCN SSC Standards and Petitions Subcommittee,
2016). Such considerations will be species-specific and thus
should be made separately for each taxon for which a CCVA
is being performed.

Where species’ abundance, or even data recording an
appropriate proxy for abundance, are available, then an
alternative approach is to model the relationship between
species abundance, as opposed to occurrence, and appropriate
bioclimatic variables. Such models can then be used to
project the species’ potential future abundance pattern and
also to make an assessment of the likely overall change in its
population size (see. e.g., Huntley et al., 2012; Renwick et al.,
2012; Johnston et al., 2013). The results presented by Huntley
et al., (2012) indicated that populations of birds in the area
they examined (southern Africa) were projected to decrease
by an average of ~50%, whereas range extent was projected to
decrease on average by only ~30%. When aggregated, predicted
changes in the abundance of seabird and wintering water bird
populations on protected areas in response to climate change
were significantly correlated with observed national population
changes (Johnston ez al., 2013), supporting the validity of
this approach. Where possible, modelling abundance, rather
than occurrence, provides metrics that can be more easily
applied to qualifying thresholds for site designation, for red-
listing (e.g., Johnston ez al., 2013), or to modelling extinction
risk. Even where species’ abundance data are not available,
most correlative models output a measure of ‘suitability’ or
‘probability of occurrence’ of a species for each grid square.
Comparing such values for a projected future climate scenario
with those simulated for ‘present’ climate can provide evidence
of any likely change in the species’ population over and above
that implied by any change in overall range extent. A decrease
in mean suitability, for example, would indicate that the
species’ population is likely to decrease more than is implied by
the decrease in range extent.

Alternative approaches to assessing extinction risks on the
basis of correlative model results have also been developed (see
e.g., Thomas er al., 2004), but these are not species-specific,
giving instead overall estimates of the proportion of species at

increased risk of extinction.



6. Understanding and working

with uncertainty

Brian Huntley, Wendy B. Foden, James Pearce-Higgins and Adam Smith

The results of all CCVAs will be subject to uncertainty as a
result of the uncertainties associated with a// of the data and
methods used to perform the assessments. Some sources of
uncertainty are obvious (e.g., uncertainty in future climate
scenarios because of alternative emissions paths that may be
followed), whereas others are often not even acknowledged
and are rarely quantified systematically (e.g., uncertainty
in the historical baseline climatic data). Generally, methods
used to perform CCVAs do not take most of these sources of
uncertainty into account. How then should CCVA developers
and users deal with this uncertainty? Here we outline some of
its main sources, as well as recommendations for incorporating
and interpreting uncertainty in CCVA.

6.1 Uncertainty from species’ distribution
and abundance data

Uncertainties in species’ distribution data generally fall into
two broad categories: false presences and false absences. False
presences (commission errors) are relatively uncommon in point

As the climate of Queensland, Australia warms, the Golden
Bowerbird (Prionodura newtoniana) is moving upslope to higher,
cooler elevations. A 3°C temperature rise is expected to reduce the
birds’ range from 1,564 km? to only 37 km?, and limit them to
two mountain tops. With a 4°C rise, their habitat will disappear
completely. © Con Foley

"

locality or gridded data, where they will arise principally either
from species misidentification, uncertain taxonomic status,
incorrect recording of the locality or a data entry error. On the
other hand, where only species’ range polygons are available,
any transformation of these to give gridded data that can be
used for modelling is likely to generate a varying proportion of
false presences depending upon how continuously the species
is distributed within its overall range, and also the extent to
which the mapped range has taken into account background
knowledge of, for example, regional topography and the species’
recorded upper and/or lower altitudinal limits.

False absences (omission errors) arise principally in the context
of gridded data where some grid cells may have been much less
frequently visited and/or less intensively surveyed by those
collecting the distribution data; some grid cells may never
have been visited and so have no species recorded (MacKenzie,
2006). Even where a grid cell has been visited and recorded
relatively intensively, the varying detectability of different
species will result in varying degrees of false absences; the
most cryptic species, having lowest detection probabilities, will
always have a higher number of false absences than the obvious
and readily detectable species. In many cases there will also
be systematic geographical biases in the distribution of false
absences, resulting from systematically lower/higher recording
efforts in some regions; often these biases will relate to the
distances of grid cells from centres of human population and/
or to regional differences in the intensity of ‘citizen science’

contributions to mapping schemes.

In many cases it is difficult to make any allowance or to correct
for these uncertainties, and it is therefore important that those
performing CCVAs are aware of these potential limitations
of the data that they are using. Although some datasets (e.g.,
Atlas Florae Europacae (Jalas & Suominen, 1972)) provide no
basis for assessing which grid cells are most likely to represent
false absences, others (e.g., European Bird Census Council
Atlas (Hagemeijer & Blair, 1997) provide an indication of
those grid cells where each species was sought but not found
as opposed to those which recorders did not visit or in which
they made no effort to find the particular species. The best
datasets (e.g., Southern African Bird Atlas Project (Harrison ez
al., 1997) provide data on the number of record cards returned
from each grid cell, enabling detection probability, and hence
the likelihood of false absences, to be quantified (see e.g.,
Bled ez al., 2013). In the case of datasets that provide no such
additional information, one approach to identifying, and hence
excluding, false absences is to consider records for other species
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in the same taxonomic group. Grid cells from which the focal
species has not been recorded but from which one or more
related species has been recorded may more reliably represent
true absences of the focal species, whereas grid cells from which
none of the group has been recorded may be considered more
likely to represent false absences. This approach does, however,
suffer from limitations in the case of groups of related species
that are mutually absent from some parts of environmental
space because of shared physiological limitations arising from
their common ancestry; in such cases the mutual absences
represent true absences and it would thus be undesirable to
exclude them.

In the case of abundance data, or data for abundance proxies
(e.g., reporting rate), aside from qualitative uncertainties
paralleling those for distribution data, there will also be
uncertainty in the quantity recorded. The magnitude of this
uncertainty will depend upon the method used to collect the
data, and especially the length of time spent recording and/
or the number of replicate measurements made. Furthermore,
these uncertainties often will not be spatially uniform, with
greater recording effort in areas closer to human population
centres and lines of communication. Where some measure of
effort is available, however, this can provide an indication of
uncertainty and can be used as an inverse weighting of data
points when performing a CCVA (Stolar & Nielsen, 2015).

6.2 Uncertainty from climate projections
and baseline datasets

As discussed above, this component of uncertainty can best
be addressed by performing CCVAs for a range of alternative
future climate scenarios, that range being designed to span
both the uncertainties amongst alternative models of the
climate system and also those in furure emissions scenarios.
CCVAs

be considered as independent and collectively provide an

for different future emissions scenarios should

indication of the likely range of outcomes for a species.
CCVAs from different climate models, however, when for the
same emissions scenario, provide an indication of the range
of uncertainty amongst models and will often be combined
into an ensemble mean CCVA that represents a consensus
amongst the set of models used. As discussed above, in order to
obtain a realistic assessment of the uncertainties arising from
alternative future emissions paths, it is essential that a range
of emissions scenarios spanning a realistic range of future
emission paths is used (e.g., the IPCC RCP scenarios RCP8.5,
RCP6, RCP4.5 and RCP2.6). Similarly, projections from at
least three climate models are needed if the uncertainty arising
from this source is to be assessed, with models selected so as to
encompass the uncertainty range amongst those included by
the IPCC (i.e., as well as models with global mean temperature
and precipitation projections near the ensemble mean, models
should be included that are relatively ‘warm’/‘cool’ and
‘wet/‘dry’).
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A male Albericus Frog (Albericus sp.) caring for eggs. Climate
change is affecting amphibians in several ways, including warming-
caused increases in their metabolic rates, especially in the tropics.
‘This leads to greater food requirements and therefore to challenges
in meeting energetic demands for maintenance, growth, and
reproduction. How such species will cope with the pressure to curb
the energy spent remains unknown. © David Bickford

Although datasets of baseline climatic conditions have inherent
uncertainties associated with the interpolated values, modelling
approaches used to perform CCVAs assume the gridded
climatic data to be known without uncertainty. Furthermore,
such gridded interpolated climatic datasets do not generally
have uncertainty fields, even if uncertainties inherent in
interpolations are in published papers (for example, Hijmans
et al., 2005). The interpolation methods used also assume that
the data recorded at individual weather stations are known
without uncertainty, whereas all instruments have inherent
measurement uncertainties, and where human observers are
involved this will introduce a further source of uncertainty. It
is impractical to include all of these uncertainties in a CCVA,
despite their potential to introduce error. Understanding
their implications is therefore particularly important when
interpreting and using CCVA results.

6.3 Uncertainty from choice of
bioclimatic variables

A majority of published CCVA studies use simple climatological
variables that, whilst giving statistically significant models,
very often have no understood mechanistic relationship to the
focal species’ performance and/or survival. The appropriate

choice of bioclimatic variables has been discussed in

|5.1.3.4 (Bioclimatic Variables)l At this point it simply remains

to emphasize that an informed choice, based upon biological
knowledge of the species or of the wider taxonomic group to
which it belongs, will always be better than defaulting to readily
available meteorological variables. Guidance on appropriate

default variables for different climatic regions was provided in

Section 5.1.3.4 (Bioclimatic variables) for species where there

is a complete absence of biological knowledge upon which to
base a choice.
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Where informed choice nonetheless leaves some degree of
uncertainty about the most appropriate bioclimatic variables,
then a useful approach is to carry out the modelling required
for the CCVA using two or more alternative plausible sets
of bioclimatic variables. Measures of the goodness-of-fit and
robustness of the alternative models may then indicate that
one combination of bioclimatic variables is clearly superior, in
which case the CCVA should be based upon those variables.
Where alternative combinations of bioclimatic variables give
models of similar performance, however, then computing a
consensus result amongst the models fitted will be preferable.
Such a consensus will best be computed using weighting of the
models according to their performance (see e.g., Burnham &
Anderson, 2002).

6.4 Uncertainty from potentially
incomplete evidence of species’ niches

A further source of uncertainty relates to the extent to which a
species’ realized climatic niche under present climatic conditions
fully represents its potentially realizable niche. Where, as is
likely to be the case for a majority of species, a species is not
currently fully occupying its potentially realizable climatic
niche, the results obtained from correlative approaches, on the
one hand, and from mechanistic approaches on the other, are
both likely to be inaccurate, although for different reasons.

Correlative niche models fitted to species’ present ranges
generally are likely substantially to under-estimate the
potentially realizable niche, and hence overestimate
vulnerability (Varela ez al, 2009), because species are
likely in future potentially to be able to extend their ranges
into areas offering combinations of climatic conditions that
don’t currently occur, but that become available as a result
of future climate changes (Williams ez «/., 2007). Evidence
of the importance of this issue comes from the Pleistocene
fossil record that includes frequent occurrences of no-
analogue combinations of species associated with past climatic
conditions for which no current analogue exists (Huntley,
1990; Overpeck ez al., 1992; Graham ez al., 1996; Williams ez

al., 2001; Jackson & Williams, 2004).

In contrast, the mechanistic approach, which uses experimental
and other direct evidence of species’ climatic tolerances, provides
an estimate of the species’ fundamental climatic niche that will
almost certainly be an overestimate of its potentially realizable
niche, because interactions with other species play a large role
in determining the areas of climatic space a species can occupy.
Mechanistic approaches are thus likely to underestimate
vulnerability to climate change. The same is true of niche
modelling approaches that are based upon identifying, from
species’ present distributions, bioclimatic limits to their
occurrence, and then applying these independently to generate
hyper-rectangular climatic niches (e.g., minimal rectilinear
envelope modelling as applied by Svenning & Skov, 2004).
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Such approaches ignore a wealth of evidence that indicates that
bioclimatic variables commonly have interacting effects when
determining species’ ranges (Huntley, 2001), as well as the large
volume of evidence of indirect effects of biotic interactions in
limiting species’ realized climatic niches (e.g., Woodward,
1975). As a result, these methods generate gross over-estimates
of species’ potentially realizable niches, and if used in a CCVA
would be likely very seriously to underestimate vulnerability
to climate change.

One of the few sources of information that can be used to
learn about a species’ potentially realizable climatic niche is
the Pleistocene fossil record, but unfortunately this is available
for only a minority of species, mostly mammals (e.g., Ovibos
moschatus MacPhee ez al. (2005); Saiga tatarica Campos et al.
(2010) and higher plants, especially wind-pollinated temperate
trees that are regionally monotypic (e.g., Fagus sylvatica and
F. grandifolia in Europe and North America respectively), and

even then is far from complete.

6.5 Uncertainty from biological trait and
demographic data

It is worth recognizing that a number of key uncertainties
are associated with TVAs. Firstly, although increasingly
studied, the importance of species-traits in influencing species’
vulnerability to climate change is relatively undescribed
and uncertain, with different studies showing variation in
importance (e.g., Dobrowski ez al., 2011; Angert ez al., 2011;
Pearson ez al., 2014b). Although an increasing evidence base is
building around the importance of particular traits affecting
species’ vulnerability to climate change (e.g., Pearce-Higgins ez
al., (2015) for birds; Pearson ez al., (2014a) for amphibians), we
do not yet know which are the most important, and how that
importance may vary among species and locations (Pacifici
et al., 2015; Willis et al., 2015) (see also sections 5.1.5.4
Calculating overall measures of vulnerability and 5.1.5.5
Missing data, uncertainty, variability, and inapplicability
in this report.) Challenges to the development of a cohesive
evidence base include accounting for the many traits and
variables that may drive vulnerability, the interactions between
these traits and the lack of standardization between the
published studies on which such an evidence base would rely
(Estrada et al., 2016).

Secondly, and related to this, there is little consensus about how
information about different traits should be scored or combined
to assess vulnerability, making it difficult to compare the results
of different approaches (Willis ez /., 2015), and resulting in
there being no overall assessment of the actual magnitude of
projected risk across species. Thirdly, the ability of experts
to assess ecological traits also remains uncertain. Given that
expert judgement can be subject to bias (Burgman ez 4., 2011),
it is important to ensure that where it is used, a clear and valid

methodology is applied to such expert-based assessment.
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Given the inevitable gaps in availability of biological and
trait-based data, those performing CCVAs using trait-based
or mechanistic methods will often have to resort to using
best estimates for the values of missing data, for example by
using values for close relatives where these are known. The
use of such best estimates, however, inevitably introduces an
additional degree of uncertainty. Even where data are available,
they are subject to numerous other sources of uncertainty.
Most biological and demographic characteristics, for example,
show varying degrees of intraspecific, spatial and temporal
variability. Such uncertainties in best estimates and variability
in measurements should be taken into account when performing
mechanistic or trait-based CCVAs, ideally by performing an
ensemble of analyses using a range of plausible estimates for
each value in order to assess the overall uncertainty in the

CCVA result.

In many cases, the only available data have been gathered from
laboratory experiments (e.g., physiological tolerances) or from
ex situ individuals such as those in zoos, botanical gardens or
breeding programmes (e.g., longevity, age at first reproduction,
litter size); the inherent biases in data from such sources should
be considered if they must be used. On the other hand, field-
based measurements of tolerances may confound the effects of
phenotypic plasticity, epigenetic mechanisms and genetics, and
thus also provide biased estimates.

It is important to distinguish uncertainty (lack of knowledge)
from variability (natural variation in traits with species; cf.
(Lehmann & Rillig, 2014b). The former can be rectified by
gap-filling as mentioned above or otherwise accounted for in a
scoring system (5.1.5.5 Missing data, uncertainty, variability,
and inapplicability). In contrast, intraspecific variation in
traits cannot be absolved through more research or gap-
filling — it reflects actual differences between individuals
and populations within a species. Methods for reflecting
intraspecific variation in traits in CCVA are discussed in
Section 5.1.6.5 Missing data, uncertainty, variability, and
inapplicability.

6.5.1 Changes in traits over time

Traits used for predicting climate change vulnerability (e.g.,
body size, fecundity and energy requirements) may themselves
be subject to selection by climatic conditions and thus may
change as climate changes (Isaac, 2009). For example,
warming and decreases in dissolved oxygen are predicted to
lead to decreased body sizes in marine fishes (Cheung ez al.,
2012). According to Bergmann’s Rule, which proposes a global
pattern of decreasing body size along a gradient from cooler to
warmer regions due to the advantages of a lower surface area to
volume ratio in cooler climates (Freckleton ez /., 2003; Clauss
et al., 2013), a trend of decreasing body size might be expected
as climate warms. Some experimental and observational studies
have found evidence for this (Sheridan & Bickford, 2011),
but there are also contradictory data (Teplitsky & Millien,
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2013). Species’ capacities for such an adaptive response may
be provided by one or both of phenotypic plasticity or genetic
evolution across generations, and individual species’ capacities
for such adaptive responses may be important determinants
of their degree of climate change vulnerability. Phenological
changes (i.e., changes in the timing of events such as flowering
and reproduction), the underlying mechanism for which may
again be either phenotypic plasticity or genetic evolution, seem
to be a particularly important adaptive response in both plants
and animals, although species and even major taxonomic
groups show different rates and magnitudes of responses to
the climate changes of the past century (Root ez al., 2003).
Such often under-appreciated vulnerability traits, although
challenging to quantify, can and should be incorporated when
applying mechanistic and trait-based approaches (Chown ez
al., 2010).

6.6 Uncertainty from choice of method
6.6.1 Correlative approaches

Uncertainties arising from the choice of modelling technique
have received considerable attention in the literature, and
there has been widespread advocacy of an ensemble approach
that utilizes a range of alternative methods and takes a mean
(often weighted) of the results obtained from these methods
(Thuiller, 2003; Aratjo & New, 2007; Marmion et a/., 2009).
Unfortunately, the issue of selecting appropriate and rejecting
inappropriate methods to include in such ensembles has
received much less attention. An appropriate choice is essential,
however, because at least some methods used in published
studies make inappropriate assumptions, firstly about the
form of the relationships being modelled and secondly about
the nature of the interactive effects of two or more bioclimatic
variables on species. Including methods that make such
inappropriate assumptions in an ensemble is likely to result in
a less reliable consensus result, and certainly one that is less
robust, than would be obtained from a more limited ensemble
of models, or perhaps even just a single model, that do/does not
make such assumptions.

Many methods assume some particular form of the relationship
between aspecies’ probability of occurrenceand each bioclimatic
variable, some for example assuming a linear relationship and
others a symmetrical Gaussian or ‘bell-shaped’ relationship,
whereas in reality the realized relationships usually are more
complex (Austin, 2007). Similatly, some methods assume no
interactions between the bioclimatic variables determining a
species’ range (e.g., minimal rectilinear envelope modelling
as applied by Svenning & Skov (2004); once again ample
evidence indicates that this is not a valid assumption. The
most appropriate methods arguably are thus those that make
no prior assumption about the form of the relationships being
modelled and that allow for interacting effects of the bioclimatic
variables. Ideally models should be fitted across the range of
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Narwhals (Monodon monoceros) have been ranked by an expert panel

as one of the most climate change sensitive species in the Arctic
because of their limited distribution, specialized diet and high
dependence on sea ice environments. © Magnus Andersen, NPI

the species, allowing for non-stationary interactions between
bioclimatic variables and for complex forms of the relationships
of species’ probability of occurrence and bioclimatic variables.
A non-exhaustive list of preferred methods would include:
generalized additive models (GAMs) with appropriate choice
of smoother (e.g., smoothing splines) (Yee & Mitchell, 1991);
climatic response surfaces fitted by locally-weighted regression
(Huntley e# al., 1995); and classification and regression trees
(De’ath & Fabricius, 2000).

In the context of CCVA, a major source of uncertainty relates to
the fact that most modelling techniques behave unpredictably
when, as will almost inevitably be the case, predictions of
species’ potential future ranges require extrapolations into areas
of climatic space (i.e., combinations of bioclimatic variable
values) that are projected to be available in the future but that
are not currently found anywhere within the domain of the data
used to fit the model. For this reason wise precautions include
mapping areas that are projected to have future climates without
current analogues, using appropriate tools to characterize such
novelty in future climates, and/or using methods that enable
predictions made by extrapolation to be identified (Platts er
al., 2008; Fitzpatrick & Hargrove, 2009; Elith er 4/., 2010;
Zurell et al., 2012). Combining such precautions with the
use of methods that behave in a conservative and predictable
manner when extrapolated (e.g., climatic response surfaces
ficted by locally-weighted regression that make predictions
beyond the scope of the fitting domain that are asymptotic
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to the values at the margins of that domain, (Huntley ez al.,
2007)) avoids the pitfalls associated with methods that are
prone to give unrealistic predictions outside the fitting domain
(e.g., generalized linear models using polynomial relationships
may give response curves for individual variables that predict
increase, decrease or no change in environmental suitability in
regions beyond the range of the training data, any or all of
which may be realistic or completely unrealistic).

Another important source of uncertainty is bias in the presence
records or presence cells used to train the correlative model. At
global scales collection effort is concentrated around areas of
high endemism, close to research institutions, and in wealthier
countries (Meyer et al., 2015), while at finer scales collection
effort is often concentrated along areas of access (roads, rivers)
and close to major population centres (Phillips ez 2/., 2009). As
discussed in Section 5.1.4 Species distribution data, methods
exist to remove these biases. Nonetheless, differentiating
sampling bias from genuine differences in density of the species
across its range can be difficult and thus introduce uncertainty.

An additional source of uncertainty arises in the case of
methods that use presence-only data, as opposed to presence—
absence data, because most of these methods do not use only
the presences but must also use pseudo-absences or background
sites in order to fit a model (Elith ez a/., 2006), and all require
pseudo-absences or background sites in order to evaluate
conventional measures of model goodness-of-fit that are based
upon the four values in the confusion matrix (Figure 10).
Pseudo-absences are sites selected in a manner that attempts to
ensure that the species is absent from a location (even though
there may have been no search effort in that location for
the species). Pseudo-absences are used to stand in for “true”
absences. In contrast, background sites can be located across
a landscape regardless of whether a species is present or absent
from a particular site. Some algorithms can use either pseudo-
absences or background sites (e.g., generalized additive models
and linear models), while other methods should only be used
with background sites (e.g., Maxent; Merow ez al., 2013). How
these pseudo-absences or background sites are selected varies,
with different selection methods resulting in models that differ
in performance and in the robustness of their predictions
(Phillips ez al., 2009). In many cases the overall extent of the
climatic space defined for fitting determines the space within
which pseudo-absences or background sites are selected, but
the larger the climatic space that is defined, the less well the
species’ ‘true’ climatic envelope is constrained, often resulting

Figure 10. Confusion matrix.

Observations
Model predictions Presence Absence
Presence a b
Absence c d
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in model predictions of much more extensive ranges than are in
reality observed. A similar tendency to predict more extensive
ranges than are observed has been reported for the widely
used MAXENT method by Royle ez a/. (2012) who present
an alternative likelihood-based method, MAXLIKE, that does
not suffer from the same problem.

Values a—d are used to calculate measures of goodness-of-
fit, e.g., sensitivity (Se) or proportion of presences correctly
predicted, specificity (Sp) or proportion of absences correctly
predicted, or the true skill statistic (TSS):

Se=al(a+c
Sp=d/l(b+d)
a d

7SS = (

(%) -

a+c

6.6.2 Trait-based approaches

Uncertainty in trait-based assessments is introduced at many
stages, including: the traits selected to infer vulnerability;
the thresholds chosen to quantify each species’ associated
vulnerability; the weighting systems that may or may not be
used to give priority to certain traits or scores; and through
the system used to combine the trait scores into the overall
vulnerability scores, ranks or categories. We discuss ways in
which these uncertainties may be quantified and accounted for
in Sections 5.1.5 (Selecting and using species trait data) and
(Uncertainty from biological trait and demographic data)l We

note that traits are likely to interact with each other and with
climatic and other changes in non-linear and contextspecific
ways. To be able to take this into account, any CCVA approach
needs to be based on detailed field studies which, to date, are
few. Further such studies, as well as the development of more
mechanistic models (e.g., Keith ez /., 2008; Morin et al., 2008)
should start to address this uncertainty (Foden ez al., 2013).

6.7 CCVA validation

Assessing the reliability of CCVAs is important both for
understanding their uncertainties and for improving their
performance in future applications. To date, validation
appears only to have been performed for correlative methods
using species’ distribution models, although the approaches
to validation applied to such CCVAs have potential to be
applied also to other methods. The basic underlying principle
of most of these validation approaches is to fit a model to
only some fraction of the available observations and use this
model to predict observations that were not used in fitting the
model. At least three distinct variants of this approach can be
recognized, however.
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The most commonly applied approach uses observations from
only one discrete region and time interval, ficting models
repeatedly to randomly-selected subsets (e.g., 70%) of those
observations and using each model to predict the observations
excluded when it was fitted, model performance being assessed
in terms of the success with which excluded observations are
predicted (e.g., Pearson ez al., 2007; Hole ez al., 2009; Aradjo
et al., 2011; Garcia et al., 2012). Ideally, models are fitted to a
large number (e.g., 100, Hole ez 4/., 2009) of random subsets,
although often the number used is smaller (e.g., 10, Aratjo ez al.,
2011) and some authors appear only to have made one random
split of their data (although this is now becoming much less
common). This is potentially dangerous as one random split
may by chance either over or uderestimate model performance.
Each model’s predictive power is assessed using one or more
goodness-of-fit measures (e.g., area under the receiver operating
characteristic curve (AUC, Metz 1978); Cohen’s kappa (K,
Cohen, 1960); true skill statistic (TSS, Allouche et a/., 20006);
ficting multiple models allows both the central tendency and
dispersion of the values for measures of goodness-of-fit to be
assessed, the latter providing an indication of the uncertainty
arising from selection of the observations used for model
ficting. Such a cross-validation approach helps avoid over-
fitted models because models giving high goodness-of-fit
when fitted to all available observations are often not robust
when cross-validation is performed. Models that perform well
in cross-validation should be preferred and are likely to give
more reliable predictions when predicting into a climatically
changed future.

An alternative but relatively rarely used approach is to use
observations from one geographical region to fit a model and
then use the model to predict the species’ distribution in a
different geographical region (e.g., Beerling, David J., Huntley,
Brian & Bailey, 1995). This approach makes the assumption that
the species has been able to realize essentially the same climatic
niche in both regions, something that will not necessarily be
the case if the regions occupied differ substantially in the range
of climatic conditions that they offer. The example cited used
an introduced species, requiring the additional assumption
that the species had fully occupied its potential realizable niche
in the region to which it had been introduced. A variation on
this approach fits a model to the known observed range of a
species and then either tests the ability of that model to predict
as yet unrecorded localities for the species (e.g., Busby, 1991),
or else tests the ability of the model to predict suitable but as
yet unoccupied localities by making deliberate introductions to
such localities and assessing whether or not the species is able to
establish a population and thrive at those localities (e.g., Willis
et al., 2009).

A more widely applied approach fits a model to observations
from one time period and uses that model to hindcast (e.g.,
Hill ez al., 1999) or forecast (e.g., Aratjo ez al., 2005; Morelli
et al., 2012; Bled er al, 2013; Watling et al., 2013) the
species’ distribution at some earlier or later time. The model’s



Only described as a new species in 2014, Lasius balearicus, is an ant species restricted to the highest summits (800 m to 1,400 m above

sea level) of the Serra de Tramuntana mountains of Majorca, Spain. The species is considered to be in danger of extinction due both to

its extremely small range and because correlative models predict climate change driven declines in range suitability such that it may soon

become extinct. © Roger Vila

predictions for the period from which data were not used in
fitting the model are then assessed using observations from that
time, either qualitatively in terms of broad visual comparison,
where systematic comparison is not possible or inappropriate,
or as before using appropriate measures of goodness-of-fit. In
principle, this approach can be extended to use models fitted
to species’ present distributions to make hindcasts of their
potential distributions for periods in the late Quaternary that
are then compared with the available fossil record for the species;
however, the general scarcity of fossil remains identifiable to the
species level severely limits the application of such an approach.
Nonetheless, such hindcasts can provide valuable insights into
species’ potential past ranges that can aid our understanding of
present distributions and behaviour (e.g., Ruegg ez al., 2006;
Huntley ez al., 2014).

An alternative validation approach involves fitting a model
to presence—absence observations from one time period and
using it to forecast/hindcast changes not in species’ presence
or absence, but in the raw climatic suitability values output by
the model. The predicted changes in climatic suitability can
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0.5 mm

Lasius balearicus. © Gerard Talavera

then be compared with observed changes in population size
of the species (e.g., Green ez al., 2008; Gregory et al., 2009).
Such an approach provides robust and convincing validation of
the correlative modelling approach, but is only possible in areas
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and for species with good, typically long-term, monitoring
datasets (e.g., rare birds breeding in the UK, Green ez al.,
2008; European breeding birds, Gregory et al., 2009). A related
approach compares raw predicted values to measures like body
size, fecundity, or other metrics of population-level fitness (e.g.,
Wittmann et al., 2016).

Evidence of the general robustness of the expectation that
species’ geographical ranges track changes in climate (Huntley
& Webb, 1989) can be provided by studies showing such
responses over the past century (e.g., Tingley ez /., 2009; Chen

et al., 2011). Such evidence provides further corroborative
support for the validity of the general approach used by
CCVA methods based upon species’ distribution models, even
if no formal validation of a model is performed in the sense
described above. Use of such observation-based validation is an
important priority for those developing and using trait-based
approaches; the observational data needs, however, limit the
use of recently observed changes for such CCVA validation
to areas and species with high quality long-term observation
records.

The Joshua Tree (Yucca brevifolia) is threatened by increased temperatures and decreased rainfall in its desert habitat in the southwest of
North America. The range of this unusual tree is predicted to contract poleward (northward) and split into isolated populations. While

some simulations project expansion into new habitat, observed dispersal rates (both current and historical) seem to indicate the trees will be
unable to do so. © kevinschafer.com




7. The IUCN Red List and Climate
Change Vulnerability

Wendy B. Foden and Resit Akgcakaya

The IUCN Red List is widely regarded as the most authoritative
system for classifying species according to their vulnerability
to extinction risk. The IUCN Red List criteria are based on
symptoms of endangerment (Mace er al., 2008); they are
applicable to any threatening process, including climate change,
that results in symptoms such as population decline, small
population sizes, and small geographic distributions. A species
may be classified as threatened according to the IUCN Red
List criteria even if a threatening process cannot be identified.

This symptom-based approach is of particular value for dealing
with climate change impacts for two main reasons. Firstly,
climate change is a newly studied and poorly understood threat,
so it is not always possible to identify it as the cause of a species’
vulnerability or endangerment (Parmesan ez al., 2011). It is also
challenging to understand the causal connections (mechanisms)
linking climate change to biological response at the population
or species level, and to take into account interactions with
other impacts such as habitat loss, exploitation and diseases. A
symptom-based system overcomes these difficulties by focusing
on population and species-level changes, instead of trying to
diagnose causes of declines. The second advantage is related to the
impacts of human adaptation to climate change, such as shifts
in agriculture and urbanization, on species. These responses are
difficult to predict, but may be as important as direct effects of
climate change in terms of impacts on biodiversity (Chapman
et al., 2014; Maxwell et al., 2015; Segan et al., 2015). As the
Red List criteria do not distinguish between symptoms (such
as population declines or range contractions) driven by climate
change directly or by human responses, species threatened by the
latter would be identified equally well (Akcakaya ez al., 2014).
Although identifying causal links may be important for threat
abatement, for the initial step of identifying species vulnerable
to extinction (because of climate change or any other threat), a
symptom-based approach is both efficient and accurate.

7.1 Using CCVA results for IUCN
Red Listing

The IUCN Standards and DPetitions Subcommittee has
developed and maintains guidelines for using the IUCN Red
List, including in the context of climate change (IUCN SSC
Standards and Petitions Subcommittee, 2016); see Box 5.
Since these are extensive, widely reviewed, and already cover
information needed for Red Listing with climate change,
we do not duplicate this information here. We focus instead
on outlining three types of scenarios that users may find
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themselves in, and highlight how the Red List assessment may
be approached for each. We note that the main difficulties
encountered by those using CCVA results when applying
the IUCN Red List criteria involve interpreting the ITUCN
definitions and relating these to model outputs. This topic has
been comprehensively covered in a paper entitled: “Use and
Misuse of the [IUCN Red List Criteria in Projecting Climate
Change Impacts on Biodiversity” (Ak¢akaya ez a/., 20006).

Recent studies show that, due to its symptom-focused approach,
the IUCN Red List criteria can identify species vulnerable to
extinction due to climate change, even where climate change
is not specifically considered. In a study involving North
American reptiles and amphibians, Pearson ez /. (2014) used a
correlative-demographic model to show that extinction risk due

Box 5. Climate Change and the Guidelines for Using
the IUCN Red List Categories and Criteria
http://www.iucnredlist.org/documents/RedListGuidelines.pdf

The ‘Guidelines for Using the IUCN Red List Categories
and Criteria’, often referred to as the IUCN Red List
Guidelines, provide detailed guidance on specific issues
and challenges relating to considerations of climate
change in Red Listing. These guidelines were developed
by the IUCN SSC Standards and Petitions Subcommittee
and are updated approximately once per year, so
assessors are urged to consult the latest version before
making assessments. Section 12 presents guidance on
threatening processes and Section 12.1 is focused on
climate change. We outline below the topics covered in
this section at the time of writing (Version 12 (2016)) to
give readers an overview of what information they will find
there. However, since the Red List Guidelines are updated
more often than the CCVA Guidelines, we remind users,
once again, to check the latest version online.

12.1 GLOBAL CLIMATE CHANGE

12.1.1 Time horizons

12.1.2 Suggested steps for applying the criteria under
climate change
Mechanisms
Very restricted distribution and plausibility and
immediacy of threat (VU D2)
Definition of “Location” under climate change (B1,
B2, D2)
Severe fragmentation (B1, B2, C1 and C2)
Extreme fluctuations (B1, B2, C1 and C2)
Inferring population reduction and continuing
decline (A3, A4, B1, B2, C2)
12.1.9 Inferring reductions from bioclimatic models (A3, A4)
12.1.10 Inferring reductions from demographic change
12.1.11 Estimating extinction risk quantitatively with

coupled habitat and population models (E)

12.1.12 Using bioclimate models

12.1.3
12.1.4

12.1.5
12.1.6

12.1.7
12.1.8



http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
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to climate change can be predicted by information available in
the present day, such as current occupied area and population
size, much of which is used in the ITUCN Red List criteria.
Using the same species and climate projections, Stanton ez al.
(2015) showed that IUCN Red List criteria can identify species
that would go extinct because of climate change without
conservation action, and can do so with decades of warning
time. Warning time is defined as the time between when a
species is first identified as threatened and when it goes extinct
(assuming no conservation action), and is the time available for
the cause of the decline to be identified and for conservation
measures to be implemented to address the threat and prevent
the extinction of a species.

There has been concern that the Red List criteria may not be
adequate for assessing species threatened with climate change,
particularly because many species that are projected to undergo
substantial range contractions in the next several decades have
generation lengths that are too short to trigger the relevant
IUCN Red List criteria, which consider declines over a three-
generation period (Akcakaya ez al., 2006). Keith ez al. (2014),
however, found that warning times were sufficient for a short-
lived Australian amphibian, and Stanton ez 4/. (2015) showed
that shorter generation lengths did not decrease the power of
the Red List to predict climate change-driven extinction risk.

Three important factors contribute to the Red List’s ability to
predict climate change-driven extinction risk. The first is the
quality and amount of information used for Red Listing; lack
of information often results in only one criterion being used
for assessing a species’ status, which is problematic since both
Keith ez al. (2014) and Stanton ez al. (2015) show that using
a single criterion results in shorter warning times. Stanton ez
al. (2015) show that although average warning time is over 60
years when all criteria are used, it is as short as 20 years when
only a single criterion is used. Secondly, regular monitoring of

species is required if symptoms of changes in population and
range sizes are to be detected and used (Keith ez 4/., 2014).
The nature or threat and the concept of ‘warning times’ means
that it is also critical to regularly reassess species already listed
on the Red List. This is particularly important in data-poor
situations. Akcakaya ez al. (2014) and Stanton er al. (2015)
show, for example, that when data constraints allow use of only
one criterion, annual or 5-year, instead of 10-year reassessment
intervals, increase warning times substantially. Finally,
warning time is likely to be too short if conservation action is
started only when a species is listed at the highest [IUCN threat
category (Critically Endangered).

7.2 Three user scenarios for Red Listing
considering Climate Change

We begin with the simplest scenario, which is oriented for a
resource-poor context, and continue to those scenarios where
greater resources are available.

Scenario 1: Consider the species’ ecological and biological traits
to determine the likely mechanisms of climate change impact and
quantify these using expert knowledge

Climate change can affect populations via many mechanisms;
and thinking about how this will occur for given taxa can clarify
the parameters and criteria relevant for a Red List assessment.
In this scenario, an assessor may not have the data or expertise
to model climate change impacts, but does have information
on the physiology, behaviour and ecology of the focal species.
Assessors should consider this information to determine the
likely mechanisms of both direct and indirect climate change
impacts, those from climate change interactions with other
threats (e.g., invasive species, habitat loss) and the impacts of

human responses to climate change.

A Coral Crisis working group meeting was held at the Royal Society, London in July 2009. Co-chaired by Sir David Attenborough, coral
reef and climate change specialists outlined seven key points about the vulnerability of coral reefs to climate change globally. These were
then communicated to the public and press through an emergency position statement, delivered by Sir David, and through a supporting

publication. Left: Staghorn corals © Lyndon Devantier. Right: Coral Crisis working group meeting © Sonia Khela




7. The IUCN Red List and Climate Change Vulnerability

To apply the Red List criteria, assessors are required to quantify
the impacts of these mechanisms on the species to determine
whether they meet the thresholds for the Red List threat
categories. To do this, we recommend that assessors rank the
listed mechanisms according to the degree and likelihood of
impact, and for the dominant mechanisms or threats, estimate
their plausibility (how likely they are to impact), immediacy
(how soon they are expected to impact), geographic scope
(where they are likely to impact) and severity (how much they
are likely to impact the species’ population or distribution
range). The Red List Guidelines provide detailed guidance
on how to carry this out, and how Red List concepts such
as “location,” “severely fragmented,” “extreme fluctuations,”
“population reductions,” “very restricted distribution” and
“continuing decline” should be interpreted in this context.
The justification of these estimates or projections should be
specified in threats and assessment rationales. Since some of
this information may be based on expert knowledge, as many
experts as possible should be involved and consensus reached
wherever possible. Note that many of the variables used in
this process (such as location, severe fragmentation, restricted
distribution) require spatial information, and the calculation of
the others (in particular, reduction and estimated continuing
decline) must consider the variability of rates of change across
the species’ range. Therefore, detailed maps of the species’ range
and other types of spatially explicit data need to be considered

in this scenario.

Scenario 2: Use correlative model outputs to quantify climate

change impacts on species’ distribution ranges

Where correlative model results are available, or where assessors
are able to carry these out, they can provide a valuable way to
project and quantify the direct impacts of bioclimatic changes
on species’ distribution ranges. This is particularly valuable
for projecting declines in distribution ranges, and can be
used to infer changes in population sizes. The IUCN Red List
Guidelines (Section 12.1.12 Using bioclimatic models) give
specific guidance on how these two components should be
derived and interpreted from the models, as well as their use in
assigning species into threat categories. Section 4.1 of the Red
List guidelines provides steps for assessing the robustness of the
data and methods used in existing model outputs, and Sections
5 and 6 provide guidance for those wishing to build their own
bioclimatic models. An important consideration is that the
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selection of predictor variables to include in these models needs
to be informed by the likely mechanisms of climate change

impact, as outlined in scenario 1.

It is important to recognize that correlative models typically
focus only on direct climatic impacts from climate change, and
impacts from aspects such as changes in species interactions,
disruptions to cues, climate change interaction with other
threats and human responses to climate change, are not
considered. The CCVA Guidelines discuss ways in which
bioclimatic models can and have been combined with trait
based and demographic models to consider other possible
mechanisms of impacts; understanding of likely changes in
interactions with other species can also be improved by carrying
out bioclimatic modelling on key interacting species (e.g., prey
or pollinators). To thoroughly explore the full range of potential
climate change impacts, however, we recommend that assessors
also carry out a full inventory of likely climate change impact
mechanisms on the focal species (see Scenario 1), and use the
Red List Guidelines to interpret how these can be quantified to
contribute to the Red List assessment.

Scenario 3: Use mechanistic model outputs to quantify climate
change impacts on populations and ranges

Where mechanistic model results are available, or where
assessors are able to build such models, they can provide a
valuable way to project and quantify both direct and indirect
impacts of climate change on a range of possible species
parameters including population sizes, distribution ranges,
interspecies interactions and overall species extinction risk.
Because mechanistic models typically require significant data
and expertise, they are generally constructed for fewer species.

In most cases, their spatial component will be based on results
of the correlative models, so this step is dependent on the
previous one, and the relevant Red List and CCVA Guidelines
sections should be consulted. In addition, the demographic
model components will also need to be reviewed. Few models
are likely to be able to include a// of the direct, indirect and
interacting effects of climate change on the focal species, so we
also recommend that assessors carry out an impact mechanism
inventory (described in Scenario 1) in order to identify any
additional potentially important climate-driven threats to
the species.
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Temperature increases and changing rainfall seasonality are expected to increase fire frequency and intensity in South Africa’s Cape Floral
Kingdom, affecting species such as the King Protea (Protea cynaroides). © Wendy B. Foden
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8. Communicating CCVA results

David Bickford, Bruce E. Young, Jamie Carr, David Hole and Stuart Butchart

Effective communication of CCVA results requires thought
and care, especially considering the controversy sometimes
associated with climate change. Just as for the vulnerability
assessment analyses, such communication should ensure that
uncertainties are clearly explained, vulnerabilities explicitly
described, and results presented in ways that facilitate their
use in developing adaptation strategies. Here, we make
suggestions about developing effective communication
strategies for CCVAs and their results. Our suggestions
include identifying and targeting specific audiences, framing
results in an appropriate manner with pertinent content and
useful figures, using different media and methods in the most
effective ways possible and conveying risk and uncertainty

clearly and concisely.

The first step is to identify the audience or audiences that you
wish to target. Although a CCVA can often have multiple
stakeholders, communication products should be tightly
targeted at specific audiences, potentially necessitating multiple
products from a single assessment. Audiences’ scientific, climate
change and biological literacy and backgrounds should be
considered along with the kinds of information that are most
relevant to them. Table 11 lists examples of possible CCVA
audiences, the information that will likely be most relevant to
them and suggestions about appropriate methods and media
for communicating results to each. It is important to note
that several different media and methods are often needed
for effective communication, even for a single audience, and
that this is almost always the case when addressing different
audiences. Targeting your audience also means understanding

your audience. For this, some degree of foresight and planning is
required to think about biases, receptiveness to potential CCVA
results, and other factors that might compete for the audience’s
attention or concern (e.g., socio-economic, temporal, spatial,
political). In summary, targeting your audience necessitates
tailoring methods, media, and content for your target group
by understanding biases and other concerns that the audience
might have with the results of a CCVA.

Second, authors should consider what to communicate.
What to communicate depends on the audience but can be
broadly categorized into a few important factors (see Gross
et al., 2016). Among these are conservation, economic and
social implications of climate change at the scale or intensity
that is relevant to the audience. Other important factors to
consider are the likelihood, reversibility, timing and potential
for adaptation to climate change impacts and vulnerabilities.
While many of these will be specific to a particular stakeholder
group, the breadth of these categories should be considered for
every audience.

In addition to describing the degree(s) of vulnerability of
the assessed species and the implications for species-focused
and site-focused conservation interventions, authors may
wish to describe the methods used, data gaps encountered
and uncertainties associated with the results. For scientists
and researchers, the details of complicated models may be
appropriate, while just a brief description of such models
would form part of a briefing paper or talk to a community
group. Information useful for designing adaptation strategies,

Table 11. Examples of CCVA target audiences, the types of information they require, and some of the communication media
that are useful for communicating CCVAs and their results to them.

Audience Relevant information

Appropriate communication media or methods

General public
or multiple
stakeholders

vulnerabilities; basic data and analyses

Broad conclusions and take-home messages about key

Oral presentations/meetings with Q & A sessions; press
releases targeting mass media; social media; popular articles

Land and species
conservation
managers

Specific conclusions; suggestions for adaptation strategies
for specific species, sites and site networks; in-depth data
and analyses; areas of uncertainty; data deficiencies

Meetings; publications (both grey and peer-reviewed
literature); guidelines documents

Policy makers, Broad conclusions; take-home messages; policy

Oral presentations/meetings with Q and A session; press

donor agencies implications releases and letters to the editor targeting mass media,
policy forums; social media; briefing papers'

Scientists and Specific conclusions; data and analyses; methodological International peer-reviewed scientific publications; oral

researchers problems and limitations; suggestions for CCVA presentations at scientific meetings; social media

improvement; areas of uncertainty

" In many policy arenas, a published paper in the scientific literature or a formal report is needed to support the conclusions presented in more abbreviated forms to

policy makers.
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such as species’ physiological tolerances, life histories and/
or landscape contexts, is key to informing the development
and implementation of these conservation actions. For
conservation practitioners, spatially explicit results are also
likely to be valuable for developing adaptation strategies, and
maps depicting these results should include a spatial context
(political boundaries, roads, park boundaries and populated
areas) that the audience can relate to.

A third suggestion is that authors need to think about how to
communicate, and to make effective use of available media
and visual aids (e.g., graphs, tables, maps and figures) for
dissemination. Use of colour in graphics to indicate relative
vulnerability of the species assessed and error bars to indicate the
limits of uncertainty can be powerful means of communication
(e.g., Dubois et al., 2011). Increasingly, project leaders are using
short videos to describe their findings to general audiences.
Emotional segments of wildlife and testimonials from rural
farmers affected by climate change are techniques used to help
these videos connect with broad audiences. Media such as
brief reports, graphs and summary tables can quickly convey
complexities that are hard to explain in other ways. When
writing, authors also should pay attention to clear articulation
of terms and avoidance of undefined acronyms or obscure
technical jargon. A medium that is becoming increasingly
useful for disseminating results to broad audiences is social
media. For example, Twitter, Facebook, and Instagram posts
that include striking images, graphs and videos can direct
audiences toward more in-depth reports, briefing notes and
media reports about vulnerability assessment results, while
enabling the popularization of ideas that might otherwise be
overlooked in decision-making processes.

Finally, it is important to be aware of the problems inherent
in communicating CCVA results. Two particular kinds of
content that need special attention are those of uncertainty
and vulnerability. Scientific uncertainty is vastly different to
the common use of the term, and this point needs to be clearly
refreshed for certain audiences. While uncertainty needs to be
made transparent, authors are strongly urged to clarify that
uncertainty does not mean ignorance. Where possible, we
also encourage authors to quantify uncertainty and provide

descriptions of what is known and what is uncertain with
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examples of why something might be uncertain. For example,
one might have highly robust data indicating the way in which
a species will react across a soil moisture gradient, showing a
clear preference for a specific kind of wet habitat (e.g., 75%
soil moisture). However, we may still be uncertain about
how climate change will affect soil moisture in a particular
area and hence, the species’ response in that location would
be uncertain. Another example is sea level rise. We are highly
certain that sea level will rise, but we are less certain about the
magnitude of the rise. An appropriate way of communicating
such CCVA results would include scenarios that encompass
the species’ known (or likely) responses to favour wet habitats,
likelihoods of how those habitats might be affected, and the
uncertainties surrounding how a species will respond to new
conditions where its preferred habitat(s) cannot be found. The
uncertainty is not in the species’ preferences, but in how the
habitats will change and how the species will respond to a new
climate. It may be helpful to emphasize what we know based
on applied principles of ecology, physics and/or chemistry, with
very little uncertainty, first and foremost.

We re-emphasise here that CCVAs provide information for
adaptation planning and conservation management, and that
CCVAs are not a substitute for adaptation planning. CCVAs
determine and report on vulnerability assessment findings but
do not necessarily include management recommendations. This
is because management decisions need to also be formulated
around additional factors that are independent of the CCVA
(e.g., non-climate stressors, available budget, human capacity,
and legal and usufruct rights). Put simply, while CCVAs should
certainly facilitate the development of adaptation strategies and
management plans, one should remain aware that these are
fundamentally separate activities.

Introducing new and more effective methods of communicating
uncertainties will help to bridge the gaps between those who
conduct CCVAs and the audiences they target. Learning more
about an audience is key to targeting them, and understanding
their biases and world-views is important. Through effective and
targeted communication of vulnerability assessment results, we
can increase the likelihood that their findings will be used to
design and implement effective adaptation strategies to protect
vulnerable species and to inspire efforts to fill data gaps.
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Wendy B. Foden, James Watson, Ary Hoffmann, Richard Corlett and David Hole

As a new and emerging field in conservation biology and
ecology, CCVA faces many shortcomings which present both
frustrations and exciting opportunities for those wishing to use
and develop them. Here we present a few key recommendations
for work to advance this field.

9.1 Validation of assessments

As discussed in lSection 6.7 (CCVA validation)l, validation
of CCVA results may be carried out statistically or by

comparing species’ predicted changes with those observed
in situ. Observation-based validation is considered the most
robust approach currently available, and may be conducted by
hindcasting species’ responses to climatic events of the distant
past using paleo-data or by examining species’ responses to
anthropogenic climate change so far. The latter has been
carried out largely using correlative approaches, and both
adherence and non-adherence of observations to predicted
changes have provided valuable insights (e.g., Kharouba ¢t al.,
2009; Dobrowski et al., 2011; Fox et al., 2014), but trait-based
approaches in particular have been poorly validated to date and
filling this gap is an important priority. Carrying out CCVAs
retroactively (i.e., testing the ability of models to predict species
changes observed over the last few decades) also provides an
exciting opportunity. Overall, we believe that CCVA validation
is the greatest priority for this field since testing predictive
performance is the essential foundation for improvements in

all CCVA approaches and methods.

9.2 Better and more coordinated
biodiversity data

Much information needed for carrying out and improving
CCVA is currently incomplete or unavailable (Butt er al,
2016). Data describing species’ physiological tolerances (e.g.
thermal limits) are an important need; similarly data on
species interactions, which are emerging as significant drivers
of climate change vulnerability for many species, are also
required. In many cases, however, it is the poor coordination
and disharmony of observations of biodiversity, rather than
their shortage, that hampers global scale monitoring of
biodiversity (Scholes ez al., 2012; Joppa et al., 2016).

Increasing the quantity, quality and coordination of such
biodiversity data is essential for a number of purposes. Firstly,
it provides the data needed to ground-truth CCVA outputs and
thereby to calibrate confidence in projections and to improve
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methodology. Secondly, it makes CCVA application in poorly-
assessed regions (e.g., the tropics) and taxonomic groups
(e.g., non-charismatic species) possible, and thereby allows
more representative and realistic reflections of the global and
regional threats to biodiversity from climate change. Thirdly, it
enables questions requiring measures of extinction probabilities
and population changes to be developed using mechanistic
models. Finally, it is an essential foundation of the monitoring
needed to effectively integrate climate change adaptation
into conservation plans and actions. Monitoring is essential
for establishing the accuracy of the CCVA on which the
adaptation plan is based, for measuring the effectiveness and
impacts of the adaptation actions based on it, and for iteratively
updating CCVAs, plans and actions accordingly. Citizen
science programmes (e.g., eBird, iNaturalist), for example, are
one mechanism leading to an increase in the availability of
biodiversity data.

9.3 Advancing CCVA methodology

9.3.1 Combination or ‘hybrid’ methods
that draw on the strengths of different
approaches

Combination CCVA methods hold the potential to draw on
the strengths of the three basic approaches. Examples of such
combinations are described in Bections 2.2.4 (Combined
Approaches), [i.1] and Appendix Table D, but there remains

much room to explore CCVA advances through novel approach

and method combinations.

9.3.2 Including the effects of changing
frequency and magnitude of climate
extremes and variability

Climates of the future are likely to include patterns of
variability and extreme events that have far greater effects on
ecological systems than shifts in means alone (Thompson ez
al., 2013). Yet despite the important roles that variability and
extremes play in determining patterns of biological diversity,
the ecology and conservation communities have, to date, paid
little attention to the impacts of catastrophic events (Butt ez
al., 2016). Extreme events are challenging to evaluate due
to their rarity and resulting small sample sizes. Nonetheless,
Amecay Judrez ez al. (2013) have carried out an analysis of the
impacts of cyclones and droughts on terrestrial mammals, and
Thompson et al. (2013) propose a method for using downscaled
climate models which incorporate predicted changes in climate
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variability. Following Butt ez al. (2016), we acknowledge the
challenge of incorporating climate extremes and variability
in CCVA assessments, but emphasise that omitting them will
lead to incomplete understanding of climate change impacts
on species.

9.3.3 Including inter-species interactions

Inter-species interactions are seldom explicitly considered in
CCVAs, yet they are often important drivers of climate change
impacts on species. Modelling new community assemblages
into the future could provide insights into vulnerability
assessments since climate alone is unlikely to be the only
determinant of species’ presence in an area. Modelling the
dynamics of predator-prey, host-parasite and pollinator system
dynamics into the future presents an important gap and

challenge.

9.3.4 Including human responses to climate
change

As discussed in Section 5.2.1) (Direct versus indirect impacts

of climate change), most current CCVA methods ignore the
impacts of human responses to climate change on biodiversity,
even though these could match or even exceed impacts arising
directly from climate changes (Turner ez al, 2010). Such
responses include humans’ direct responses to the climate
changes themselves (e.g., changing crops or land use), and
their secondary (or indirect) responses including human
migration in response to water shortages or rising sea levels,
as well as responses aimed at mitigating or adapting to climate
change (e.g., building dams and sea walls; growing biofuels;
implementing REDD+ schemes)(Watson, 2014; Segan et al.,
2015). The general failure to include these human responses to
climate change and their potential impacts on biodiversity is a
serious omission in current assessments and their inclusion is a
priority for all CCVA approaches and methods (Maxwell ez al.,
2015). There are now useful summaries that describe proxies
and projections for many such human responses are available
(e.g., see Maxwell ez al. (2015), and the development and use of
these in the context of biodiversity assessment is much needed.
CCVAs focusing on small spatial scales may need to engage
with representatives of local communities to better understand

likely human responses to climate change.

9.3.5 Including interactions between climate
change and other threats

Related to consideration of human responses is ensuring that
the interaction of non-climate change stressors (which are
often but not always caused directly by human behaviour) and
climate change is accounted for (Segan ez al., 2015). Although
an extinction crisis is already underway (Barnosky ez a/., 2011),
few CCVAs explicitly consider the threats that drive this and
the way that climate change is likely to interact with these
threats. Exploring and understanding these interactions and
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the impacts they have both on species” vulnerability to climate
change and to extinction overall is an important area for

investigation.

9.3.6 Accounting for climate change-driven
species changes that have already occurred

Mean temperatures have already increased by 0.75°C globally,
and by up to 2°C in some places (IPCC, 2013b; Wilgen ez
al., 2015). This has already had marked impacts on species,
including on their distributions, interactions and behaviours
(Parmesan & Yohe, 2003; Devictor et al., 2012), as well as on
community and ecosystem composition (Midgley & Bond,
2015; Pearce-Higgins et al., 2015). However, CCVAs that
assume current stability rather than dynamic baseline states
may produce outputs that may not be relevant for guiding
appropriate conservation actions now (Butt ez /., 2016). For
correlative approaches, using current distributions will become
increasingly inaccurate for calibrating models against baseline
climates, and hence for species where ranges are known or
likely to have shifted, historical records should be used instead.
Using current climates as a baseline is also problematic,
however, since extant populations of species with slow or lagged
responses (e.g., long-lived species) may already be outside areas
climatically suitable for their persistence, and on a trajectory
of decline.

9.3.7 Improving trait data and selection of
thresholds for vulnerability

There are three important avenues for improving the biological
data upon which trait-based and mechanistic models rely.
The first is simply to fill gaps in species coverage of existing
traits; Foden ez al. (2013), for example, found that such gaps
were by far the largest source of uncertainty in global trait-
based CCVAs for birds, amphibians and corals. Secondly,
empirical establishment of quantitative thresholds associated
with vulnerability for each trait is much needed (e.g., how
much diet specialization makes a species highly sensitive;
how much precipitation change is too much for a species to
accommodate). Thirdly, many of the ‘traits’ used in trait-based
and combined-approach assessments (e.g., Garcia ez al., 2014)
are in fact proxies rather than traits in the strict sense (Violle
et al., 2007). Empirical studies determining, for example,
species’ physiological limits, maximum dispersal distances and
phenotypic plasticity would allow use of traits per se rather than
their proxies and are likely to improve the robustness of trait

based methods.

9.3.8 Incorporating adaptive genetic change
and phenotypic plasticity

Though we know some species can evolve and change plastically
over remarkably short time scales, information relevant to
CCVA on the potential of species to adapt to climate change
is scarce (Catullo et al., 2015). The ability of natural selection
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to “rescue” populations from deleterious climate change  to cover 1-10% of the genome can be undertaken relatively
impacts depends on the rate of evolution relative to the rate  cheaply and used to generate thousands of SNP (single
of climate change. When selection pressure is strong the  nucleotide polymorphism) markers (Narum ez al., 2013). These
demographic cost of selection (proportion of individuals that  in turn can be used to inform the past history of species and
do not survive to reproduce) can be too high for the species to  their likely future adaptive capacity; -omics data can assist
sustain, and the species will go extinct. More research isneeded ~ in a number of ways, including determining the potential
into factors that set the rate of evolution and whether or not for adaptive changes in different populations (Hoffmann
existing genetic diversity is adequate for adaptive responses to ez al., 2015; Christmas ez al., 2016), the appropriateness of
anticipated climate change (Edwards, 2015). Also necessary ~ novel approaches like gene pool mixing and genetic rescue
is knowledge about genetic architecture and how selecting on in threatened species (Weeks ez a/l., 2011), and the benefits as
sets of traits might enhance or retard selection on other sets of ~ well as pitfalls of using hybridization (Hedrick & Fredrickson,
traits (Etterson & Shaw, 2001). Selection can also interact with ~ 2010) as a way of boosting adaptive capacity. See Box 6.
phenotypic plasticity to enhance or degrade species’ responses
to climate change, but this interplay deserves more attention.
For example, adaptive phenotypic plasticity might allow a 9.4 Improved information exchange
species to “buy” time before the onset of otherwise deleterious between conservation research and
climate change. However, phenotypic plasticity could also practitioner communities
reduce selection pressure in the interim, setting the stage for a
harsh selective regime with a very high cost of selection when ~ In our joint objective to conserve biodiversity, conservation
the limits of plasticity are reached (Reed ez 4/., 2011). Catullo ez research and practitioner communities offer and receive
al. (2015) present a general research agenda toward developing  services to and from each other. Practitioners typically
a predictive understanding of the role of adaptive evolution in ~ highlight the needs that form the exciting new platforms for
mediating species’ responses to climate change. research and provide invaluable feedback on the application
of research. Researchers, on the other hand, help to develop
9.3.9 Taking advantage of advances in -omics the methodology that supports practitioners’ decision-making.
and next generation sequencing Keeping the exchange of such services fully and smoothly
coordinated is essential for efficient coproduction of knowledge
With the advent of rapidly increasingamounts of informationon ~ sources. Specific recommendations for focused exchange
the genomics and transcriptomics of many groups of organisms ~ between these communities include:
(Allendorf ez al., 2010; Ellegren, 2014) including threatened ~ * Development of and updates to user-friendly interfaces and

species and their relatives, there is increasing potential to use tools for CCVA.

this information in assisting CCVAs. DNA and RNA datacan ¢ Establishment of productive partnerships between
now be readily collected for organisms and also extracted from scientists and managers with targeted efforts to bridge
stored specimens. Partial genome or transcriptome sequencing communication gaps.

Box 6. The potential of —omics approaches for management of threatened species

There are a number of ways in which decisions on the management of threatened species under climate change can be assisted
by genomic and transcriptomic approaches. The following list is based on a decision framework developed in a recent publication
(Hoffmann et al., 2015) and starts from an initial evaluation of risk to interventions.

Question Potential Action if YES

1 Do all populations have sufficiently high genetic | Assess both neutral and functional variation across the genome. If NO, go
diversity for an evolutionary response? to 2.

2a | Do some populations have higher genetic Identify genetic diversity hotspots/refugia across the landscape.
diversity than others?

2b | Are some populations adapted to local Identify past selection on climate related loci. If local adaptation (2b) and
climate? diversity hotspots (2a) are present, go to 3.

3 Is gene flow high enough? Complete picture of historical and current gene flow. If NO, go to 4.

4 Can gene flow patterns be restored? Compare contemporary and past patterns of gene flow. If NO go to 5.

5 Is a positive evolutionary response possible Identify potential for gene pool mixing and hybridization with molecular
through natural gene pool mixing or natural markers from nearby populations/species as well as dangers (if genetic
hybridization? distance is too large). If NO, go to 6.

6 Is enforced hybridization and ex situ Consider an enforced hybridization plan informed by genomic data,
conservation possible? and ex situ conservation to maintain genetic diversity through breeding

programmes.
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* Gathering and communication of ‘lessons learned’ and
recommendations from both the practitioner and research
communities (either independently or in combination)
regarding CCVA, its use in climate change adaptation, and
on biodiversity monitoring.

* Development of an evidence base (e.g. ConservationEvidence.
com) covering examples of the use of CCVA for climate
change adaptation. This should specifically include details of
problems, inaccuracies and failures, as well as their causes.

* Development of and updates to best practice guidelines for
climate change adaptation planning and implementation.

9.5 Better use of CCVA to inform
conservation planning

A focus simply on which species are most vulnerable is clearly
useful for generating comparative lists, but without the right
framing, may not be useful for conservation actions on
the ground (Butt ez al., 2016). Some studies have begun to
investigate planning and prioritization using CCVA, including
how this information is being used and developing decision
pathways for reducing the impacts of climate change. Shoo ez
al. (2015), for example, provide a very comprehensive decision
framework for climate change-specific management actions.
The Adaptation for Conservation Targets (ACT) framework
developed by Cross et al. (2012) presents a two-phase process,
the first step of which is to identify the conservation feature
and define the management objective. By doing this, the ACT
framework aims to translate general recommendations into
actions specifically linked to species, habitats or sites (Cross ez al.,
2012). This focus on establishing the management objective(s)
at the outset of the process enables conservation managers to
apply the framework to their specific target and allows for other
important adaptation components to be considered. However,
where such vulnerability frameworks are not objective-based,
they may merely increase the list of actions rather than help us
choose between them. We need to be clear about the intention
of the vulnerability assessment and what we need to do in
response, and by designing the assessment around an objective,
this can be achieved (Game ez a/., 2013). Specifically, managers
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can use components of vulnerability in adaptation planning
exercises by identifying possible adaptation responses that
reduce exposure, enhance adaptive capacity, and possibly even
reduce sensitivity (Stein ez al., 2014).

9.6 Explore the links between CCVA of
species and implications for people

The principal objective of most CCVAs is to understand the
potential impacts of climate change on a species and implications

for its conservation, for example, by improving conservation

planning (see lSection 3 Setting Climate Change Vulnerabilitﬁ

Assessment Goals and Objectives). Yet particularly for those

species that have direct utilitarian use, planning should include
the interaction between climate change impacts on a species
and its ongoing exploitation by people, to try to ensure that
continuing exploitation is sustainable. Examples include
CCVA of medicinal plants, fuel-wood and timber trees,
freshwater fishes and bushmeat species in the Albertine Rift
(Carr ez al., 2013). Addressing such linkages at the CCVA stage
can also highlight a potentially incipient livelihoods crisis (e.g.,
potential fishery collapse), as well as generating a further crucial
argument for driving effective conservation management of

that species.

More broadly, where a particular species represents a
‘keystone’ or ‘engineer’ species, a CCVA represents a first step
in our understanding of how impacts on that species may
have cascading impacts for the entire ecosystem of which
it is a component. Climate-driven increases or decreases in
abundance of a species, local colonization or extinction may
have important ramifications for ecosystem function and
hence the services being provided to people. While such
considerations are unlikely to be a major issue for many species
and most CCVAs, such evaluations will become increasingly
important as climate change proceeds and as efforts increase
to help people adapt to climate change and reduce climate risk
with the aid of biodiversity and ecosystem services (so-called
ecosystem-based adaptation (EbA)(Andrade e a/., 2011; Jones
et al., 2012)).



10. Case studies

Table 12. List of case studies and the approaches, ecosystems, spatial scales and resource scenarios they cover.
Abbreviations: CCVA, Climate Change Vulnerability Analysis; PA, Protected Area; PVA, Population Viability Analysis; SDM, Species Distribution Model;
TVA, Trait-based Vulnerability Assessment

Cases 1 2 3 4 5 6 7 8 9 10
CCVA Correlative | Correlative | Correlative for | Mechanistic TVA TVA Combined Combined Combined | Combined
approach small-range Correlative Correlative - Correlative | (all)
species -TVA Mechanistic -TVA
(complex)
Reference (Reside et (Hole et al., (Platts et al.,, (Lacy etal., in (Butler etal., | (Foden etal, |(Bakeretal, |(Fordham (Garcia et (Thomas et al.,
and topic al, 2012) 2011) 2014a) prep) 2014) 2013) 2015) etal, 2013) al, 2014) 2011)
area Range Bird Amphibians in | Metapopulation/ | Freshwater | Global Correlative Iberian Lynx; Traits show | Assessment
shifts in turnover in | Africa; multi- PVA modelling fish in North | Corals models that | Combines meta- | where method that
Australian | African PAs | dimensional of polar bears on | America (section of | include populations, SDMs may | includes trait,
tropical niche envelopes | Svalbard (non- IUCN CCVA) | dispersal habitat, over-and | correlative &
savannah where SDM spatial) parameters; | interspecific under- mechanistic
birds impossible; can use for PA interactions, estimate approaches
add traits planning climate risk
Issues SDMs of Use for PA Small distribution | Polar; Freshwater | Sea Single species | Detailed single- Using Can
covered mobile planning ranges Detailed single- species; temperature; | focus; use for | species focus; results from | accommodate
species in and by PA spp. focus inclusion ocean PA planning interspecific SDMs and | multiple
variable managers of indirect acidification interactions; TVAs methods
environment threats simulates
conservation
interventions
Ecosystem Terrestrial Terrestrial Freshwater, Marine, Polar Freshwater | Marine Terrestrial Terrestrial Terrestrial | Terrestrial
Terrestrial
Taxonomic Birds Birds Amphibian Mammal Fish Coral Birds, Mammal Amphibians | Butterfly,
focus mammals, beetle
amphibians
Taxonomic Many Many species | Single or multiple | Single Many Many species | Many species | Single species Many Many spp.
scope species species species species
Spatial scale | Landscape |Landscape Regional Sea/Land-scape | Local Seascape Landscape Landscape Landscape | Site/
(Australia) and/or site (Sub-Saharan (Svalbard) (subnational) | (global) (West Africa) Landscape
(African PAs) | Africa) (Britain)
Data High Medium Medium/Low High Medium/ Medium/ High/Medium | Very high Medium Medium/Mixed
requirements Low Low

Golden Plovers (Pluvialis apricaria) are vulnerable to climate change driven increases in the frequency of summer droughts, as this causes
a reduction in the abundance of peatland-breeding craneflies (family: Tipulidae), their primary prey. It has been shown, however, that
blocking both drainage ditches and erosion gullies raises water levels and thereby helps to increase cranefly populations.

67

Golden Plover © Nigel Clark / BTO. Cranefly © James Pearce-Higgins/BTO. Drainage ditch © James Pearce-Higgins/BTO
i " "'-.‘




TUCN SS8C Guidelines for Assessing Species’ Vulnerability to Climate

Change

Table 13. Key to selecting case studies appropriate to your CCVA objectives.
Relevance of case studies: red = very; orange = somewhat; yellow = marginally; white = very little

CCVA Objectives

10

Taxonomic Focus

Single-species focus

a) Climate change vulnerability factors

b) Inter-species interactions

¢) Metapopulation dynamics

d) Spatially explicit outputs

Multi-species focus

a) Relative vulnerability of species

b) Range shift projection, identification of climate refugia and
migration corridors

Site/Site Network Focus

a) ldentification of most vulnerable species

b) Projection of range shifts and species replacements, identification
of climate refugia and migration corridors

¢) Local persistence of flagship species

Special Cases

a) Assessment of vulnerability of single species with restricted ranges

b) Assessment of vulnerability of multiple species with restricted ranges
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Case Study 1. A correlative approach for
Australian tropical savanna birds

By: April Reside
Based on: Reside et al., 2012

1. Overall objectives

In tropical eastern Australia, work had been done investigating
the likely impact of climate change on tropical rainforest fauna.
However, no studies had been conducted on the habitats that
make up the vast majority of tropical Australia — tropical
savannas. This study began to address this gap by focusing
on tropical savanna birds, as birds were the best surveyed
taxonomic group and therefore had the most comprehensive
datasets.

Summary of the CCVA objectives

1. Investigate the impact of climate
change on the amount and location of
suitable climate space for species

2. Investigate the impact of different
dispersal scenarios on future
projections of species distributions

3. Estimate the change in species
richness from baseline to 2080 using
modelled projections of species
distributions and realistic dispersal
scenarios

Birds

Australian tropical savannas

From baseline (1990) to 2080

Objectives

Taxonomic focus
Geographic Focus
Time frame

2. Context

Tropical savannas make up nearly a quarter of mainland
Australia, extending from the eastern coast across the
continent to the western and northern coasts. The tropical
savannas are characterized by highly variable annual rainfall,
to which occupying species have adapted by having low
dietary specificity or by being highly mobile and thereby able
to track shifting resources. Generally speaking, savanna biota
is thought to be robust in the face of environmental change,
due to being widespread and occurring with highly variable
conditions. However, evidence of decline of many mammal
and bird species in this region has been accumulating, causing
conservation agencies to question this widely held belief. Further
investigation was needed to understand how savanna species
were likely to be impacted by climate change. Furthermore, the
understanding of how species within key biogeographic regions
within the savannas were similarly impacted by climate change
was needed to focus conservation attention.

The Federal lead
organization, CSIRO, and James Cook University funded a

Australian Government’s research
project to: 1) develop species distribution modelling methods
appropriate for use on highly mobile species in a highly variable
environment; and 2) model the species’ distributions under

different climate change scenarios.
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3. Rationale for approach and methods

We selected a correlative approach to examine climate change
vulnerability. Firstly we modelled the species’ distributions
under climate change scenarios and investigated the resulting
projections of suitable climate space, and how these varied with
different dispersal scenarios. In a second, separate and as yet
unpublished step, we combined these correlative models with a
trait-based approach to generate a comprehensive comparative
climate change vulnerability analysis.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets Yes Yes Possibly Yes
objectives?
Resources |Yes Yes No Yes
available?
Selected? |Yes Yes (separate | No For a
study) follow-up
assessment

We selected Maxent (Phillips ez al., 2006) for carrying out
correlative modelling because collaborators were involved in
the species distribution modelling method evaluation which
found Maxent to be the strongest performing algorithm
among those tested (Elith ez a/., 2006). We were provided use
of James Cook University’s High Performance Computing
Cluster which allowed us to carry out parallel modelling of
hundreds of species and multiple future scenarios in a relatively
short time. The modelling involved 243 bird species, three
emissions scenarios (SRES A2, A1B and B1) (Nakicenovic ez
al., 2000), 30 General Circulation Models (GCM) (Cubash
et al., 2001) and ten time slices; equating to 218,700 outputs,
which required approximately 13 years of parallel processing.

4. Application of methods

Birds were chosen as a focus because most of the data for
savanna biota are for birds, and because of evidence of decline
in some of the bird foraging guilds in this region. Trait-
based data are available for most Queensland species, so this
study examined Queensland savanna bird species for which
suitable data were available. The main occurrence data source
was BirdLife Australia, which has now shared the data with
Atlas of Living Australia. Data on species dispersal abilities
were compiled from the literature, and from data collected by
CSIRO’s savanna biodiversity research team. Many months
of work was involved in vetting the species occurrence data,
involving the removal of obviously erroneous records. The
climate data were obtained from the Australian Water
Availability Project (Grant et al., 2008, Jones ¢t al., 2007), and
the climate layers were created using the “climates” package
in R (VanDerWal ez 4l., 2011a). Model post processing was
done using the “SDMTools” package in R (VanDerWal ez
al., 2011b). While access to James Cook University’s High
Performance Computing Cluster made this work possible,
processing the large input datasets and high volume of output
models was challenging. Having access to the modelling
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support of Assoc. Prof. Jeremy VanDerWal at JCU was
essential for the success of this project.

A challenge encountered was how to present and create a
coherent story from the >200,000 outputs. After various
iterations, it was decided to only present the outputs from the
moderately severe emissions scenario modelled (SRES A1B)
because this enabled a more coherent narrative of the results,
and it was a mid-range scenario. We believe this is justified
because the outputs from the various emissions scenarios did
not influence the direction of change, or the spatial realization
of change. Only the length of time taken to reach a specific

outcome varied.

In the paper, a mean projection for each time slice was presented
for A1B for species. These projected distributions were converted
to binary ‘suitable’’not suitable’ using a Maxent-derived
threshold of suitability; these thresholded binary outputs were
summed to give an estimate of species richness for each time
slice. This was done for each of the different dispersal scenarios
so the results could be compared.

The outputs consisted of a modelled distribution for each
combination of species, emissions scenario, GCM and time
slice. From this, mean projections for each species, time
slice and emissions scenario were generated. These were later
incorporated into the trait-based analysis, which is still

in review.

We examined how species with different migration/movement
strategies were likely to fare under climate change. We
compared the amount of future climate space projected to
remain suitable for species that were migratory, nomadic,
partially migratory, sedentary, or species with both nomadic
and sedentary populations. Many of the species in our study
also occurred widely outside the savanna region; e.g., some
occurring along the mesic east coast and some occupying both
savanna and arid regions. We compare the amount of projected
future suitable climate space between species with different
biogeographic affiliations. Finally, we examined the amount
of climate space projected to remain suitable for species that
were listed as threatened under state, federal and international

conservation listings.

5. Summary of results

Migratory species and those mainly confined to tropical
environments were projected to lose the least suitable climate
space by 2080, and in fact some species confined to tropical
environments were predicted to see a substantial increase in
suitable climate space by 2080 (Reside ez 2/., 2012b). This was
largely driven by the projections for increases in rainfall in the
centre of the tropical savanna area. These projections for the
future are likely to be realized to some extent, as conditions
for savanna birds in this area have been shown to improve due
to increases in rainfall in the past 60 years (VanDerWal et al.,
2013). However, the tropical species confined to Cape York
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Peninsula were projected to lose the most suitable climate space
across all species. These species are likely to be particularly
vulnerable because of their small distributions (particulatly in
comparison to other species) and the alteration of fire regimes
in recent decades (Reside ez /., 2012a).

This study found that the dispersal scenario used for calculating
the amount of suitable climate space into the future can
dramatically change the predicted outcomes for species. In
particular, comparing the extremes from unlimited dispersal
(i.e. aspecies is able to disperse as far as required in order to track
suitable climate) to no dispersal (i.e. species would only be able
to occupy suitable climate space in the future if it overlapped
currently suitable areas) show completely different stories, from
substantial increases in species to substantial decreases. Neither
scenario is likely to be accurate, as many species are already
more restricted than their modelled climate envelope and there
is a lot of evidence of birds dispersing outside of their historic
range in recent years. Tailoring dispersal scenarios to individual
species dispersal abilities is important for having more accurate
projections of climate change impacts.

6. Conservation outcomes

These results were disseminated through publication of the
research paper in a scientific journal (Reside ez a/., 2012) and
presentations at various conferences and seminars, including
PhD pre-completion seminars, lab seminars at the Durrell
Institute of Conservation Ecology at Kent University in the
UK and La Sapienza University in Rome, and the Ecological
Society of Australia annual conferences. The results from this
study may have had little uptake; however, the modelling
methods were subsequently applied to 2,000 vertebrate species
across Australia in a follow-up study (Reside ez 4/, 2013),
and these results have had widespread use and uptake. The
main stakeholders interested in these results include state
governments across Australia, Natural Resource Management
groups and other researchers. The results of these studies have
been incorporated into climate change adaptation plans for the
Natural Resource Management groups and in land acquisition
for the National Reserve System.

7. Room for improvement

This study and the subsequent studies (Reside ez af., 2013)
could be improved by evaluating the impact of using the chosen
modelling algorithm (Maxent) on the projected outcomes.
Furthermore, fully understanding how species will respond to
climate change will require information on individual species’
sensitivity to change and their adaptive capacity. Work on
incorporating these factors into the vulnerability of savanna
birds to climate change has been conducted, and is currently in
review for publication (Reside ez 4/., in review). When this work
began, few if any frameworks for traitbased approaches were
available. As a result, it proved exceedingly difficult to convince
reviewers of the validity of combining correlative-modelling
and trait-based approaches to assess species vulnerability to

climate change. For this reason, this study with the combined
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approach is still in review, having been in development for at
least five years. Should this or similar studies be started again,
following previously published combined and trait-based
approaches would be highly recommended.

Further improvements could be more outputs made available
through supplemental online material. Current models
and future projections of the distributions of all Australian
vertebrates are now available online with a user-friendly
interface.
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Case Study 2. Developing a framework
for identifying climate change adaptation
strategies for Africa’s Important Bird
Area network

By: Dave Hole and Stephen Willis
Based on: Hole et al., 2011

1. Overall objectives/executive summary
Networks of sites of high importance for the conservation of

biological diversity are a cornerstone of current conservation

strategies, but are fixed in space and time. As climate change
progresses, substantial shifts in species’ ranges may transform
the ecological community that can be supported at a given site.
Thus, some species in an existing network may not be protected
in the future or may be protected only if they can move to sites
that in future provide suitable conditions. We developed an
approach to determine appropriate climate change adaptation
strategies for individual sites within a network that was based
on projections of future changes in the relative proportions
of emigrants (species for which a site becomes climatically
unsuitable), colonists (species for which a site becomes
climatically suitable), and persistent species (species able to
remain within a site despite the climatic change). Our approach
also identifies key regions where additions to a network could
enhance its future effectiveness. Using the sub-Saharan African
Important Bird Area (IBA) network as a case study, we found
that appropriate conservation strategies for individual sites
varied widely across sub-Saharan Africa, and that key regions
where new sites could help increase network robustness
varied in space and time. Although these results highlight
the potential difficulties within any planning framework that
secks to address climate-change adaptation needs, they also
demonstrate that such planning frameworks are both necessary,
if current conservation strategies are to be adapted effectively,

and feasible, if applied judiciously.

Summary of the CCVA objectives
Objectives 1. To determine appropriate climate
change adaptation strategies for
individual sites based on future
projections of species turnover.

2. To identify key regions where additions
to the network could enhance its future
effectiveness.

Taxonomic focus Birds
Geographic Focus Sub-Saharan Africa
Time frame From present (2010) to mid- (2050) and
end-century (2080)
2. Context

BirdLife’s Important Bird Area (IBA) network (now Important
Bird and Biodiversity Area network) across sub-Saharan Africa
represents the largest systematically identified network of sites
(803 in total) on the continent that are globally important for
the persistence of biodiversity. As for any large-scale network
of important sites for biodiversity, climate change may have
significant negative repercussions for its long-term effectiveness
in terms of preserving the species the network was designed
to conserve, as those species track (or attempt to track) their
shifting climatic niches. Potential climate change impacts on
the network were addressed in an earlier study (Hole ez al.,
2009) commissioned by the Royal Society for the Protection
of Birds (RSPB). Follow-up research then sought to determine
broad adaptation strategies for individual sites within the
network, based on projected shifts in the climatic suitability of
each IBA for the 815 species for which the IBAs were identified.
It also recommended where additions to the network might
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increase its effectiveness under a changing climate. Durham
University (UK), a leading institution in the assessment of
climate change impacts on biodiversity, carried out the work,
in collaboration with BirdLife International and RSPB.

3. Rationale for approach and methods

Given the large taxonomic and geographic scope of this case
study (815 species, all of sub-Saharan Africa), correlative
methods were selected. Data limitations for most of these
species precluded the use of mechanistic modelling, while trait-
based assessments would have been inadequate for providing
the necessary spatial component to understand heterogeneity
in climatic suitability of individual IBAs. Fortunately, locality
data for all species of interest were available from the University
of Copenhagen at sufficient (though notideal) spatial resolution,
making the correlative approach particularly appealing.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets Yes No Yes Yes
objectives?
Resources |Yes No No No
available?
Selected? |Yes No No No

Climate Response Surface (CRS) models were selected for their
previously demonstrated utility in modelling projected climate
impacts on birds (Huntley ez al., 2006b). Generalized Additive
Models (GAMs) were also applied in order to assess uncertainty
resulting from modelling methodology.

In order to meet the goals of our case study, our primary need
was to develop an understanding of how priority bird species
might change in terms of their representation (i.e. either
disappear from, colonise, or continue to persist in) individual
IBAs across the entire sub-Saharan African IBA network, as
a result of climate change. Correlative models, despite their
acknowledged limitations (e.g., Pacifici ez al., 2015) provided
us with a methodology that enabled us to project presence/
absence within individual IBAs over time, across a large
number of species. Our resulting framework describing climate
change adaptation strategies for all sites in the network based
on this broad suite of species (see below), was therefore more
robust to bias resulting from a few poorly fitted models, than if

we had based it on a handful of species-specific projections for
individual IBAs.

4. Application of methods

We assessed all (815) “priority” species (i.e. those that trigger
IBA designation) in sub-Saharan Africa, because it is shifts
in their distributions and representation within IBAs that
could most impact the future efficacy of the network under
climate change. They include all globally threatened, restricted
range and biome-restricted species (note that we excluded the
small number of congregatory species that also trigger IBA
designation).
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Data for modelling of all 815 species were obtained from
the Zoological Museum of the University of Copenhagen
at one-degree resolution. This was the most reliable and
comprehensive dataset available at the time. ‘Current’ climate
data were obtained from Worldclim (http://www.worldclim.
org) at 2.5’ resolution and aggregated to 1°. Future climate data
were obtained from the IPCC’s data archive (Third Assessment
Report). Significant computational resources were required
to downscale and combine the current climate data with the
future anomalies (note that these analyses were conducted in
2007 and future climate scenarios are now readily available).
Uniquely, we were able to validate our modelling approach
by comparing modelled IBA species inventories with current
community composition of a sub-set of IBAs for which we had
‘observed’ data, based on actual species lists. Such observed
data, while critical for model validation, are a major challenge
to obtain and were only available as a result of BirdLife
International’s extensive contacts with local organizations in

the region.

Models were developed for each of the 815 species using
point locality data and four bioclimatic variables (selected
for their previously demonstrated utility in modelling avian
distributions; Huntley ez a4/, 2006b) covering the entire
sub-Saharan African region. Each species model was then
projected onto individual climates characterized for each
IBA, for the present and for three future climate projections
(derived from three separate General Circulation Models
that capture the range of variability in future projections of
precipitation (Hole ez a/., 2009)) and two future time periods
(centred on 2055 and 2085). Modelled current and projected
future probabilities of occurrence were then used to generate
current and future ‘expected’ species inventories for each
IBA. These modelled inventories were then validated against
the ‘observed’ species lists for our subset of IBAs, indicating
adequate robustness for us to move forward. For each IBA,
models for the 815 species, for the present and future time
periods, were then used to estimate the proportions of
colonizers (species for which a currently unsuitable IBA
becomes suitable in the future), emigrants (species for which
an IBA that is currently suitable becomes unsuitable in the
future) and persistent species (species for which an IBA that is
suitable in the present remains suitable in the future). Finally,
climate change adaptation strategies for each site within the
network were defined, based on the relative proportions of
each of these three groupings of species within each IBA. We
also used the models generated for the 815 species to evaluate
where additions to the network could facilitate range shifts and
fill gaps, by identifying: i) regions that our models suggested
would be most important in the future for priority species least
well supported by the existing network; ii) regions into which
large numbers of priority species are projected to move; and
iii) regions that are least well covered by the existing network
(based simply on the distance from each 0.25° grid cell in sub-
Saharan Africa to the nearest IBA).
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5. Summary of results

The framework synthesising model projections for all 815
species for assigning high level adaptation strategies for
individual sites is quite simple. We calculated mean proportions
of projected emigrant and colonist priority species for each IBA,
for each period, as the mean of the values for the three future
projections. We then plotted the ensemble mean proportion of
projected emigrants against the ensemble mean proportion of
projected colonists for each IBA. We used the median, lower
quartile, and upper quartile of values along each axis to divide
the area of the resulting graph into five sectors (Figure CS 2.1).
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Figure CS 2.1. Schematic showing how IBAs (red dots)
were allocated to one of five categories, based on their
respective proportions of emigrants, colonists and
persistent species (derived from Hole ez al., (2011)).

Finally, we classified each IBA into one of five categories
according to the graph sector into which it fell: high persistence,
increasing specialization, high turnover, increasing value, and
increasing diversification. We then used the character of the
projected changes in the proportions of emigrant, colonist, and
persistent priority species in each category to identify general
principles for the CCAS most appropriate for IBAs in that
category, recognizing the contribution made by each category to
achieving the goals of the entire network. We inferred changes
in the proportion of persistent species from the proportion
of emigrants (if the proportion of emigrants was high, the
proportion of persistent species must, by definition, be low, and
vice versa). We also determined the category-specific relevance
of the likely need to adopt management actions that promote
resistance (forestall effects and protect highly valued resources),
resilience (improve capacity to return to desired conditions
after disturbance), or facilitation (facilitate transition from
current to new conditions). Finally, for each category, we
determined the character and relative importance of five key
management actions (drawn from Heller & Zavaleta, (2009),
Mawdsley ez al., (2009), Millar ez al., (2007), and Galatowitsch
et al., (2009)) aimed at enhancing the adaptive capacity of a
site’s complement of priority species: habitat restoration and
creation; disturbance regime management; translocation;

increase in site extent; and matrix management.

Additionally, we combined our three indicators of where
additional sites could add to future network resilience into
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a single index of ‘added value’ and mapped it across sub-
Saharan Africa.

Sites in the high persistence and high turnover categories were
twice as common as the other three categories. The distribution
of site categories was strongly geographically patterned. In
particular, the high persistence category predominated in the
Guinea—Congo region and much of West Africa, whereas
the high turnover category predominated in the southern
African tropical zone (stretching from Namibia and Angola
to Mozambique and Tanzania). Elsewhere, for example, in
northern east Africa (Ethiopia, Somalia, Kenya and Uganda)
and in South Africa, no one category predominated. Larger
increasing value IBAs were principally on the Saharan margin
(Niger, Chad, and Sudan) or in the arid southwest (primarily
Namibia). Smaller IBAs in this category were widely scattered.
In terms of potentially optimal locations for additional sites,
these were located primarily in Gabon, Congo, Namibia,
Botswana, eastern South Africa, southern Mozambique, and
from Tanzania through the Albertine Rift north to Ethiopia
and Somalia.

6. Conservation outcomes

Results were disseminated through the peer-review literature,
through presentation of the results at international conferences
and at BirdLife Partnership meetings, and through the
As BirdLife
(particularly those in developing countries) move towards

Partnership’s  extranet  website. Partners
developing and implementing coherent strategies for climate
change adaptation, the Hole ez 4/, (2011) approach is unique
in providing generic guidance on adaptation actions to
implement, that are informed by projected impacts at the scale

of individual sites.

7. Room for improvement

Finer resolution species distribution data and mechanistically
down-scaled climate data (i.e. using a regional climate model
rather than the simple statistical approach used here) would
have improved the robustness of our results — yet such data
were simply not available at the time, and still aren’t at the pan-
African scale.

More broadly, there is a need to better integrate into funding
proposals and project planning, the financial resources and
activities needed for translating the content of published
scientific papers into adaptation guidance that is carefully
targeted at relevant constituencies (e.g. site managers), as well

as the resources for dissemination.
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Case Study 3. Back to basics with
African amphibians

By: Philip J. Platts and Raquel A. Garcia
Based on: Platts et al., 2014a

1. Overall objectives

For CCVAs employing correlative techniques such as species
distribution modelling (SDM), a particular challenge is that
species with insufficient numbers of occurrence records cannot
be modelled. Depending on the scale of analysis, this can mean
leaving out many range-restricted species, which are typically
the ones of highest conservation concern (Schwartz ez al., 2006,
Platts ez al., 2014a).

Does this omission of range-restricted species matter, when
assessing spatial patterns of vulnerability across a higher
taxonomic rank? If either of the following hypotheses is
correct, then the answer is likely to be yes: (1) species omitted
from correlative SDM have, on average, different climatic
niches to those species eligible for modelling; (2) omitted
species and eligible species are projected to experience different
climate anomalies in the future.

Summary of the CCVA objectives
Objectives 1. To test hypotheses about large-scale
conservation priority schemes.
2. To assess spatial bias in CCVA results.
Taxonomic focus Amphibians
Geographic focus Mainland Africa south of the Sahara
Time frame Late-20th century through late 21st century
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2. Context

Correlative models that predict species distributions under
climate change are frequently applied in the scientific
literature, and are widely cited by conservation planners
seeking to determine whether existing priorities will remain
valid under future climates. Such models must be underpinned
by sufficient data on a species’ distribution to avoid spurious
predictions (Stockwell and Peterson 2002) — a prerequisite
that is, almost by definition, not fulfilled by many species of
highest conservation concern, particularly at the coarse spatial
resolutions dictated by commonly available species and climate

data at continental scales.

This is especially true in the tropics, where species are more
often narrow-ranging than at higher latitudes (Wiens ez al.,
2006), and even common species’ distributions tend to be
less well documented (Feeley and Silman 2011). These data
challenges are exemplified in sub-Saharan Africa, where species
information is patchy at best, and confounded by spatial
uncertainties in historical records.

In light of these obstacles, it is worthwhile considering how the
omission of range-restricted (or under-sampled) species from
familiar SDM tools might bias CCVA results. Amphibians
were chosen as a case study due to the high levels of threat
they face from climate change, habitat loss and disease (Sodhi
et al., 2008, Hof ¢t al., 2011). Amphibians native to Africa are
mostly endemic to the continent, making the modelling more
tractable.

3. Rationale for approach and methods

Of the three main options for CCVA, correlative approaches are
by far the most commonly applied. Mechanistic methods are
rarely feasible for large groups of under-studied species. Trait-
based assessments are a viable alternative (Foden ez 4/., 2013)
and could be integrated with correlative approaches (Garcia ez
al., 2014, Willis ez al., 2015). Here though, the objective was to
determine the implications of restricting CCVA to correlative
techniques.

To test the hypotheses that species omitted from SDM occupy
different climatic niches and/or face different exposures to
climate change, it was sufficient to perform multivariate
ordination on the species’ point distributions. Inferring
modelled patterns of vulnerability or future priority for
omitted species, however, given their stated omission from
the modelling procedure in question, is clearly troublesome.
To evade this catch-22, it was necessary to redefine SDM in
terms of its most basic interpretation (Busby 1991), and thence
to modify the procedure such that any species, irrespective of
range-size, could be included in the analysis (see below).
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Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets Yes No No No
objectives?
Resources Yes Yes No No
available?
Selected? Yes No No No

4. Application of methods

Distributional data were gathered for 790 species of amphibians
found only on mainland Africa south of the Sahara (Hansen
et al., 2007; updated to February 2014). Matching to IUCN
taxonomy (www.iucnredlist.org) reduced the number of
species to 733. The data are reliable to 1° resolution (111 km at
the equator). Each amphibian was deemed either eligible for,
or omitted from, correlative SDM based on a ten record cut-
off (thresholds in other studies range from five to 50 records).
Multivariate ordination (Outlying Mean Index, OMI; Dolédec
et al. 2000) tested for differences in observed distributions
between eligible versus omitted species, in terms of (1) climatic
niche space and (2) projected exposure to change (climate

anomalies).

Climate was summarized by four, weakly collinear (Pearson’s
|r|<0.7) variables: mean temperature and annual temperature
range, mean rainfall and rainfall seasonality. Baseline
conditions (1950-2000) were from WorldClim (Hijmans ez al.,
2005), using mean values to resample from 30” to 1° resolution.
Future conditions (2071-2100) were from AFRICLIM:
regionally-downscaled CMIP5 GCMs, debiased against the
WorldClim baselines (Platts ez al., 2015). Two IPCC-AR5
emissions pathways were considered: RCP4.5 and RCP8.5.
For temperature variables, future anomalies were computed by
subtracting the future from the present values; anomalies for
rainfall variables were given by the ratio of future to present.

All amphibian distributions were projected in space and time
using multidimensional niche envelopes (MDNE). Unlike
modern SDM  methods, this simple technique classifies
all conditions within a species’ observed climatic range as
uniformly viable, and conditions beyond as wholly unsuitable.
So as to include even those amphibians with a single occurrence
record, the interquartile range of local (30”) climatic conditions
within the 1° grid cell(s) was used to define the envelopes.
Future predictions were constrained under a no-dispersal
scenario (climate change velocities at 1° resolution are expected
to outpace dispersal capabilities for most African amphibians).

5. Summary of results

Of the 733 amphibian species, 400 have too few records for
correlative SDM, including 92% of those threatened with
extinction (VU/EN/CR on The IUCN Red List). Species
omitted from SDM occupy significantly different niche space
to eligible species: their observed distributions are characterized
by higher annual rainfall with lower rainfall seasonality,
cooler and less seasonal temperatures, and by more complex
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topography. This is consistent with a wider literature on the
broad-scale tendency for climatically and topographically
diverse/distinct areas to contain a disproportionate richness of
narrow-ranging species (Ohlemiiller ez /., 2008).

Empirically-derived priority metrics (e.g., top 100 cells for
species richness) were derived for each species set (eligible
or omitted) and time-period (present or future), by stacking
the modelled species distributions. These metrics were
compared against three large-scale conservation priority
schemes: Conservation International’s Biodiversity Hotspots
(Mittermeier et al., 2004), BirdLife International’s Endemic
Bird Areas (Stattersfield er /., 1998) and the World Wildlife
Fund’s Global 200 ecoregions (Olson and Dinerstein 1998).

Congruence between empirical priority metrics and existing
schemes was generally higher on the omitted species set than
on the eligible species set, although this varied depending on
the region and metric considered. Projecting empirical metrics
under future climate, congruence with existing schemes
reduced in western Africa while generally increasing in eastern
and southern Africa. Overall, priorities for eligible species were
projected to shift towards existing schemes (and thus towards
omitted species), due to greater climatic stability at these sites.
Similarly, while omitted species frequently lost all climate space
at 1° resolution, persistent populations tended to coincide with
existing priority schemes. These results are summarized in

Figure CD3.1.

6. Conservation outcomes

Under current climate, data thresholds imposed by SDM
systematically downplay important sites for narrow-ranging and
threatened species. This issue spans taxonomic groups and is only
partially mitigated by modelling at finer scales. Under future
climate, persistence among both narrow- and wide-ranging
species may (depending on finer-scale processes) be highest
within sites already identified for conservation investment, and

so the focus on these sites ought to be maintained.

The results of this study were distributed through a journal
article (Platts ez al., 2014) and associated media coverage
(e.g.
amphibians-invisible-under-climate-change),

htep://www.unep-wemc.org/news/near-extinct-african-
facilitated by
wildlife photography to engage a broader audience (www.
michelemenegon.it/).

7. Room for improvement

The ‘back to basics’ envelope models used here, while useful
for demonstrating potentially contrasting model outcomes
for narrow- versus wide-ranging species, should not be seen as
sufficient in addressing the rare species problem. Rather, a wider
range of approaches, encompassing trait-based, mechanistic
and correlative procedures (and combinations of these)
should be developed and deployed in CCVAs, in order that
the vulnerability of range-restricted species can be adequately
represented in conservation plans.
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Species Richness Priorities

Present Future

Figure CS3.1. For many amphibians in sub-Saharan Africa (and for other species groups), occurrence data are too
scarce or spatially clustered for accurate species distribution modelling. This is particularly problematic for threatened
species. The resulting bias against range-restricted species affects modelled estimates of richness, rarity and irreplaceability, both
for current conditions and under climate change. Inset: Parker’s Forest Tree Frog (Leptopelis parkeri), Endangered on the IUCN
Red List. Lower left: Barbour’s Forest Tree Frog (Leptopelis barbouri), Vulnerable. Background: mountain forests strip moisture
from the air in Nyungwe National Park, Rwanda. Photography by Michele Menegon (www.michelemenegon.it). Composite
reproduced from the cover of Diversity and Distributions, Vol. 20, Issue 11.
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Case Study 4. Exploring impacts of
declining sea ice on polar bears and their
ringed seal and bearded seal prey in the
northern Barents Sea

By: Robert C. Lacy, Kit M. Kovacs, Christian
Lydersen and Jon Aars

1. Overall objectives

Climate change is a major threat to polar bears, and extirpation
(local extinction of populations) of this keystone arctic species
is expected throughout much of the species range in the coming
decades given current climate-gas emissions forecasts. The main
effects of sea ice reductions due to global warming in the Arctic
on the bears are caused by reduced availability of ice-associated
seals, which are the primary prey of polar bears. These seals
and the bears that prey on them are also important to coastal
human populations throughout much of the Arctic. All of the
ice-dependent seals breed only on sea ice, so availability of this
unique habitat is directly linked to their reproductive success
and ongoing existence; the carrying capacity for bears is in turn
linked to these species. This case study is a novel exploration of
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the impacts of a warming climate on the population trajectories
of polar bears in combination with two of their key prey species
— ringed and bearded seals — in the northern Barents Sea. The
region is an arctic hot-spot that is experiencing rapid warming,.
We employed linked Population Viability Analysis (PVA)
models to explore population trajectories of these three species
out 100 years in order to inform management authorities and
conservationists regarding the expected rates of decline within
this species assemblage regionally.

Summary of the CCVA objectives

1. Project climate impacts that cascade
through predator-prey relationships.

2. Understand when critical changes to
climate conditions required by focal
species will occur.

3. Predict when climate change will drive
populations to critically low levels.

Polar bear, ringed seal, bearded seal

Northern Barents Sea

From present (2010s) to 2100s

Objectives

Taxonomic focus
Geographic Focus
Time frame

2. Context

This study was conducted because of concerns regarding the
impacts that declining sea ice conditions are having on ice-
dependent marine mammals in the Arctic (Laidre ez 4/., 2008,
2015; Kovacs ez al., 2011). We limited the scope of the study
to the northern Barents Sea because it is a relatively data rich
area for the species of concern and because it is a ‘hot spot’
with respect to environmental change due to climate warming.
Additionally, it is a region that does not have aboriginal
communities that are dependent on marine resources. Thus,
management decisions can be made without subsistence
hunting issues arising. Polar bears were selected as the focal
species in this study (e.g., Hunter e# /., 2010; Molnar ez al.,
2010) because they are a top predator that has strong influence
on lower trophic levels and because they are a particularly
sensitive management concern. Polar bear mothers require
abundant, high-energy prey that is easily accessible from the
land-fast ice (ice that makes contact with shore) in order to
feed cubs when they emerge from dens in the spring after
many months of fasting. This creates a critical dependency
on the population of ringed seals that give birth to their pups
in lairs (small snow caves) on the land-fast ice. Adult ringed
seals and bearded seals are important prey for the polar bears
throughout the year. Given the complexity of this system and
the importance of these marine mammals to their ecosystems,
the Norwegian Polar Institute and the Conservation Breeding
Specialist Group sponsored collaboration among their scientists
to pursue this study.

3. Rationale for approach

Our aim was to examine how impacts of climate change might
cascade through the linkages among highly interdependent
species. Most CCVA approaches are focused on single species,
with the presumption that all other species with which they
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Left: Pinniped Specialist Group (Chair) and Climate Change SG member, Dr Kit M. Kovacs with a ringed seal pup. © Kit M. Kovacs
Right: Ringed Seals (Pusa hispida) are totally dependent on sea ice habitats for giving birth, resting, moulting and foraging on ice-associated
prey. Reductions in sea ice due to climate warming will have negative impacts across the species’ range. © Kit M. Kovacs and Christian
Lydersen, NPI

interact are either static or can be represented as simple trends
in resources (prey) or threats (predators, competitors, or
disease). However, if there are tight inter-relationships between
species, including feedbacks between them, then models that
project each species simultaneously, as well as their interactions,
are needed for tests of the effects on the system of climate
change or any major disruption to either species or to their
interactions. We chose a metamodel approach to link PVAs, so
that each PVA informs the other(s) about the dynamic changes
in its focal species, and the functional relationships that link
species are explicitly modelled. The approach of linking PVAs
to explore how environmental changes can cause cascading
effects through ecological dependencies of species has been
used recently to examine threats due to disease (Shoemaker
et al., 2014), landscape conversion to agriculture (Prowse
et al., 2013), and invasive species (Miller ez 4/., 2016). Here,
we apply this methodology to the disruption of species inter-
dependencies by climate change.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets No No Yes No
objectives?
Resources |Yes Yes Yes Yes
available?
Selected? |No No Yes No
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For long-lived species, there may be considerable lags between
the reduction in the environmental conditions that meet the
habitat needs of a species and the consequent response in
population numbers, especially when the mechanisms involved
feedbacks between species. Therefore, correlative approaches
that assume that species distributions are in equilibrium might
have revealed long-term consequences (over centuries), but
would not reveal how quickly climate change impacts would be
observable in the fauna. Trait-based approaches would similarly
not capture interactions among species which are key to what
will happen to the top predators in ecosystems in particular.

4. Application of methods

To build the PVAs for the three species, we relied on published
demographic and ecological information and on the expertise
available from researchers at the Norwegian Polar Institute.
There are considerable data on the demography and predatory
behaviour of polar bears, and data on the size of the Barents
Sea population that uses two archipelagos for denning (Svalbard
and Frans Josef Land). Demographic data on the seals are less
detailed than the data for the polar bears, but the basic life
histories are known. Some population size and demography data
for the seals breeding in Svalbard are available, but the larger
Barents Sea population and the extent of exchange between
areas (e.g., between the seals using land-fast ice and those using
pack ice further north) have not been previously estimated.
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For representing the species interactions in the metamodel,
we used general patterns of mammalian energetics and some
specific information about the distribution of prey species and
size classes taken by the predator. Many of these estimates are
only approximate (and with the uncertainty not quantifiable),
so sensitivity tests were run, varying key model parameters
across assumed plausible ranges in order to get a sense of the
robustness of the results.

It was particularly challenging to obtain estimates of the key
aspects of climate that influence the interactions between polar
bears and the seals such as trends in the extent of land-fast ice
on the fjords in April and the amount of snow accumulated
on that ice, which are critical determinants of the survival of
ringed seal pups. This in turn influences the ability of polar
bears to rear their young, with obvious long-term implications
for both predator and prey populations if recruitment of either
is diminished. Lacking data on the local and seasonally specific
snow and ice conditions, we had to rely on long-term trends
in the average ice cover over the Barents Sea in April as our
estimate for the rate at which the land-fast ice would decline.

For our PVA models, we used Vortex software (Lacy, 2000; Lacy
& Pollak, 2014), so that we could employ flexible, individual-
based models to represent aspects of polar bear life history (such
as the dependency of cubs on their mothers for about three years,
and the delay in production of a subsequent litter until cubs
become independent or are lost). For the two seal species, we ran

the Vortex model as a population-based model, although other
PVA software or even matrix-projections of demography could
have been used as long as they could incorporate functional
relationships to other species. The three PVA models were
linked with MetaModel Manager software (Lacy ez al., 2013;
Pollak & Lacy, 2014), which controls the sequence in which
each PVA simulates its (annual) time step and passes parameters
describing the current state of each population to the other PVA
models. The metamodel can be run on a microcomputer, and
requires only a few hours of run-time for 100 iterations of each
scenario tested. We focused on projections of population size,
rather than on extinction probabilities.

We note that due to the use of regional parameters, our analysis
does not address species-wide threats and therefore our results
cannot be directly extrapolated to other regions.

5. Summary of results

The metamodel simulations projected that as springtime ice
cover declines, the number of ringed seals young that will be
produced around Svalbard will decline in parallel (Figure CS
4.1 over). This will lead to a decrease in the number of polar
bear cubs that can be reared in the region. Due to the lack of
recruitment, the adult population of ringed seals will decline,
but perhaps after a lag of 10 years or more due to the longevity
of this small arctic seal (which lives up to 45 years). The decline
of polar bears may be delayed further by decades, due to the
continued availability of some ringed seal pups (albeit with

Polar Bears (Ursus maritimus) are expected to be extirpated from two thirds of their current range in the coming decades due to sea ice losses
and other negative impacts of climate change on their natural habitat. © Kit M. Kovacs & Christian Lydersen, NPI_02
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perhaps little chance for survival) until the breeding population
of adult seals has collapsed. Bearded seals may experience a
temporary decline as they become the primary prey available
for adult polar bears, but then could rebound after the bear
population declines. We did not model other effects of climate
on bearded seals that could drive their numbers downward
and therefore also accelerate the decline of polar bears, because
this seal species does exhibit some resilience to sea ice losses
including the use of glacier ice as a pupping substrate.

Proportional N

Years

M Bearded Seals M Polar Bears M Ringed Seals— SvFj M Ringed Seals — Pack Ice

Figure CS 4.1. Illustrative example of one of the many
scenario PVA runs for three Arctic mammals. Shown are
projections of trends in population sizes of the three species —
with an assumption of a 1% annual decline in the springtime
ice cover, and no dispersal between Svalbard-Franz Josef (SvF])
and the Pack Ice.

Although the general trends in the effects of sea ice decline
on the three species were perhaps predictable from the
relationships entered into the metamodel, the magnitude and
the timing of species responses would have been difficult to
derive intuitively. Examination of the quantitative dependency
of population trends on some model parameters, such as the
rate of ice loss and dispersal patterns of the seals, required a
quantitative model of the system.

6. Conservation outcomes

The findings were presented to representatives of the Governor
of Svalbard (the local management authority), the Ministry
of the Environment (national level management), the Arctic
Council Programme AMAP (the Arctic Monitoring and
Assessment Programme), as well as members of the IUCN
Climate Change Specialist Group at a workshop entitled
“From PVA to Policy” held in Svalbard in fall 2014. Although
local authorities will not be able to stop the decline of sea ice in
the Barents Sea, understanding the mechanisms, severity, and
time course of impacts of climate change on priority species in
the region can inform monitoring, identification of key areas
that might serve as refugia that contain adequate conditions for
polar bear survival further into the future, and management of
indirect (e.g., mineral exploration) effects on these mammalian
populations as well as direct impacts (e.g., harvest) on the two
seal species locally (Laidre ez 4l., 2015).
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7. Room for improvement

This study demonstrated that PVAs linked into multi-species
metamodels can be used to examine how aspects of climate
change would be expected to impact species and their
interactions. As with any analysis of complex systems, there are
limitations on the completeness and robustness of the analyses.
First, PVA and other mechanistic models always require detailed
demographic information, and much more needs to be learned
about survival rates, movement patterns, and distribution
of breeding and foraging habitat of the arctic seals before we
can confidently predict population trajectories. Metamodels
that link interacting PVAs also require further development to
accurately depict the ways in which species are inter-dependent.

The strong dependency of Svalbard polar bears on ringed
seal pups in the spring allowed us to explore how climate
change can affect this important relationship. Other effects
of climate change on these species have not been examined,
including effects on their relationships to many other species
(e.g., prey of the seals and other prey of the polar bears, and
sub-arctic predators and competitors that are moving into the
increasingly ice-free polar waters). Explicit mechanistic models
of species interactions will probably not be possible, or at least
not be informative of dominant trends, for the many species for
which climate change brings about a myriad of weaker and less
direct effects in a diverse community rather than a few strong
couplings between species. For such cases, extending PVAs
to include the impacts of climate change may require higher
level description of the trends in demographic rates correlated
to climatic variables. Understanding and modelling causal
mechanisms may be necessary for forecasting impacts before
they are discernible in long term data sets.

8. References

Hunter, C. M., H. Caswell, M. C. Runge, E. V Regehr, C. Steve, I Stirling,
and S. Url. 2010. Climate change threatens polar bear populations: a
stochastic demographic analysis. Ecology 91:2883-2897.

Kovacs, K. M., C. Lydersen, J. E. Overland, and S. E. Moore. 2011.
Impacts of changing sea-ice conditions on Arctic marine mammals.
Marine Biodiversity 41:181-194.

Lacy, R. C. 2000. Structure of the VORTEX simulation model for
population viability analysis. Ecological Bulletins 48:191-203.

Lacy, R. C., P. S. Miller, P. J. Nyhus, J. . Pollak, B. E. Raboy, and S. L.
Zeigler. 2013. Metamodels for transdisciplinary analysis of wildlife
population dynamics. PloS One 8:e84211.

Lacy, R. C,, and J. P. Pollak. 2014. VORTEX: A computer simulation
model for Population Viability Analysis. Version 10.0. www.vortex10.
org/Vortex10.aspx. Chicago Zoological Society, Brookfield, Illinois,
USA.

Laidre, K. L., H. Stern, K. M. Kovacs, L. Lowry, S. E. Moore, E. V
Regehr, S. H. Ferguson, @. Wiig, P. Boveng, R. P. Angliss, E. W.
Born, D. Litovka, L. Quakenbush, C. Lydersen, D. Vongraven, and
F. Ugarte. 2015. Arctic marine mammal population status, sea ice
habitat loss, and conservation recommendations for the 21st century.
Conservation Biology 29:724-737.

Laidre, K. L., I. Stirling, L. F. Lowry, O. Wiig, M. P. Heide-Jorgensen,
and S. H. Ferguson. 2008. Quantifying the sensitivity of Arctic
marine mammals to climate-induced habitat change. Ecological

Applications 18:597-S125.



10. Case studies

Miller, P. S., R. C. Lacy, R. Medina-Miranda, R. Lépez-Ortiz, and
H. Diaz-Soltero. 2016. Confronting the invasive species crisis
with metamodel analysis: An explicit, two-species demographic
assessment of an endangered bird and its brood parasite in Puerto
Rico. Biological Conservation 196:124—132.

Molnir, P. K., A. E. Derocher, G. W. Thiemann, and M. A. Lewis. 2010.
Predicting survival, reproduction and abundance of polar bears
under climate change. Biological Conservation 143:1612-1622.

Pollak, J. P., and R. C. Lacy. 2014. MetaModel Manager. Version 1.0.1.
Platform for linking models into metamodels. www.vortex10.org/
MeMoMa.aspx. Chicago Zoological Society, Brookfield, Illinois,
USA.

Prowse, T. A. A., C. N. Johnson, R. C. Lacy, C. J. A. Bradshaw, ]. P.
Pollak, M. J. Watts, and B. W. Brook. 2013. No need for disease:
Testing extinction hypotheses for the thylacine using multi-species
metamodels. Journal of Animal Ecology 82:355-364.

Shoemaker, K. T., R. C. Lacy, M. L. Verant, B. W. Brook, T. M. Livieri,
P. S. Miller, D. A. Fordham, and H. Resit Ak¢akaya. 2014. Effects of
prey metapopulation structure on the viability of black-footed ferrets
in plague-impacted landscapes: A metamodelling approach. Journal

of Applied Ecology 51:735-745.

Case Study 5. Freshwater fishes in the
Appalachian Mountains, USA

By: Bruce E. Young
Based on: Butler et al., 2014

1. Overall objectives

In 2012, the Appalachian Landscape Conservation Cooperative
of the United States requested climate change vulnerability
assessments of important species and habitats that occur in the
Appalachian region. In response to this need, a seven-member
scientific panel was formed to determine which species to assess
and which methods to use to assess them. This case study
focuses on the freshwater fish portion of the study and sets out
to determine which species are vulnerable to climate change,
the degree to which they are vulnerable, and the factors leading
to vulnerability.

Summary of the CCVA objectives

Objectives 1. Which species are vulnerable to
climate change?
2. To what degree are they vulnerable?
3. Why they are vulnerable?
Taxonomic focus Freshwater fishes (104 species)

Geographic Focus The states encompassed by the

Appalachian Landscape Conservation

Cooperative

Time frame From present (2012) to mid-century
(2050)

2. Context

In the United States, Landscape Conservation Cooperatives
(LCCs) strive to better integrate science and management for
addressing climate change and other landscape-scale issues.
To achieve this, they bring together land managers and
scientists from federal, state, and local governments, along
with Tribes and First Nations, nongovernmental organizations,
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universities, and interested public and private organizations.
The 22 LCCs align with broad ecoregion boundaries. The
Appalachian LCC encompasses the mountainous region from
northern Alabama to southern New York state, an area rich in
species and habitat diversity. The region has the highest species
richness of salamanders in the world and is among the most

diverse in freshwater fishes.

To serve its broad range of partners, the Appalachian LCC chose
to assess a range of fish species. Funding was limited because
the resources available for the assessments ($84,000) had to be
shared with the work of the expert panel to select methods and
species, as well as used for assessments of habitats and other
taxonomic groups. Time was also limited because the selection
of methods and species and the assessments themselves needed
to be completed in two years.

3. Rationale for approach and methods

Major objectives were to determine which species were
vulnerable, their degree of vulnerability, and why they were
vulnerable,; and hence correlative, trait-based (TVA), and
mechanistic approaches all produce appropriate results.
However, the time and funds allocated to the project were too
limited to perform mechanistic analyses on a large number of
species. Moreover, the scientific panel was concerned that the
time available to conduct analyses was too short to compile and
review the accuracy of locality data that would be needed for
a correlative approach. A number of species had already been
assessed using a trait-based approach and the panel elected to

build on this.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined

Meets In part Yes Yes Yes

objectives?

Resources | No (not Yes No (not Possibly

available? | enough time enough

to review time or
accuracy of funding)
locality data)

Selected? |No Yes No The CCVI can
make use of
correlative
model
outputs
where they
exist

The method selected for applying the TVA approach was the
Climate Change Vulnerability Index (CCVI; Young et al.,
2012), which is applicable to both freshwater and terrestrial
species, and has already been used by state agencies to evaluate
freshwater fishes. The CCVI is a free, downloadable tool
programmed in MS Excel that combines information on
climate exposure, species sensitivity and adaptive capacity
and, if available, the results of correlative models and observed

vulnerability to climate change, to place species in one of five
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climate vulnerability categories. Assessments may be conducted
on a species’ entire global distribution or on any component
part. Using this method allowed the Appalachian LCC to
provide a database of assessments that were all conducted in the
same manner, thereby enabling comparisons between species.

4. Application of methods

The panel first defined criteria for selecting the study’s focal
species. Species were selected if they were (1) of conservation
significance (e.g., listed federally under the United States
Endangered Species Act or listed as a Species of Greatest
Conservation Concern by a state), (2) important to the
ecosystem where they occurred, (3) indicators that could help
detect climate change, (3) of management importance, (4)
had a relation to human health, or (5) had cultural value. This
selection process led to a list of 104 species.

Most of these species had already been evaluated at least once
in state-level or regional (e.g., southern Appalachian) climate
change vulnerability assessments. Species that lacked previous
assessment were assessed following the guidelines for the CCVI
(Young et al., 2016). Briefly, the CCVI separates vulnerability
into its two primary components: a species’ exposure to climate
change within a particular assessment area and its inherent
sensitivity and adaptive capacity to climate change. For
exposure data, the assessors used climate projections provided
by Climate Wizard (Girvetz et al., 2009; www.climatewizard.
org) for the mid-21st century, AI1B emissions scenario, with an
ensemble average of 16 Global Circulation Models. The assessors
were familiar with the species in situ and used natural history
and distribution information available in scientific literature to
score 20 sensitivity and adaptive capacity factors. These factors
included two that consider indirect effects of human-mediated
threats: occurrence of anthropogenic barriers to dispersal that
prevent species from tracking favourable climates and the
installation of alternative energy infrastructure (e.g., dams for
hydroelectric power) that would negatively impact the species.
In cases where an SDM had been run for a species, the change
in predicted range size, the predicted degree of overlap between
current and future bioclimatic ranges, and the occurrence of
protected areas in the predicted future range were also used to
calculate and overall vulnerability category. Using the exposure
data as a weighting factor for the trait data, the CCVI places
species in one of six categories: Extremely Vulnerable, Highly
Vulnerable, Moderately Vulnerable, Presumed Stable, Increase
Likely, Insufficient Evidence.

5. Summary of results

The 104 species assessed had been evaluated 115 times in
different assessments, with some species receiving up to four
different assessments in different parts of their ranges. The
results show that just over half of the species assessed appear
to be vulnerable to some degree to climate change (Figure
CS5.1). Few species are highly or extremely vulnerable. The
specific traits that contributed to vulnerability vary by species.

River-dwelling species are vulnerable to climate-driven changes
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in hydrology that could alter stream flow, as well as potential
changes to their habitats brought about by scouring from
more extreme precipitation events. Cold-water fishes, such as
Brook Trout (Salvelinus fontinalis) and Slimy Sculpin (Cortus
cognatus), are vulnerable to increasing water temperature. Some
species (e.g., Eastern Sand Darter, Ammocrypta pellucida) are
also tied to particular substrates that are uncommon in stream
habitats. If their climate niche shifts, future favourable climate
envelopes may not coincide with these preferred substrates.
Species that inhabit lakes were generally less vulnerable to
climate change.

6. Conservation outcomes

The final report was released in 2014 (Butler ez al., 2014)
and posted on the Appalachian LCC website where the
data are available to partners and the public in general. As
of this writing, it is too soon to assess the degree to which
the information compiled in the report has been used for
conservation efforts. Some of the assessments included in
the study were published previously as part of state-level
efforts to determine vulnerability of biodiversity to climate
change (Schlesinger et 4., n.d., Report et al. 2011). In turn,
these results contributed to updates of state Wildlife Action
Plans to address the threat that climate change poses to state
biodiversity. Because Wildlife Action Plans play a major role
in guiding state government conservation investments, the
vulnerability assessment results are likely to influence decisions
on the specific adaptation measures taken to lessen the impact
of climate change on biodiversity in these states.

7. Room for improvement

The methods used were adequate for compiling assessments for
a large number of species in a short period of time. Because
most of the species had already been assessed by a particular
method, it was efficient to employ the same methodology for
the complete list of species. One shortfall of this approach is
that different assessors assessed different species. Due to the
potential for inter-assessor variation in how the trait factors
are interpreted, ideally the same assessor or group of assessors

would have evaluated all of the species on the target list
(Lankford ez al. 2014).

Several additional steps could be taken to enhance future
assessments. First, the exposure data should be derived from
IPCC AR5 climate projections to use the most current available
data. Also, the analyses could be rerun, using both ends of the
range of climate projections for each species’ distribution to
“book-end” the results, to show how uncertainty in climate
projections could influence the categories assigned to each
species. Review of draft assessments by a group of freshwater
fish experts would not only improve consistency in the scoring
of the species, but also ensure that all available natural history
information about species is utilized in the assessments. With
more resources, SDMs could be run for each species and the
results combined with the trait-based method to provide more

spatial context to the assessment results.
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Figure CS5.1. Results of a trait-based climate change
vulnerability assessment of 104 freshwater fish species
occurring in the Appalachian region of the United States.
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Case Study 6. A trait-based CCVA of all
warm-water reef-building corals globally

By: Wendy B. Foden
Based on: Foden et al. 2013

1. Overall objectives

In 2007 IUCN set out to develop a CCVA method that
could be applied to large numbers of species, including rare
and threatened species, and which considered the biological
characteristics that affect species’ vulnerability to climate
change. The resulting trait-based CCVA method was piloted
on the world’s birds, amphibians and warm-water reef-building
corals and the results published in Foden ez a/. (2013). This case

study covers the global coral assessments.
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Summary of the CCVA objectives

1.To provide a framework to help users to
systematically assess the possible ways in
which climate change may impact focal species

2.To identify which coral species are at greatest
risk from climate change

3.To identify which geographic regions contain
highest-risk species

4.To compare species’ climate change
vulnerabilities with their degree of threat from
non-climatic factors (i.e. via the IUCN Red List)

All warm-water reef-building coral species

Global

From present (2013) to mid-century (2050) and

end of century (2090)

Objectives

Taxonomic focus
Geographic focus
Time frame

2. Context

As impacts of climate change on species began to emerge,
TUCN recognized that conservation practitioners, particularly
those carrying out Red Listing, needed guidance on recognizing
and predicting the many ways in which impacts may manifest,
assessing how these contribute to vulnerability, and using
the results to examine species’ overall risk of extinction. In
response, IUCN’s Global Species Programme launched an
initiative to provide a method for accomplishing this. Birds,
amphibians and warm-water reef-building corals were selected
as pilot taxa due to the availability of up-to-date information
from their recent global threat assessments, their affinities with
different ecosystems, and because of the broad scope of climate
change impacts they are experiencing. The results of this study
were published in Foden e 4l., (2013) and the approach has
been used at regional scales to assess other taxonomic groups
including mammals, reptiles, plants and freshwater fishes (Carr
et al., 2013, 2014). We focus on the global CCVA of warm-
water reef-building corals for this case study since it provides a

less common example of CCVA of marine invertebrates.

3. Rationale for approach and methods

Because our objectives included helping users to systematically
examine the broad range of possible mechanisms by which
climate change may impact species, correlative approaches
including species distribution models (SDMs), which predict
shifting climate space alone, were not suitable. In addition,
many of the species that practitioners need to assess are rare and
therefore are not known from enough localities to be able to run
SDMs. Mechanistic models would have served the purpose, but
because we intended the method to be applicable for use across a
broad range oflife history strategies, for large numbers of species,
for those for which relatively few data were available, and to be
relatively easy to apply without intensive technical or modelling
expertise, the mechanistic approach was unsuitable. We selected
a trait-based approach in order to accommodate a broad range
of impact mechanisms, species and life history strategies; while
the IUCN Species Information System (the database supporting
the ITUCN Red List) contained considerable species-specific trait
data, we recognized that carrying out the CCVA would require
collecting other data from scratch.
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Suitability of methods

Correlative Trait-based | Mechanistic | Combined
Meets No (many rare | Yes Yes Possibly
objectives? | species would

be excluded;

needed to

explore full

range of

impacts)
Resources |Range data Yes, though | No Possibly
available? |available as necessitated | (799

polygons, not | collecting species =

point localities: | many too many!)

possible but traits from

not ideal scratch.
Selected? |No Yes No No

Only a handful of taxon-specific trait-based assessments had
been carried out at the time the initiative started so, drawing
on these, we developed a new method designed to be adaptable
for use across all taxa. Using the IPCC’s vulnerability
definition (IPCC 2007), we regarded species as of highest
vulnerability if they were highly sensitive, highly exposed and
poorly adaptable to climate change. We made use of expert
knowledge and literature review to identify five generic trait
sets or types associated with heightened sensitivity to climate
change, and three with poor adaptive capacity (see the left
column of Table CS 6.1 for their names, and Table 1 of Foden
et al., (2013) for a full rationale and description). For each of
these trait sets, we selected the specific traits that applied to
our focal taxonomic group.

4. Application of methods

Assessing sensitivity and adaptive capacity

To determine the suite of coral-specific traits associated with
the sensitivity and adaptive capacity we consulted a range of
coral experts through a workshop and individual consultations.
Trait identification involved assessing: (i) likely climate change
scenarios and key aspects of exposure; (ii) the mechanisms
by which these are likely to affect the focal species; (iii) the
traits associated with high risk from these; and (iv) availability
of existing data sets describing these and where necessary,
exploring the feasibility of gathering this data from natural
history information in the literature and expert knowledge. The
resulting suite of traits (Table CS 6.1) represents a compromize
between the ideal theoretical traits for CCVA and pragmatic
considerations of data availability and priorities for gathering

new data given available time and resources.

We aimed to assess all 799 species of warm-water reef-
building corals, but four had missing trait or distribution
data such that we were unable to categorize them, leaving
them as ‘unknowns’. Some data were gathered from existing
datasets (e.g. Veron, 2000) and published literature, and much
information was recorded from scratch based on experts’
knowledge. Wherever possible, we gathered quantitative rather
than qualitative data so that analyses can be more easily revised
in the future, as knowledge and assumptions about climate
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change mechanisms and impacts progress. Data were collected
in Excel spreadsheets. Establishing thresholds for assigning
species into ‘high vulnerability’ categories for each trait was
frequently challenging and where defensible thresholds were
not clear, we selected the worst affected 25% of species. We
recognize that this cut-off is somewhat arbitrary and discuss
the associated challenges and ways forward in the paper. While
the relative thresholds result in CCVA results being relative
rather than absolute measures of vulnerability, they remain
valuable both for identifying the species at greatest risk and for
exploring the likely mechanisms by which species are or will
be impacted.

Assessing exposure to bleaching and ocean
acidification

To assess exposure, we refined [IUCN’s polygons of coral species’
distributions by restricting them to areas with mapped reefs
(as defined by Reefbase (2010)), overlaid surfaces of changes in
Sea Surface Temperature change and aragonite saturation by
2050 and 2080 (See Table CS6.1 and the methods of Foden
et al., 2013). We based overall results on the mid-range A1B
emissions scenario from 1975 to 2050, and compared these
to assessments using alternative emissions pathways (i.e., A2
and B1) and longer timeframes (i.e., 1975-2090) in order to

estimate uncertainty in results.

Species scores

To be assessed as of highest vulnerability overall, a species
required ‘high’ scores in each of the three trait sets (sensitivity,
low adaptive capacity and exposure). To qualify as sensitive,
of low adaptive capacity or exposed, it scored ‘high’ under
any trait in any associated trait (e.g., a species with a ‘high’
score under habitat specialization was then considered to
have a ‘high’ sensitivity score). Scores were calculated under
assumptions that the ‘unknown’ species for which insufficient
data were available were either all of highest vulnerability or of
lowest vulnerability. We carried out sensitivity analysis of our
results by varying each trait scoring threshold and assessing the
impact on the species and geographical patterns that emerged.

5. Summary of results

The method produced assessments of ‘highest and ‘lower’
vulnerability for each species under a range of emissions and
data availability scenarios. As a baseline or reference scenario,
we used emissions scenario A1B for 2050 and assumed the
‘unknown’ trait species were of lower vulnerability; this was used
to meet CCVA Objective 1, namely to assess which species are
at greatest risk from climate change. Concentrations of species
falling into the highest vulnerability category were plotted
globally using GIS (Objective 2). We used species’ [IUCN Red
List statuses to compare species’ climate change vulnerability
with their degree of threat from non-climate change related
factors (Objective 3). Examining results under other emissions
scenarios, time frames and assuming ‘unknown’ species were of
highest vulnerability provided insight into the uncertainty of
the results.
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Table CS6.1. This shows generic trait sets associated with sensitivity and poor adaptive capacity (left column), the specific traits of
warm-water reef-building corals used to assess these (middle column), and the data and thresholds according to which species were
classified as of ‘highest vulnerability’ (right column). Measures of exposure and their data thresholds are also shown (bottom rows).
(Adapted from Foden et al., (2013); Supplementary Table S3. More details of datasets and rationales for thresholds are discussed in the

Supplementary Materials.)

Trait Set Trait

‘Highest Vulnerability’ Threshold

SENSITIVITY

a) Specialized habitat and/or microhabitat | Habitat specialist

Occurs in <=13 habitats

requirements

Dependence on a particular microhabitat

Depth range <= 14m

b) Narrow environmental tolerances
or thresholds that are likely to be

Narrow temperature tolerance — larvae

Broadcast spawning and/or brooding are the only known
method(s) of reproduction

exceeded due to climate change at any

stage in the life cycle adults

Evidence of exceedance of tolerance —

Evidence of past high temperature mortality of > 30% of
local population on a reef or reef tract

Lower buffering from depth

Maximum depth < 20m

Disruption of symbioses with
Zooxanthellae algae

c¢) Dependence on interspecific
interactions which are likely to be
disrupted by climate change

Has an obligate Zooxanthellae interaction and:
(not known to have bleaching resilient clades); or
(has resilient clades but not known to ‘shuffle’ between clades)

d) Rarity Rarity

Rare (geographically restricted or sparsely distributed)

ADAPTIVE CAPACITY

e) Poor dispersibility

Low intrinsic dispersal capacity

Maximum time to settlement of larvae < 14 days

Extrinsic barriers to dispersal

Dispersal likely to be retarded by currents and/or
temperature

f) Poor evolvability Slow turnover of generations

Typical colony longevity > 50 years

Low growth rate

Typical maximum growth rate <30 mm year

states

EXPOSURE

Temperature change Exposure to temperatures known to Highest 25%: Mean probability of severe bleaching across
cause bleaching species’ range > 0.85 per year

Elevated CO, Exposure to low aragonite saturation Highest 25%: Proportion of species’ range with aragonite

saturation Q, . <3 by 2050 = 95.29%

We identified coral species that we believe to be most vulnerable
to climate change. We found that highest concentrations
of these species occur in the “Coral Triangle”, an area
surrounding Sumatra and Java. Considering the high species
richness there, however, the proportion of vulnerable species
is not higher than in many other areas. Species distributed
in the Caribbean are slightly more likely to be vulnerable to
climate change. We also identified the species that are both
of highest climate change vulnerability and already listed as
threatened on the [UCN Red List. The increasing incidence of
coral bleaching in response to local warming events suggests
that corals are amongst the most climate change vulnerable of
all species groups. We therefore strongly emphasize that since
our method produces results that are relative measures, species
not falling into the ‘highest vulnerability’ category may well
also be considerably vulnerable.

6. Conservation outcomes

The study identified a number of species that were flagged as of
highest vulnerability to climate change, as well as the families
that high number and proportions of these. These are useful at
species level to help experts to identify species where updates
of Red List assessments and species management plans should
be prioritized, as well as those where more in-depth assessment
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(e.g. by including correlative model results or by mechanistic
models) should be considered. At broader spatial and taxonomic
scales, the results may be useful for identifying the types of
climate change mechanisms that are prevalent for particular
areas of species groups, and hence for developing management
strategies. At large geographic scales, results are valuable for
conservation planning. Regions with high concentrations of
species of greatest concern deserve particular conservation
attention, while those with many species that are climate change
vulnerable but are not currently threatened are also important,

as they potentially represent new priorities for conservation.

The IUCN trait-based method has now been applied to a many
different taxonomic groups and geographic regions (Carr ez
al., 2013, 2014; Meng et al., 2016), and has helped to identify
priority species, groups and areas for conservation, including
for World Heritage Sites. Simultaneous CCVA and Red
Listing, particularly in East and West Africa has demonstrated
the method’s value for helping assessors to thoroughly and
systematically consider climate change as a possible threat and
to incorporate this into assessments of overall extinction risk.
The method has also been used to explore combining trait and
correlative approaches (e.g., Garcia ez al., 2014a, 2014b; Willis
et al., 2015).
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7. Room for improvement

Several of the traits and trait thresholds used in our assessment
were based on a priori assumptions rather than empirical
evidence of how each species is being impacted. With the
advancement of related research, empirical evidence for
thresholds may emerge and our assessments are likely to need
to be updated. Other authors have explored more sophisticated
approaches for combining trait scores into overall assessments
of climate change vulnerability. Exploring this using emerging
information on species’ observed responses to climate change
is likely to advance our approach. Finally, IUCN plans to
develop a module in its Species Information System (SIS) to
both deliver and gather information on species climate change
related traits for CCVA and Red List assessments.
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'The Elegant Frog (Cophixalus concinnus) is currently listed as Critically Endangered on the IUCN Red List due to its tiny range in Australia.
Rising temperatures are expected to force the species to higher altitudes, thereby further reduce its range. Even if the frogs do manage to
move to higher elevations, as the peaks in the region are not especially high, they will soon have nowhere to go. © Stephen Williams
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Case Study 7. Assessing climate change
vulnerability of the West Africa protected
area network for birds, mammals and
amphibians

By: David J. Baker and Stephen G. Willis
Based on: Baker et al., 2015

1. Overall objectives

Climate change is already beginning to alter the distribution
of species across the globe. Protected Area (PA) networks
are a key element in the effort to protect biodiversity from
rapid environmental change, yet the static nature of PAs has
the potential to reduce the effectiveness of these networks
as species’ ranges begin to shift. Assessing the potential for
climate change to impact biodiversity across these networks is
now vital in order to take the steps necessary to maintain the
PA network’s ability to protect biodiversity.

The objective of our study was to carry out the first region-
wide assessment of the potential impacts of climate change
on biodiversity across the West African Protected Area (PA)
network. This was achievable for the first time due to the
availability of carefully collated data on the distributions of
birds, mammals and amphibians across the region, data on the
location of protected areas and production of custom regional
climate models that are able to capture the important climate
characteristics of the region.

Summary of the CCVA objectives

1. Assess the potential change in species
composition (turnover) for three vertebrate
groups (birds, mammals and amphibians) in
protected areas across the West Africa region
between a baseline period (1971-2000) and
three future time periods

2. Assess the potential change in species-
specific climate suitability for three vertebrate
groups (birds, mammals and amphibians) in
protected areas across the West Africa region
between a baseline period (1971-2000) and
three future time periods

Birds, mammals and amphibians

West Africa (protected area network)

Baseline (1971-2000) to 2100, with focal

periods of 2011-2040, 2041-2070 and

2071-2100

Objectives

Taxonomic focus
Geographic Focus
Time frame

2. Context

We carried out this analysis as part of the PARCC (Protected
Areas Resilient to Climate Change) West Africa project, which
was funded by the Global Environment Facility (GEF). The
aim of the project was to assess the West African PA network’s
vulnerabilities to climate change, with a particular focus on
five countries (Mali, Chad, Gambia, Togo and Sierra Leone), in
order to identify potential risks and develop plans for adaptive
management to minimize those risks. Species distribution
model-based assessment was developed at Durham University,
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combining data on species distributions (IUCN; BirdLife
International), climate simulations (Met Office Hadley Centre)
and PA location (UNEP-WCMC).

3. Rationale for approach and methods

Our approach for assessing climate change vulnerability was
based on developing species distribution models that aim to
describe the statistical relationship between a species’ current
distribution and climate. This approach has the advantage
of an extensive methodological literature, having clear
methodological and biological assumptions and relatively low
data requirements (i.e., relative to mechanistic models). The
latter was important because species-specific demographic data
for the West Africa region are limited.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets Yes Yes No Yes
objectives?
Resources |Resources |Resources | Notenough |Yes
available? | were were information
suitable for | suitable for a | available for
acoarse coarse scale | almost all
scale regional species
regional analysis
analysis
Selected? | Yes Yes No Information
0on species-
specific
dispersal
was
incorporated
into
projected
range shifts

4. Application of methods

We modelled the distribution of 146 amphibian, 768 bird and
382 mammal species, using a species distribution modelling
approach that aimed to capture the likely uncertainty in the
models (i.e., due to uncertainty in modelling method and
climate simulations). These taxonomic groups were chosen for
inclusion because their distribution data across the region
were largely complete at a coarse resolution and this enabled
us to assess community-wide impacts across whole groups of
species. Species distribution data were compiled and checked
by IUCN and BirdLife International (BirdLife & NatureServe,
2013; IUCN, 2014) and PA locality data were compiled and
validated by UNEP-WCMC (IUCN & UNEP-WCMC,
2013).

The climates of West Africa, and similarly many other areas
of the globe, are not easily simulated in climate models and
not all climate simulations are equally plausible for a given
region (McSweeney et al., 2012, 2014) General circulation
model (GCM) simulations of the global climate system used
in this study were selected based on their ability to describe

historic meteorological observations across the region and
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the range of responses to climate forcing. These coarse
resolution simulations were then downscaled to a 50 km
spatial resolution using dynamical downscaling (e.g., Jones ez
al., 2004). Dynamical downscaling uses a physical model to
simulate local and regional scale interactions across a small
focal region at a higher resolution than the GCM. This
approach can incorporate processes that occur at finer spatial
resolutions than can be considered by the GCM, such as a
more detailed depiction of coastlines, which leads to better
simulation of land-sea processes, and a more detailed depiction
of surface orography, resulting in more realistic simulation of
local temperature and rainfall patterns.

The species distribution modelling approach used closely
followed the approach of (Bagchi ez 4/., 2013), in which an
ensemble of models was built that aimed to capture uncertainty
across a number of different quantifiable sources (e.g.,
modelling algorithm, climate projections, and uncertainty
due to spatial dependency in the data). The modelling
approaches used were: generalized linear models (GLM),
generalized additive models (GAM), generalized boosted
models (GBM) and random forests (RF). Species distribution
models were internally validated by using a leave-one-out
cross-validation procedure and assessing the model’s ability to
correctly predict species presences and absences using the Area

Under the Curve (AUC).

We used these modelled relationships to project the likely
distribution in future time periods using simulations of climate
change under the assumption that these species-climate
relationships will remain constant through time. We used data
on species-specific dispersal capabilities to set reasonable limits
to the distance over which a species could move in a given
time period (following the approach of (Barbet-Massin ez a/.,
2012). The probability of a species occurring in a 50 x 50 km
cell (native resolution of the climate data) was then mapped
to each PA by assuming that the PA’s climate was not too
dissimilar to the climate at the coarser resolution used in the
models. The species turnover, which is a metric of community
change over time and a useful indicator of impact, was
then calculated between the baseline and three future time
periods (2040° = 2011-2040; 2070’ = 2041-2070; 2100° =
2071-2100). The uncertainty in projected impacts at both the
PA and the species level was assessed across the ensemble of
projections.

5. Summary of results

Substantial species turnover across the network was projected
for all three taxonomic groups by 2100 (amphibians = 42.5%
(median); birds = 35.2%; mammals = 37.9%), which suggests
large change in community composition across the region’s
PAs. Uncertainty in our projected impacts is high, particularly
for amphibians and mammals, but consistent patterns of
impacts across taxa emerge above the uncertainty by early- to
mid-century, suggesting high impacts across the Lower Guinea
forest biome (centred on the Ivory Coast).
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Based on the change in climate suitability, the majority of
species in each taxonomic group are projected to have decreasing
suitability across the PA network by at least 2070 [amphibians
= 63% of spp. (92 spp.); birds = 55% (419); mammals = 63%
(239)]. This can be seen in Figure CS7.1.

Amphibian species of conservation concern are predicted to
be most impacted by climate change with >75% of amphibian
species projected as ‘extremely likely’ (i.e., agreement between
most models) to experience a decline in climate suitability
across the PA network in all time periods.

6. Conservation outcomes

The results of this analysis have been published in a peer-
reviewed journal (Baker ez 4/., 2015) and as a report for the
PARCC project. Some of the results will appear on the online
Protected Planet database and will thereby alert people to
PA-specific vulnerabilities. These results are likely to be used
in the future to guide focal research in the region. However,
at present it is too early to comment on the impact of these
vulnerability assessments.

Decreasing Increasing

Mammals
Birds

2100

Amphibians

Mammals

Birds
Ampbhibians

2070

Mammals
Birds
Amphibians

2040

700 500 300 100 100 300 500 700
Number of species projected to experience
increasing/decreasing climate suitability

Figure CS7.1. Number of species within each taxonomic
group, and in each time period, projected to experience
increasing or decreasing climate suitability across

the West African PA network. Light shading shows the
number of species with increasing or decreasing suitability
across the network based on the median estimate of
suitability in each time period, and dark shading indicates
species where 95% of the projected estimates of change in
climate suitability for a species showed directional consensus
(increasing or decreasing).
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7. Room for improvement

The major difficulties in conducting a large-scale climate
change vulnerability assessment result from data limitations
and the mismatch between the spatial resolution of the data
and the scale at which individual organisms respond to the
environment. Coarse resolution assessments of climate change
vulnerabilities should now be used to inform field-based
studies on the most vulnerable species and the locations likely
to experience the greatest environmental change. This must
include basic population monitoring across divergent taxonomic
groups (plants, invertebrates, mammals, birds) and detailed
demographic monitoring of focal species, specifically collecting
information on abundance, productivity and survival. This
information will be vital for understanding the mechanisms
linking demographic changes to environmental changes, and
will help inform conservation decisions in the future.

An important component of this project was the close
collaboration with the climate scientists providing the regional
climate simulation data. Our approach for selection of the
GCMs and downscaling these data to finer-scale projections
provides some degree of confidence that this study is based on
climate simulations that are regionally plausible (Buontempo
et al., 2015). However, the considerable technical overheads
involved in producing these climate simulations are likely to
be prohibitive in many cases, and a consequence is that our
impact assessment explores only a single ‘middle-of-the-road’
emissions pathway, which might be overly conservative. Our
study does, however, incorporate uncertainty in historic
climate data (although here simulated), which has been shown
to be important for ecological impact assessments (Baker ez
al., 2016). Overall, there is much scope to improve the use of
climate data in ecological impact assessments, but we hope that
the approach taken here provides some ideas for good practice.
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Case Study 8. Correlative-mechanistic
CCVA of the Iberian Lynx

By: Resit Akcakaya
Based on: Fordham et al., 2013

1. Overall objectives

This case study focuses on assessing climate change vulnerability
of the Iberian Lynx (Lynx pardinus), as well as the effectiveness
of conservation plans for its recovery. The Iberian Lynx is at
risk of extinction due to the combined and interacting effects
of climate change and habitat loss affecting both the lynx and
its primary prey species, the European Rabbit (Oryctolagus
cuniculus), as well as the effects of two diseases on the prey
species (Fordham ez 4l., 2013).

Summary of the CCVA objectives
Objectives 1. How vulnerable is the Iberian Lynx to extinction
under different climate change scenarios?
2. How effective are the current conservation
measures planned for the species?
3. How effective would a new conservation plan be
that takes climate change into account?
Taxonomic Iberian Lynx and its prey species, the European
focus Rabbit
Geographic The Iberian Peninsula (total current and future
focus expected range of the lynx)
Time frame From present (2013) to the end of the century (2090)

Going beyond this particular species, a broader objective of the
study was to provide a framework for a next-generation model
which simultaneously incorporates demography, dispersal, and
biotic interactions (predation and disease) into estimation of
extinction risk and evaluation of conservation plans under

projected climate change (Kissling 2013).

2. Context

The Iberian Lynx (Lynx pardinus) is one of world’s most
threatened mammal species, and is considered to be on the
brink of extinction. The population size and the range of the
Iberian lynx have declined sharply since the 1950s. More than
80% of the diet of the Iberian Lynx consists of European
Rabbit (Oryctolagus cuniculus), whose abundance has sharply
declined because of the myxomatosis virus in the 1950s, rabbit
haemorrhagic disease in recent decades, as well as over-hunting
and the loss and fragmentation of its habitat. In addition,
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human-caused mortality of Iberian Lynx due to poisoning,
poaching and road kills have contributed to the reduction of
the lynx population.

To prevent the extinction of Iberian Lynx, captive breeding
programmes have been initiated to facilitate the species’
reintroduction into suitable areas within their historical
range, in parallel with management aimed at increasing
the carrying capacity of reintroduction sites. Climate
change could further threaten the survival of the species,
but recovery plans for the species have not incorporated the
projected changes in climate.

3. Rationale for approach and methods

The approach used in this case study is based on the idea that the
conservation status and recovery of species are determined both
by their habitat and their demographic traits or characteristics.
As a result, approaches that rely only on projected habitat
cannot adequately assess species’ vulnerability, nor evaluate
conservation options for their recovery. Especially for
assessments of species where there is a strong biotic interaction
with another species (such as a predator dependent on a single
prey species), biotic interactions must be explicitly incorporated.

The Iberian Lynx is affected by multiple threats, and is also
subject to predator-prey dynamics where the lynx almost
exclusively relies on the rabbit, which in turn is impacted
by diseases. Assessing the species therefore required a novel
approach that combined demography, spatial dynamics, and
biotic interactions. Fordham ez a/. (2013) used ecological niche
models coupled to metapopulation simulations with source-
sink dynamics, to directly investigate the combined effects of
climate change, prey availability and management intervention
on the persistence of the Iberian Lynx. This approach is novel in
that it explicitly models dynamic bi-trophic species interactions
in a climate change setting.

Suitability of methods
Correlative | Trait-based | Mechanistic | Combined
Meets In part No In part Yes
objectives?
Resources Yes Yes Yes Yes
available?
Selected? No No No Yes

4. Application of methods

Fordham ez al. (2013) collated information on the following

aspects of the lynx-rabbit system:

* Geo-referenced occurrence records of the Iberian Lynx and
European rabbit.

* Data on annual rainfall and mean temperature of the hottest
and coolest months (July and January, respectively). Based
on previous studies, these climatic variables were identified
as being likely to have the largest potential climate influence
on Iberian Lynx and European Rabbit abundance.

* Annual time series of these climate change variables,
generated according to two emissions scenarios.

* Land cover data (map of land cover types).

* Protected Area map.

* Time series data for European rabbit, extracted from the
Global Population Dynamics Database.

* Information on the demography of the Iberian Lynx
(including age-specific survival and fecundity, and density
dependence), and European rabbit (including disease
dynamics), based on previous studies.

Using these data, Fordham ez a/. (2013) developed ecological
niche models and demographic (metapopulation) models for
both species. For each species, the ecological niche model
determined the carrying capacities and spatial arrangement of
habitat patches, forming the spatial basis of the demographic
model, which was dynamic in order to simulate temporal
changes in the species” habitat. This linkage between the niche
and demographic models followed methods that have been
applied in previous cases (Akcakaya et al., 2004, 2005; Keith
et al., 2008; Fordham ez 4/, 2012). What was novel about
this study was the linkage of the models for the two species
to simulate biotic interactions. Briefly, the results of the rabbit
model were used as input for the lynx model, such that rabbit
abundance at each time step of the simulation was one of the
factors (in addition to climate and land cover) that contributed
to the lynx population dynamics.

In addition to running the models to estimate the extinction
risk of the lynx without any conservation measures, the lynx
model was modified to test the effectiveness of translocation
of lynxes to suitable areas as a conservation measure. Two
conservation measures were tested: the current conservation

plan and a plan optimized under climate change.

5. Summary of results

The results showed that anticipated climate change will rapidly
and severely decrease lynx abundance and is likely to lead to the
species’ extinction in the wild within 50 years, even with strong
global efforts to mitigate greenhouse gas emissions. However,
the results also showed that a carefully planned reintroduction
programme, accounting for the effects of climate change,
prey abundance and habitat connectivity, could prevent
the extinction of the lynx and result in a robust recovery. In
contrast, the results showed that the current conservation plan,
which does not incorporate the effects of climate change, is not
likely to lead to the recovery of the Iberian lynx, and may not

even prevent its extinction.

6. Conservation outcomes

As more species are impacted by climate change and habitat
loss, conservation translocations are likely to be more
commonly used. An important step in planning conservation
translocation is to quantify the effectiveness of alternative
translocation plans, which may differ in terms of the location
of source and target populations, the number, sex, and age
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of individuals to be translocated, and the frequency and
timing of translocations. This can be done by simulating the
dynamics of the focal species with models in which potential
source and target populations are modelled as subpopulations
of a metapopulation (e.g., Kuemmerle ¢z /., 2011). This study
demonstrated the use of models in quantifying the effects of
translocations on species and, for the first time, the importance
of incorporating prey availability, climate change and their
interaction in models to design conservation plans to prevent

species extinctions.
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Case Study 9. Matching species traits
to correlative model projections in a
combined CCVA approach

By: Raquel A. Garcia
Based on: Garcia et al., 2012

1. Overall objectives

Assessing the vulnerability of species to climate change requires
an understanding of species’ exposure to extrinsic threats, and
of their intrinsic sensitivity or adaptive capacity to respond to
such threats. Whereas trait-based approaches can combine the
components of exposure and sensitivity/ adaptive capacity to
derive vulnerability scores, the measures of exposure used are
often simplistic and spatially confined to the present range of
the species. By relying on correlative models to assess exposure,
the losses, gains and fragmentation of areas of suitable climate
can be mapped to gain a better understanding of the different
threats (and opportunities) that species may face. Each threat
can then be compared to intrinsic traits that might mediate the
response of species to that particular threat. Specific traits are
likely to mediate species’ responses to different threats (Isaac
and Cowlishaw 2004, Murray ¢t al., 2011), but this specificity
has hitherto not been sufficiently addressed in CCVAs. Here
we present a combined CCVA approach that borrows strength
from both correlative models and traits and yields spatially
explicit outputs.

The productivity of Central Africa’s Lake Tanganyika is predicted to decline. The extreme depth of the lake causes convection currents that

bring nutrient-rich deeper waters to the surface, making the lake highly productive. However, climate change driven warming of surface
water is predicted to decrease the extent of mixing. Fishermen in the Tanzanian village of Kala report reductions in their fish catch over the
last decade; productivity declines are also likely to affect lake ecosystems and species. © Wendy B. Foden
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We use published results of correlative models for 195 species
of sub-Saharan African amphibians (Garcia ez al., 2012),
and quantify the degree of loss, gain and fragmentation
of climatically suitable areas for each. Based on previously
published empirical and theoretical work, we then identify
potential ‘response-mediating traits’ for each projected
change, and gather those for which there are data available
for our species. By spatially overlaying areas of projected
extrinsic changes and areas of high intrinsic vulnerability, we
map geographical areas where species are both exposed and
vulnerable to climate change.

Summary of the CCVA objectives

Objectives 1. To describe projected extrinsic threats and
opportunities from climate change given
by correlative models: losses, gains and
fragmentation of suitable climate space for
Species.

. To select traits that might mediate species’
responses to each of those threats and
opportunities.

. To examine the spatial overlap between the
two, so as to identify areas where species
might be both exposed to extrinsic threats
and intrinsically vulnerable to them.

Taxonomic focus Amphibians

Geographic focus | Sub-Saharan Africa

Time frame From 1961-90 to 2050
2. Context

We focused on sub-Saharan African amphibians for three
reasons. First, these species are expected to be highly
vulnerable to climate change. Worldwide, amphibian
populations are declining due to a multitude of threats that
include habitat destruction, climate change and the fungal
disease chytridiomycosis (Blaustein and Kiesecker 2002,
Hof et al., 2011, Li ez al., 2013). Climate change, often in
tandem with land-use change, is expected to affect large
areas of tropical Africa in the future (Hof er al, 2011,
Foden ez al., 2013). Second, we take advantage of available
correlative model results (Garcia ez a/., 2012) and trait data
(Foden et al., 2013). Third, a case study focused on sub-
Saharan African amphibians illustrates the application of
our framework when traits in the strict sense (Violle et al.,
2007) are largely unavailable, a situation that is common
for many taxonomic groups (Gonzalez-Sudrez et al., 2012).
The work brought together researchers involved in previous
correlative model work (Raquel A. Garcia, Miguel B. Aragjo,
Mar Cabeza, Carsten Rahbek and Neil D. Burgess) and trait-
based work (Wendy B. Foden and Alexander Gutsche).

3. Rationale for approach and methods

Our aim was to identify geographical areas where species are
potentially exposed to threats from climate change through
sensitivity or a lack of the adaptive capacity to respond to
them. We also wanted to understand where climate change
presents opportunities for species to expand their ranges.
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While mechanistic models would be the most suitable CCVA
method to address this question, we lacked the physiological
data required. Trait-based methods would only partly address
the question, without determining the opportunities for new
climatically suitable areas and the threat of fragmentation of
climatically suitable areas. Because we had results available
from correlative models as well as trait data, we selected a

combination of correlative and trait-based methods.

Suitability of methods
Correlative | Trait- | Mechanistic | Combined
based
Meets objectives? No Yes Yes Yes
Resources available? | Yes Yes No Yes
Selected? No No No Yes

For consideration of projected losses, increased fragmentation
and gains of climate space, we selected potential response-
mediating traits and examined the spatial overlap with
vulnerability due to traits that were deemed relevant in each
case. We examined the overlap for all species, and individually
for groups of species with different combinations of threats and
opportunities.

4. Application of methods

We applied the framework to 195 sub-Saharan African
amphibians with both available bioclimatic envelope model
projections for the mid-21st century (Garcia ez al., 2012) and
trait data (Foden ez al., 2013). Excluded were 500 narrow-
ranging species that mainly occur in montane areas. Correlative
model results and trait data (provided in spreadsheets) were
processed and mapped in R (R Development Core Team 2010).

First, to characterize climate change-induced threats and
opportunities for each species, we compared the projections
of baseline and future climatic suitability to compute losses,
fragmentation and gains of climatic suitability, and calculated
the distances to new areas gained. We obtained maps of
changes for each species, and compiled composite maps for all
species by summing individual maps.

Second, based on theoretical and empirical studies, we selected
potential ‘response-mediating traits’ for each threat. Among
these, we selected the traits (or proxies for traits) for which we
had available data. For each trait, we assigned species “high”,
lower” or “unknown” sensitivity/ adaptive capacity scores,
based on pre-selected thresholds (Foden ez 4/, 2013). Third,
we mapped each extrinsic threat and overlaid it with the maps
for the classification of relevant traits for that threat. For
each combination of extrinsic threat and response-mediating
trait (e.g., projected gains in climatic suitability and dispersal
ability), we obtained gridded outputs for the number of species
exposed to a threat and considered sensitive or having low
adaptive capacity to respond to that threat versus the number
of species exposed to a threat but considered less sensitive or
having high adaptive capacity to respond to that threat.
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5. Summary of results

The gridded outputs were mapped to determine areas where
exposure and high sensitivity and/or low adaptive capacity
overlapped for many species. In the Congo Basin and arid
Southern Africa, projected losses for wide-ranging amphibians
were compounded by sensitivity to climatic variation, and
expected gains were precluded by poor dispersal ability. The
spatial overlap between exposure and vulnerability was more
pronounced for species projected to have their climate space
contracting iz situ or shifting to distant geographical areas.
Our results excluded the potential exposure of range-restricted
species to shrinking areas of suitable climate in the African
tropical mountains.

6. Conservation outcomes

The work was published in the Journal of Biogeography (Garcia
et al., 2014). We illustrate the application of a framework
combining spatial projections of climate change exposure with
traits that are likely to mediate species’ responses. Although the
proposed framework carries several assumptions that require
further scrutiny, its application adds a degree of realism to
familiar CCVAs based on correlative models that consider
all species to be equally affected by climate change-induced
threats and opportunities.

7. Room for improvement

The trait data used here are mainly ecological characteristics
of species or their ranges rather than traits in a strict sense
(Violle et al., 2007), and thus do not strictly summarize
traits, but rather the interaction between traits and the
environment. High quality trait data are often not easily
accessible, but, when possible, data should be used that rely
on direct measurement of traits. For example, measurement
of tolerance to climatic variation, here inferred with statistical
approaches relating current ranges of species to climate
variables, should instead rely on an experimental approach
applied to estimating the safety thermal limits (Arribas ez
al., 2012). Likewise, estimates of species’ dispersal abilities
derived from empirical data on organism movement (e.g.,
Gamble ez al., 2007), phylogenetic distances (Arribas ez al.,
2012), or morphological or life-history traits (Whitmee ez
al., 2012, Baselga et al., 2012) would more reliably predict
the ability of species to track suitable climates than estimates
based on known geographical ranges of species as applied
here. By the same token, the thresholds for classification of
species’ sensitivity or adaptive capacity based on selected
traits should, when possible, be empirically based.

Due to data limitations (with respect to traits, but mainly
to available correlative models), the analysis excludes most
threatened amphibians, particularly those from the Cameroon
highlands and Eastern Afromontane centres of diversity.
Phylogenetic inference methods exist that could circumvent
the bias in the trait data (Nakagawa and Freckleton 2008,
Buckley and Kingsolver 2012), but, for the bulk of the species
excluded here, new approaches that overcome limitations of
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correlative models are needed to assess the vulnerability of

range-restricted species to climate change.
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Case Study 10. A combined approach
for CCVA of the Mountain Ringlet (Erebia
epiphron) and Stag Beetle (Lucanus
cervus) in Great Britain

By: Chris J. Wheatley and Chris D. Thomas
Based on: Thomas et al., 2011

1. Overall objectives

Conventional risk frameworks may not be appropriate tools for
dealing with species that decline in some regions but expand
into others, a situation that is likely to be common under
climate change. The need to consider regions of expansion
and contraction separately arises because the causes of decline
and constraints on expansion (and hence any conservation
actions) may differ. In addition, conventional risk frameworks
rarely operate over the long time scales during which species
are expected to respond to climate change. We developed a
framework to evaluate species’ responses to climate change,
so that both observed and expected responses can be used to
inform conservation prioritization. Like IUCN Red-Listing, it
can be thought of as an iterative process, whereby assessments
can be re-run as improved data on observed trends become

available and better models of future prospects are developed.

The framework is applied to individual species and aims to
assess net declines within regions that are currently occupied,
and expansions into new areas, associated with climate
change. It can be applied at any spatial extent (regional,
continental or global distributions of species) and resolution
(from population-level information to gridded distribution),
and complements existing conservation assessment protocols
such as red-listing, with overlap in terms of data inputs and
requirements. Using observed and projected population and/or
range data, it is possible to carry out systematic conservation
status assessments that inform the development of monitoring,
adaptation measures and conservation management planning
for species in response to climate change.

Left: A mating pair of Marbled White butterflies (Melanargia
galathea) at the site of their assisted colonization in northern
England. This area is outside the species’ historical range but has
become warm enough for them. © Steve Willis.
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Summary of the CCVA objectives

1. Identify both climate-related declines (within
the existing distribution) and expansions (into
new regions) for individual species.

2. [dentify which species are most vulnerable to
climate change.

3. Identify which species are most likely to
benefit from climate change.

4. Inform the development of monitoring,
adaptation measures and conservation
management planning for species that are
responding to climate change.

Mountain Ringlet (Erebia epiphron; Lepidoptera)

Stag Beetle (Lucanus cervus; Coleoptera)

Great Britain

From past distribution (1980) to late 21st century

(2080)

Objectives

Taxonomic focus

Geographic focus
Time frame

2. Context

The vulnerability assessment was developed through the UK
Population Biology Network (UKPopNet, funded by the UK
Natural Environment Research Council and English Nature),
an interdisciplinary project with contributions from scientists,
policy makers and conservation practitioners. Inspired by the
TUCN red-listing process, the vulnerability assessment project
aimed to identify how the increasing amount of information
available on the observed responses of species to climate change
over recent decades could be combined with projected future
responses of the same species to generate realistic conservation

assessments.

Because many species in Great Britain are at their northern
(polewards) range margin and therefore expected to respond
positively to climate change by expanding their distributions,
the vulnerability assessment needed to incorporate the
possibility for climate-based expansion, rather than just the
risk of declines commonly considered by climate vulnerability
assessments. This would help identify conservation strategies to
facilitate expansions as well as those aiming to reduce declines.
Facilitating expansions is likely to be important to the long-
term maintenance of biodiversity, given that the same species
are likely to be declining at their southern (polewards) range
boundaries, outside of Great Britain.

The framework was developed to work at any spatial scale,
from local to global, but, for the purposes of validation of
the methodology, it was tested at the national scale in Great
Britain.

3. Rationale for approach and methods

The framework needed to identify species that face a perilous
future in a changing climate and those species where a tactical
use of resources could facilitate their future recovery or spread.
It also needed to consider the balance between areas of decline
and regions of potential expansion of the range of an individual
species — facilitating prioritization of actions that reduce
declines and facilitate expansions. A species-centric approach
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was also required as it is species, and not entire communities,
that shift their distributions in response to climate change
(although common conservation measures may meet the needs
of multiple individual species). The framework aims to provide
a risk assessment for each species, with the development of any
conservation actions flowing from the assessment, rather than
being incorporated within the framework itself.

The approach of the Thomas er al (2011) framework
(a) incorporates information on both observed and projected
trends (flexibly using population and/or distribution data) to
maximize the information that is included; (b) treats habitat
and trait data (e.g., dispersal) as constraints to evaluate the
likelihood that climate-only projections will be realized or
exacerbated; (c) considers uncertainty in the assessment; and
(d) provides assessments over time scales that are relevant to
climate change and conservation, given that we are already
committed to ~100 years of climate change (even with optimistic
climate mitigation measures). Trait data are considered to be
modifiers of the expected response rather than primary drivers
of vulnerability, given that relationships between traits and
climate change responses are unlikely to be strong across the
full range of taxa (e.g., plants, invertebrates, vertebrates) that

will need to be assessed.

Data for a correlative approach to the assessment were available
for all species of interest, so resource requirements were not
a limiting factor. Previous studies of the species within the
assessment area provided the necessary trait data. These
population and trait approaches could be combined without
the potentially high resource cost in terms of time and financial
need that may have been the case for less well studied taxa.
Flexibility of the approach (e.g., just using modelled distribution
data) makes assessments possible even for regions and taxa
where information is limited, but inevitably such assessments

will be assigned lower levels of confidence.

Suitability of methods
Correlative | Trait-based | Mechanistic Combined

Meets In part In part Yes Yes
objectives?
Resources |Yes Yes Data availability | Yes
available? insufficient for

some species
Selected? |No No No Yes

Data inputs required to run the assessment are little different
from those required for other conservation assessments (e.g.
red-listing, species action plans), which allowed the framework
to be run in a reasonable time frame while taking advantage of
existing data.

The framework gives equal focus to benefits of climate change,
assigning levels of benefit in the same way as is done for risk.
Many other climate vulnerability assessments simply combine
all species with any opportunities under climate change into a
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single low risk category, but the degree to which species may
benefit is potentially as interesting as how likely they are to
decline. The framework also attempts to incorporate the level
of certainty in the input data and conclusions of the assessment,
allowing for anyone interpreting the results of the assessment to
not only consider the potential risk or benefit faced by a species,
but also have an idea of the level of support for the conclusions
of any assessment.

4. Application of methods

The Mountain Ringlet Butterfly (Erebia epiphron) and Stag
Beetle (Lucanus cervus) were selected as case study species for
the assessment due to their opposite range margins in the
assessment area (northern vs. southern, respectively) and to test
how applicable the assessment was across different taxonomic
groups.

The framework method combines a decline score (based
on observed and projected declines) with an increase score
(observed increase and projected increases) to produce on
overall assessment of potential risk for a species. Each stage of
the assessment is also scored based on the level of confidence
in the input data or model; and this score is used to weight
the assessment towards information that is most certain. The
overall score is converted to one of six risk categories ranging

from high benefit to high risk.

Future distributions of the target species had already been
modelled and historical distribution/population data within
Great Britain were readily available. Historic distribution and
population changes for the mountain ringlet were obtained
from published sources with data back to 1970 (Asher ez al.,
2001; Fox et al., 2006). The modelled future distribution was
based on projections for 2080 using an intermediate emissions
scenario (BAMBU — A2, Settele, 2008). Observed changes in
distribution and population for the stag beetle were obtained
from the UK’s National Biodiversity Network Gateway for the
period of 1990-1999 to 2000-2009. Future distributions were
obtained from MONARCH outputs from a low emissions
scenario (IPCC SRES report scenario B1) for 2080 (Walmsley
et al., 2007).

Data on exacerbating factors were collected from various
sources, including relevant scientific publications, taxon-
specific field guides and consultation with experts. To run the
assessment for a single species takes approximately one hour,
although the time may be considerably longer if modelled
future distributions are not already available, or if meetings are
required to develop expert opinion (initial assessments of test
species took an average of about one species per day because the
framework was still being developed).

5. Summary of results

Mountain Ringlet (Erebia epiphron) was scored as being at
very high risk for climate-related declines within the existing
range and low opportunity for climate-based expansion. This
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produced a combined score of high risk under climate change
with a good confidence level in the assessment. As a northerly
distributed montane species, the mountain ringlet has little
opportunity to expand outwards from its existing range to
new areas of suitable habitat. The high risk of climate-related
declines within the existing range (observed and modelled),
coupled with the lack of suitable area to expand to, suggest the
main management approach would be to concentrate efforts
within existing localities to mitigate losses as much as possible.
It also suggests that the risk to European populations of this
species require assessment to evaluate whether the species is at
risk of regional (Great Britain) or global (i.e. Europe, as it is a

continental endemic) extinction.

The assessment of the Stag Beetle (Lucanus cervus) resulted
in an assignment to the high potential benefit category,
identifying it as a species likely to undergo a large expansion
in Great Britain by 2080. The confidence in the assessment
was lower than that for mountain ringlet, as a consequence of
the shorter time period for which historical data were available
and the less complete nature of the data available. Despite the
large projected expansion in range for stag beetle, there is also
uncertainty as to whether the species would be able to disperse
across a largely human-dominated landscape, which further
reduces confidence in the assessment. This lower confidence
highlights the importance of continued and improved
monitoring of the species, to ensure that the projected benefits
are actually achieved in the future. If not, conservation actions
(e.g., establishing habitat connections) might be considered
desirable to ensure that the potential benefits are realized.

6. Conservation outcomes

The framework has been used to assess 400 species in England,
including all Natural Environment and Rural Communities
(NERC) Act priority species, which are listed as species of
principal importance for the conservation of biodiversity
in England (Pearce-Higgins ez a/., 2015). The results of the
assessment were then used to inform whether management to
reduce pressures other than climate and increase resilience to
change, or management to increase the rate of range expansion,
might be required.

7. Room for improvement

The assessment process is reliant on expert opinion, both to
identify sources of data that are reliable and robust enough
to calculate historical trends, as well to evaluate if there are
any species-specific exacerbating factors. The results of the
assessment and associated confidence level should also be
reviewed by experts with knowledge of both the species and
climate change before any management decisions are taken
based upon the assessment outcome.
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A strength of the method is that it combines information on
both empirical and modelled responses to climate change, and
gives greater weight to the information that is most certain
(usually the past empirical trends, unless the modelled results
have themselves been tested against independent empirical
trend data). Test species were considered only for single climate
scenarios, and consideration of multiple climate scenarios
will further reduce the uncertainty of future projections — an
issue that applies to any risk assessment framework. Future
uncertainty will always remain, so further adaptations in
assessing the distribution of outcomes may be desirable (e.g.,
considering the likelihood of falling within the highest risk
category).

The framework currently uses linear decline rates relative
to the starting population or distribution, but incremental
expansion rates to calculate increases relative to the beginning
of each decade. There is potential scope for future iterations of
the framework to include alternative methods of calculating
declines or expansions, dependent on data quality and
availability.

The geographic scale of the case study assessment area limits the
effect of climate change to primarily act in a single direction on
the species considered — either to cause it benefit or loss. Over a
wider area of assessment, species may be expected to experience
areas of both response types. Testing how well the assessment
handles this type of situation would be another important
validation step.
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12. Appendix

Appendix Table A. Examples of methods that have been used to apply a correlative
approach to CCVA.

. Binary convex hull envelope?

. Fuzzy Envelope

. Continuous point-to-point similarity
metric®

5. Ecological niche factor analysis*

B~ wnNn -~

(GLM)56

2.Generalized additive models
(GAM)S7

3. Multivariate adaptive regression
splines (MARS)?

4.Boosted Regression Trees (BRT)

5.Zero-inflated models (Poisson;
Negative Binomial)

6.Hurdle Model

7. GRASP®

(ANN)™©
2.Random forests (RF)
3.Maximum Entropy
(MaxEnt)™
4. Genetic algorithms'?
5.Flexible discriminant
analysis

Method type Climate envelope Regression-based Machine learning Bayesian approaches
How it works This method is now considered Uses regression analysis Uses automated algorithms | Uses Bayes’ theorem
out-dated, except for possible use | to characterize species’ to iteratively learn species’ to describe sources
for rare species. relationships with bioclimatic relationships with bioclimatic | of uncertainty in a
It defines the multi-dimensional variables across their ranges. variables across their ranges. | statistical model, wherein
bioclimatic space where the species | Allows for interaction terms and | No assumptions are made parameters are treated
can live. It assumes that the species | gives probabilistic outputs. by the users about their as random variables
is equally viable for any combination relationship; they are defined | with prior distributions.
of bioclimatic variables within this by the algorithms. Bayesian approaches
space, and ignores interacting effects lend themselves well to
of different variables, e.g., total ecologically complex,
precipitation and mean temperature. multi-level data, and can
be applied iteratively
for machine learning
applications.
Methods . Multilevel rectilinear envelope' 1. Generalized linear models 1. Artificial neural networks 1.Hierarchical Species

Distribution modelling
2.Gaussian Random
Fields'

Tools available

For (1): BIOCLIM™, DIVA' and GARP'®
For (2): HABITAT?

For (3): DOMAINY (free)

For (4): BIOMAPPER™ (free)

For (5): ENFA™

For (1,2,3,4) use BIOMOD2
platform in R2°
ECOSPAT?

For (1): SPECIES (not free);
BIOMOD (free)

For (2): BIOMOD

For (3): MAXENT (free)?;
Wallace Initiative?(free)
For (4): GARP10

R-packages, for example
Filzbach and GRaF

(Kadmon et al., 2003)
(Meynecke, 2004)
(Levinsky et al., 2007)

regression); (Varela et al., 2009)
For (2): (Mitikka et al., 2007;
Trivedi et al., 2008)

For (3): (Leathwick et al., 2006)
For (5): (Pacifici et al., 2015)

1. (Lawler et al,, 2009)

2. (Milanovich et al., 2010;
Hof et al, 2012; Warren et
al., 2013)

3. (Warren et al,, 2013)
(Hughes et al,, 2012)
(Reside et al,, 2012)

Data Presence only point data; absence Presence and pseudo-absence Presence and pseudo- Presence and pseudo-
requirements data can help to refine predictions (background) data absence (background) data | absence (background) data
differing from

approaches

Authors using (Brereton et al,, 1995) For (1): (Huntley et al,, 2008) (Berry et al,, 2003; Pearson, | (Gelfand et al., 2006)

this method (Beaumont et al,, 2005)(BIOCLIM); 2008 (Locally weighted 2007) Latimer et al., 2006)

Garcia-Valdés et al,, 2015)
Golding & Purse, 2016)

— o~ — —
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Appendix Table B. Examples of methods that have been used to apply a trait-based
approach to CCVA.

Trait-based CCVA Methods

Method

Qualitative

Semi-Quantitative

How it works

Experts score or rank species according to
generalized categories. These methods are generally
only used when more quantitative assessment is

unfeasible

The suite of traits and their vulnerability thresholds are expert-
selected; quantitative or qualitative trait data are used to score,
rank or categorize species

Tools available

SAVS (System for Assessing Vulnerability
of Species to Climate Change);

Climate Change Vulnerability Index?*

approaches

Data requirements additional to

Distribution data not required

Distribution data may be required

Software required

None

None for North America (ClimateWizard available). Some methods
require GIS

Expertise required

Thorough knowledge of the species and its ecology

Thorough knowledge of the species and its ecology
Biological traits
Species’ distribution ranges

Authors using this method

(McNamara, 2010; Bagne et al., 2011; Advani, 2014)

(Chin et al., 2010; Graham et al., 2011; Young et al., 2012; Foden et
al, 2013)

Appendix Table C. Examples of methods that have been used to apply a mechanistic
approach to CCVA. We note that Lurgi et al. (2015) provide a recent review of the mechanistic
models and associated software available to simulate responses to climate change and
provide a decision-tree on the choice of the model based on the data available, scientific and
conservation needs and model organism.

Method Demographic models Mechanistic niche models
Output is abundance; can be used to calculate extinction risk Provide predictions of species distribution (vs. correlative
models which predict suitable climate space)
Individual as modelled unit Population or species as Physiologically Energy balance
modelled unit defined niches defined niches
Non-spatially Spatially explicit Non-spatially Spatial explicit Tolerances typically Tolerances defined using
explicit explicit defined from experiment or | energy balance equations
observation
Tools used | Vortex? (free) Hexsim?® (free) Life tables (n.a.) RAMAS Metapop? | (none available) Niche Mapper? (upon
(and their RAMAS? (not free) | RAMAS GIS? request)
availability) (both not free)
Example of | (Wells et al.,, 2015) | (Carroll et al., (Stanton, 2014) (Aiello-Lammens | (Monahan, 2009; Sunday et | (Kearney & Porter, 2009)
use (Serrano et al., 2004) etal, 2011) al,, 2012; Overgaard et al.,
2015) (Schumaker et al., (Fordham etal, |2014)
(Naveda-Rodriguez | 2014) 2013)
etal, 2016) (Heinrichs et al., (Bonebrake et al.,
2016) 2014)
(Swab et al.,
2015)
Way in Direct influence Direct influence Direct Influence Direct influence Direct influence of Energy balance equations
which CCis | on demographic on demographic on demographic on demographic | bioclimate on physiology, used to relate bioclimate
included parameters parameters and parameters parameters and | performance or survival; to metabolic processes
indirectly through indirectly through | indirectly through changing | (e.g., body temperature,
changing habitat changing habitat | habitat suitability water exchange). These
suitability suitability are then used to predict

performance and survival
under altered bioclimate.
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Appendix Table D. Examples of methods that have been used to apply a combination
approach to CCVA.

Method TVA-Corr: Corr-TVA 1: Corr-TVA 2: Corr-Mecht: Corr-Mech2: Corr-Mech-TVA:
Trait-based Correlative Correlative approach Correlative As Corr-Mecht, Criteria-based
approach that approach that that considers approach that but including methods
includes correlative | uses dispersal sensitivity and considers inter-species
model outputs distances adaptive capacity metapopulation interactions
dynamics and
habitat suitability
How it works | Use correlative Use dispersal Uses traits to identify Metapopulation As Corr-Mech1, Criteria are used to
models to estimate data to determine | areas of potential under | dynamics and but including classify species into
exposure. The CCVI the likelihood of or over prediction by variables determining | inter-species categories of risk
uses model output species colonizing | correlative models habitat suitability interactions based on the outcomes
where it's available projected future (e.g., sea level rise, of correlative and/or
ranges fires, stochasticity) mechanistic CCVAs,
interact with shifting and can include trait
climate space data and observed
species changes
Tools The Climate Change | None beyond those | None beyond those for RAMAS GIS*® RAMAS GIS*
available Vulnerability Index for correlative correlative modelling BIOMOVE (models for each
(ccvn® modelling species; then
linked)
Data Point localities Dispersal distances | Trait data Demographic data, |As Corr-Mech1,
requirements appropriate variables | but including
differing from describing habitat inter-species
approaches suitability interactions
Authors (Young et al., 2012) (Schloss et al., (Garcia et al., 2014) (Keith et al., 2008) (Harris et al., (Thomas et al., 2011)
using this (Smith et al., 2016) 2012) use dispersal (Anderson et al., 2012)
method equations with trait 2009; RAMAS GIS) | (Fordham et al.,
data (Midgley et al,, 2010) | 2013)
(Warren et al, (BIOMOVE)
2013) use taxon (Fordham et al.,
group averaged 2012)
dispersal rates
(Visconti et al.,
2015) use dispersal
per generation
Footnotes

' (Bushy, 1991)

2
3
4
5
6
7
8
9

10
1
12
13

PR

Walker & Cocks, 1991)
Carpenter et al., 1993)
Hirzel et al., 2002)

Guisan et al., 2002)
McCullagh & Nelder, 1989)
Hastie & Tibshirani, 1990)
Elith & Leathwick, 2007)
Lehmann et al., 2002)
Pearson et al., 2002)
Phillips et al., 2006)
Stockwell & Peters, 1999)
Golding & Purse, 2016)

4 http://agris.fao.org/agris-search/search.

do?recordiD=AU9103158

' http://agris.fao.org/agris-search/search.
do?recordiD=QP2007000038

maxent/

22 http://www.cs.princeton.edu/~schapire/

28 http://http://wallaceinitiative.org/

2 https://connect.natureserve.org/science/

16 http://www.lifemapper.org/desktopgarp/

7 http://www.cifor.cgiar.org/docs/_ref/
research_tools/domain/; and http://diva-

gis.org

'8 http://www2.unil.ch/biomapper/

climate-change/ccvi

2 http://vortex10.org/Vortex10.aspx
% http://www.hexsim.net/

27 https://www.ramas.com/ramas.htm

'S http://wwwz2.unil.ch/biomapper/enfa.html

20 https://cran.r-project.org/web/packages/

biomod2/biomod2.pdf

21 http://www.unil.ch/ecospat/home/

menuinst/tools--data/tools.html
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html#niche

28 http://zoology.wisc.edu/faculty/por/por.

29 http://www.natureserve.org/conservation-

tools/climate-change-vulnerability-index

%0 https://www.ramas.com/ramas.htm


http://agris.fao.org/agris-search/search.do?recordID=AU9103158

TUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change

Appendix references

Advani NK (2014) WWF: Climate Change Vulnerability Assessment for
Species. Washington D.C., 1-5 pp.

Aiello-Lammens ME, Chu-Agor ML, Convertino M, Fischer RA, Linkov
I, Akgakaya RH (2011) The impact of sea-level rise on Snowy Plovers
in Florida: integrating geomorphological, habitat, and metapopulation
models. Global Change Biology, 17, 3644-3654.

Anderson BJ, Ak¢akaya HR, Aratijo MB, Fordham D a, Martinez-Meyer
E, Thuiller W, Brook BW (2009) Dynamics of range margins for
metapopulations under climate change. Proceedings of the Royal Society
B: Biological Sciences, 276, 1415-20.

Bagne KE, Friggens MM, Finch DM, Karen E, Megan M, System DMA
(2011) A System for Assessing Vulnerability of Species (SAVS) to Climate
Change. Rocky Mountain Research Station, 28 pp.

Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species
distributions: use of climatic parameters in BIOCLIM and its impact
on predictions of species’ current and future distributions. Ecological
Modelling, 186, 251-270.

Berry PM, Dawson TP, Harrison PA, Pearson R, Butt N (2003) The sensitivity
and vulnerability of terrestrial habitats and species in Britain and Ireland
to climate change. Journal for Nature Conservation, 23, 15-23.

Bonebrake TC, Syphard AD, Franklin J ez al. (2014) Fire management,
managed relocation, and land conservation options for long-lived
obligate seeding plants under global changes in climate, urbanization,
and fire regime. Conservation Biology, 28, 1057-1067.

Brereton R, Bennett S, Mansergh I (1995) Enhanced greenhouse climate
change and its potential effect on selected fauna of south-eastern
Australia: a trend analysis. Biological Conservation, 72, 339-354.

Busby JR (1991) BIOCLIM - a bioclimatic analysis and prediction
system. In: Nature Conservation: Cost Effective Biological Surveys and
Data Analysis (eds Margules CR, Austin MP), pp. 64-68. CSIRO,
East Melbourne, Australia.

Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible
modelling procedure for mapping potential distributions of plants
and animals. Biodiversity and Conservation, 2, 667—-680.

Carroll C, Noss RF, Paquet PC, Schumaker NH (2004) Extinction Debt
of Protected Areas in Developing Landscapes. Conservation Biology,
18, 1110-1120.

Chin A, Kyne PM, Walker T1, McAuley RB (2010) An integrated risk
assessment for climate change: analysing the vulnerability of sharks
and rays on Australia’s Great Barrier Reef. Global Change Biology, 16,
1936-1953.

Elith ], Leathwick J (2007) Predicting species distributions from museum
and herbarium records using multiresponse models fitted with
multivariate adaptive regression splines. Diversity and Distributions,
13, 265-275.

Foden WB, Butchart SHM, Stuart SN ez a/. (2013) Identifying the
World’s Most Climate Change Vulnerable Species: A Systematic
Trait-Based Assessment of all Birds, Amphibians and Corals. PLoS
One, 8, €65427.

Fordham DA, Resit Ak¢akaya H, Aratjo MB et al. (2012) Plant extinction
risk under climate change: Are forecast range shifts alone a good
indicator of species vulnerability to global warming? Global Change
Biology, 18, 1357-1371.

Fordham DA, Ak¢akaya HR, Brook BW ez4l. (2013) Adapted conservation
measures are required to save the Iberian lynx in a changing climate.
Nature Climate Change, 3—7.

Garcia RA, Aratjo MB, Burgess ND, Foden WB, Gutsche A, Rahbek
C, Cabeza M (2014) Matching species traits to projected threats and
opportunities from climate change (ed Guilhaumon F). Journal of
Biogeography, 41, 724-735.

Garcia-Valdés R, Gotelli NJ, Zavala MA, Purves DW, Aradjo MB (2015)
Effects of climate, species interactions, and dispersal on decadal
colonization and extinction rates of Iberian tree species. Ecological

Modelling, 309-310, 118—127.

112

Gelfand AE, Silander JA, Wu S, Latimer A, Lewis PO, Rebelo A,
Holder M (2006) Explaining Species Distribution Patterns through
Hierarchical Modeling. Bayesian Analysis, 1, 41-92.

Golding N, Purse B V. (2016) Fast and flexible Bayesian species
distribution modelling using Gaussian processes. Methods in Ecology
and Evolution.

Graham NAJ, Chabanet P, Evans RD ez4l. (2011) Extinction vulnerability
of coral reef fishes. Ecology Letters, 14, 341-8.

Guisan A, Edwards TC, Hastie T (2002) Generalized linear and
generalized additive models in studies of species distributions: setting
the scene. Ecological Modelling, 157, 89-100.

Harris JBC, Fordham DA, Mooney PA ¢ al. (2012) Managing the long-
term persistence of a rare cockatoo under climate change. Journal of
Applied Ecology, 49, 785-794.

Hastie T, Tibshirani R] (1990) Generalized Additive Models. Chapman &
Hall/CRC, London, 352 pp.

Heinrichs JA, Lawler JJ, Schumaker NH (2016) Intrinsic and extrinsic
drivers of source-sink dynamics. Ecology and Evolution, 6, 892-904.

Hirzel AHH, Hausser JH, Chessel DC, Perrin N (2002) Ecological-niche
factor analysis: how to compute habitat-suitability maps without
absence data? Ecology, 83, 2027-2036.

Hof AR, Jansson R, Nilsson C (2012) Future climate change will favour
non-specialist mammals in the (sub)arctics. PloS One, 7, €52574.
Hughes AC, Satasook C, Bates PJJ, Bumrungsri S, Jones G (2012)
The projected effects of climatic and vegetation changes on the
distribution and diversity of Southeast Asian bats. Global Change

Biology, 18, 1854—1865.

Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential
impacts of climatic change on European breeding birds. PloS One,
3, e1439.

Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors
affecting the performance of climatic envelope models. Ecological
Applications, 13, 853-867.

Kearney M, Porter W (2009) Mechanistic niche modelling: combining
physiological and spatial data to predict species’ ranges. Ecology
letters, 12, 334-50.

Keith DA, Ak¢akaya HR, Thuiller W ez al. (2008) Predicting extinction
risks under climate change: coupling stochastic population models
with dynamic bioclimatic habitat models. Biology Letters, 4, 560-3.

Latimer AM, Wu S, Gelfand AE, Silander J a (2006) Building statistical
models to analyze species distributions. Ecological applications : a
publication of the Ecological Society of America, 16, 33-50.

Lawler JJ, Shafer SL, Bancroft B a, Blaustein AR (2009) Projected climate
impacts for the amphibians of the Western hemisphere. Conservation
biology : the journal of the Society for Conservation Biology, 24, 38-50.

Leathwick JR, Elith J, Hastie T (2006) Comparative performance of
generalized additive models and multivariate adaptive regression
splines for statistical modelling of species distributions. Ecological
Modelling, 199, 188—196.

Lehmann A, Overton JM, Leathwick JR (2002) GRASP: generalized
regression analysis and spatial prediction. Ecological Modelling, 157,
189-207.

Levinsky I, Skov F, Svenning J-C, Rahbek C (2007) Potential impacts
of climate change on the distributions and diversity patterns of
European mammals. Biodiversity and Conservation, 16, 3803-3816.

Lurgi M, Brook BW, Saltre F, Fordham DA (2015) Modelling range
dynamics under global change: Which framework and why? Methods
in Ecology and Evolution, 6, 247-256.

McCullagh P, Nelder JA (1989) Generalized Linear Models, 2nd edn.
Chapman & Hall/CRC, London, 532 pp.

McNamara A (2010) Climate Change Vulnerability of Migratory Species.
London, 224 pp.

Meynecke J-O (2004) Effects of global change on geographic distributions
of vertebrates in North Queensland Effects of global climate change
on geographic distributions of vertebrates in North Queensland.

Ecological Modelling, 174, 347-357.



Appendix references

Midgley GF, Davies ID, Albert CH ez al. (2010) BioMove - an integrated
platform simulating the dynamic response of species to environmental
change. Ecography, 33, 612—616.

Milanovich JR, Peterman WE, Nibbelink NP, Maerz JC (2010) Projected
loss of a salamander diversity hotspot as a consequence of projected
global climate change. (ed Wright J). PloS One, 5, €12189.

Mitikka V, Heikkinen RK, Luoto M, Aratjo MB, Saarinen K, Péyry J,
Fronzek S (2007) Predicting range expansion of the map butterfly
in Northern Europe using bioclimatic models. Biodiversity and
Conservation, 17, 623—-641.

Monahan WB (2009) A mechanistic niche model for measuring species’
distributional responses to seasonal temperature gradients. PloS One,
4, €7921.

Naveda-Rodriguez A, Vargas FH, Kohn S, Zapata-Rios G (2016) Andean
Condor (Vultur gryphus) in Ecuador: Geographic Distribution,
Population Size and Extinction Risk. P/oS One, 11, €0151827.

Overgaard J, Kearney MR, Hoffmann AA (2014) Sensitivity to thermal
extremes in Australian Drosophila implies similar impacts of climate
change on the distribution of widespread and tropical species. Global
change biology, 20, 1738-50.

Pacifici M, Visconti P, Scepi E, Hausmann A, Attorre F, Grant R,
Rondinini C (2015) Fire policy optimization to maximize suitable
habitat for locally rare species under different climatic conditions:
A case study of antelopes in the Kruger National Park. Biological
Conservation, 191, 313-321.

Pearson RG (2007) Species’ distribution modeling for conservation educators
and practitioners. New York, 1-50 pp.

Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES:
a spatial evaluation of climate impact on the envelope of species.
Ecological Modelling, 154, 289-300.

Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling
of species geographic distributions. Ecological Modelling, 190, 231—
259.

Reside AE, VanDerWal ], Kutt AS (2012) Projected changes in
distributions of Australian tropical savanna birds under climate
change using three dispersal scenarios. Ecology and Evolution, 2,
705-718.

Schloss CA, Nufiez TA, Lawler JJ (2012) Dispersal will limit ability
of mammals to track climate change in the Western Hemisphere.
Proceedings of the National Academy of Sciences, 2012.

Schumaker NH, Brookes A, Dunk JR ez al. (2014) Mapping sources,
sinks, and connectivity using a simulation model of northern spotted
owls. Landscape Ecology, 29, 579-592.

Serrano E, Colom-Cadena A, Gilot-Fromont E ez 4/ (2015) Border
Disease Virus: An Exceptional Driver of Chamois Populations
Among Other Threats. Frontiers in Microbiology, 6, 1-9.

113

Smith AB, Long QG, Albrecht MA (2016) Shifting targets: spatial
priorities for ex situ plant conservation depend on interactions
between current threats, climate change, and uncertainty. Biodiversity
and Conservation, 25, 905-922.

Stanton JC (2014) Present-day risk assessment would have predicted the
extinction of the passenger pigeon (Ectopistes migratorius). Biological
Conservation, 180, 11-20.

Stockwell D, Peters D (1999) The GARP modelling system: problems
and solutions to automated spatial prediction. International Journal
of Geographical Information Science, 13, 143—158.

Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global
redistribution of animals. Nature Climate Change, 2, 686—690.

Swab RM, Regan HM, Matthies D, Becker U, Bruun HH (2015) The
role of demography, intra-species variation, and species distribution
models in species’ projections under climate change. Ecography, 38,
221-230.

Thomas CD, Hill JK, Anderson BJ ez al. (2011) A framework for assessing
threats and benefits to species responding to climate change. Methods
in Ecology and Evolution, 2, 125-142.

Trivedi MR, Berry PM, Morecroft MD, Dawson TP (2008) Spatial scale
affects bioclimate model projections of climate change impacts on
mountain plants. Global Change Biology, 14, 1089-1103.

Varela S, Rodriguez J, Lobo JM (2009) Is current climatic equilibrium a
guarantee for the transferability of distribution model predictions? A
case study of the spotted hyena. Journal of Biogeography, 36, 1645—
1655.

Visconti P, Bakkenes M, Baisero D ez al. (2015) Projecting Global
Biodiversity Indicators under Future Development Scenarios.
Conservation Letters, 9, 5—13.

Walker PA, Cocks KD (1991) HABITAT: a procedure for modelling a
disjoint environmental envelope for a plant or animal species. Global
Ecol. Biogeog. Lett., 1, 108-18.

Warren R, VanDerWal ], Price J ez al. (2013) Quantifying the benefit of
early climate change mitigation in avoiding biodiversity loss. Nature
Climate Change, 3, 678—682.

Wells K, Brook BW, Lacy RC ez al. (2015) Timing and severity of
immunizing diseases in rabbits is controlled by seasonal matching of
host and pathogen dynamics. J R Soc Interface, 12, 20141184.

Young BE, Hall KR, Byers E, Gravuer K, Hammerson G, Redder A,
Szabo K (2012) Rapid assessment of plant and animal vulnerability
to climate change. In: Conserving Wildlife Populations in a Changing
Climate (eds Brodie J, Post E, Doak D), pp. 129-150. University of
Chicago Press, Chicago, IL.






"~

\ IUCN

INTERNATIONAL UNION
FOR CONSERVATION OF NATURE

WORLD HEADQUARTERS
Rue Mauverney 28

1196 Gland, Switzerland
Tel: +41 22 999 0000

Fax: +41 22 999 0002
www.iucn.org






