14 What You Should Know About... Decibels

Every year dozens of students who should know much better lose a lot of exam marks because they haven’t grasped the concept of the decibel. This is a great pity: a good understanding of the decibel is essential to just about any branch of electronic engineering.

To start with a definition: the decibel is ten times the logarithm (to the base 10) of a power ratio\(^1\). Remember that it’s a power ratio, always a ratio of powers, and you won’t go far wrong.

For example: suppose you had an amplifier with an input signal of 2 mW and an output power of 20 W. The power gain (usually just called the gain, or sometimes the linear gain to emphasise that the figure is not in decibels) is the output power divided by the input power:

\[
\text{power gain} = \frac{\text{output power}}{\text{input power}} = \frac{20 \text{ W}}{0.002 \text{ W}} = 10000
\]

(0.1)

Since this is a ratio of two powers, we can also express it in dB:

\[
\text{power gain in dB} = 10\log_{10} \left(\frac{20}{0.002} \right) = 10\log_{10} (10000) = 40 \text{ dB}
\]

(0.2)

That’s it. It’s not difficult. However, there is a huge amount of confusion surrounding the use of the dB, most of which arises due to some short-cuts made by engineers in a particular field of electronics who do not always state all of their assumptions, and leave some things as ambiguous.

It’s very useful to know the corresponding values in dB and linear power ratios for some common cases: for example a factor of ten is a change in dB of 10, and a factor of 2 is a change in dB of 3.

\[
10\log_{10} (10) = 10
\]

(0.3)

\[
10\log_{10} (2) = 3.01
\]

(0.4)

Engineers often talk about a signal being ‘3 dB down’ when they mean it’s got half the power, and it’s useful to know this without having to reach for your calculator. Similarly, ‘6 dB up’ means four times the power, ‘9 dB up’ is eight times the power, ‘12 dB up’ is sixteen times the power, and so on.

The relationship between the linear and decibel scales of power gain are shown in the following diagrams:

\(^1\) It derives from a unit called a Bel, which was just the logarithm (to the base ten) of the power ratio. However, this was found to be a rather large unit, and the deci-Bel, which is one-tenth of a Bel, was used instead.
A few more examples:

<table>
<thead>
<tr>
<th>Linear Power Ratio</th>
<th>Power Ratio in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 dB</td>
</tr>
<tr>
<td>0.1</td>
<td>-10 dB</td>
</tr>
<tr>
<td>0.01</td>
<td>-20 dB</td>
</tr>
<tr>
<td>10</td>
<td>10 dB</td>
</tr>
<tr>
<td>100</td>
<td>20 dB</td>
</tr>
<tr>
<td>1000</td>
<td>30 dB</td>
</tr>
<tr>
<td>2</td>
<td>3 dB</td>
</tr>
<tr>
<td>4</td>
<td>6 dB</td>
</tr>
<tr>
<td>0.5</td>
<td>-3 dB</td>
</tr>
</tbody>
</table>

14.1 Using Voltage Ratios to Calculate dB

In some textbooks, you will see the gain in dB being calculated using a formula like this:

\[
\text{gain (dB)} = 20 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)
\]

Be careful if you see this. It is common practice, but it can be misleading, as it is not always correct. It relies on the (often un-stated) assumption that the impedance in the circuit at the input and the output is the same.

Remember, a dB is always a power ratio. If all you’ve got is the voltage, then you need to calculate the power using:

\[
\text{power in} = \frac{(V_{\text{in}})^2}{Z_{\text{in}}} \quad \text{power out} = \frac{(V_{\text{out}})^2}{Z_{\text{out}}}
\]
In the most general case, when the input voltage has an impedance Z_{in} and the output has an impedance Z_{out}, then the power gain can be expressed as:

$$\text{power gain} = \frac{\text{power out}}{\text{power in}} = \frac{(V_{out})^2}{Z_{out}} = \frac{(V_{in})^2}{Z_{in}} = \frac{(V_{out})^2}{(V_{in})^2} \frac{Z_{in}}{Z_{out}}$$

(0.7)

Now if, and only if, the output impedance is equal to the input impedance, then we can write:

$$\text{power gain dB} = 10\log_{10} \left(\frac{V_{out}}{V_{in}} \right)^2 = 10\log_{10} \left(\frac{V_{out}}{V_{in}} \right)^2 = 20\log_{10} \left(\frac{V_{out}}{V_{in}} \right)$$

(0.8)

But, and it’s worth emphasising this point yet again, if the input impedance is not equal to the output impedance, then this simple formula gain (dB) = $20\log_{10}(V_{out}/V_{in})$ is not valid. In the general case, we’d have to write:

$$\text{power gain dB} = 20\log_{10} \left(\frac{V_{out}}{V_{in}} \right) - 10\log_{10} \left(\frac{Z_{out}}{Z_{in}} \right)$$

(0.9)

In many cases in simple circuit analysis, the impedance at a certain point in the circuit is either not given, does not really exist (for example if the amplitude of a signal is stored as a digital number in a computer or DSP chip) or is not easily calculable. In these cases, the impedance is often normalised to be one, and the $20\log_{10}(V_{out}/V_{in})$ formula is used. It usually works, but don’t forget about the exceptions.

14.2 dBmW, dBµW, dBW, etc

A dB is a unit of power ratio. If you want to express a real power in terms of dB, then you need some reference power to use, so the power can be expressed as a ratio with the reference power. For example, a real power of 30 W could be expressed as a power that is 30 times greater than a power of one watt. In these cases, where a reference unit of one watt is assumed, the result of the ratio is expressed in terms of the units of dBW.

$$\text{power dBW} = 10\log_{10} \left(\frac{P}{1 \text{ W}} \right) = 10\log_{10} P(\text{W})$$

(0.10)

where $P(\text{W})$ is the power of the signal expressed in Watts. For example, 100 Watts is 20 dBW, since $10\log_{10}(100) = 20$, and one milliwatt (1 mW) is −30 dBW, since $10\log_{10}(0.001) = −30$.

To calculate the power in dBW, just take 10 times the logarithm (to the base 10) of the ratio of the power to one Watt.

So, for example, 2 W is 3 dBW, 10 W is 10 dBW, and 500 mW is −3 dBW.

The reference power doesn’t have to be one Watt (sometimes one Watt is a rather large power to use, and smaller units of power are more convenient). For example, if the reference power used is one microwatt, then the units become dBµW, and, for example, a power of 1 mW could be written as 30 dBµW, since:

$$\text{power dBµW} = 10\log_{10} \left(\frac{P}{10^{-6}} \right) = 10\log_{10} \left(\frac{10^{-3}}{10^{-6}} \right) = 30 \text{ dBµW}$$

(0.11)
Similarly, using a reference power of 1 mW leads to the unit dBmW, and therefore:

$$1 \text{ mW} = -30 \text{dBW} = 0 \text{dBmW} = 30 \text{ dB}_{\mu} \text{W}$$ \hspace{1cm} (0.12)

14.2.1 The dBm, dBu and dB_{\mu}

At first sight these common units don’t make any sense. A dB is a power ratio. A ‘μ’ isn’t a unit of power, it just means a factor of 10^{-6}, and ‘m’ means 10^{-3}, and what is ‘u’ about? While dBm is usually shorthand for dBmW, if you thought that dB_{\mu} was just shorthand for dB_{\mu}W, then in most cases you’d be wrong.

There are several different uses of the dBu or dB_{\mu}. Since occasionally the µ is written as a u (due to difficulties in writing Greek letters in some situations), often the only way you can tell what is meant is by context. For example:

1. Audio Engineering: ‘dBu’ means use as a reference power 0.775 V (rms) in an impedance of 600 ohms (a standard impedance used for audio work). So in this case, the reference power is one milliwatt (since $0.775^2 / 600 = 10^{-3}$).

2. Radio propagation/EMC: Here, ‘dB_{\mu}’ is most often used as a shorthand for dB_{\mu}V/m. It’s impossible to define a reference power in this case although you can define a reference power density (in Watts per square metre). In the case of free space, it corresponds to a power density of $2.65 \times 10^{-15} \text{W/m}^2$.

3. Other fields: ‘dB_{\mu}’ is a shorthand for dB_{\mu}W. In this case the reference power is one microwatt.

It is confusing, but if you remember that a dB is always calculated using a power ratio, you should be fine – you just have to know / remember / work out what the reference power is in each case.

14.3 Using dB

If the decibel is so confusing, why does anyone bother using them? The answer is that they make calculations much easier by allowing multiplications and divisions to be replaced by additional and subtractions. Before the days of pocket calculators that made a lot of difference, and it’s still easier to add and subtract in your head than to multiply and divide.

It’s also convenient to be able to express a very wide range of possible values without having to use exponents, or a large number of zeros after the decimal points. (It’s very easy to misconcount the number of zeros in a large number, and that could be disastrous.)

Many formulas can be expressed conveniently in terms of dB by taking the logarithm of the formula and multiplying by ten. For example, consider the formula for the received power into a matched receiver for a radio link in free space:

$$P_r = \frac{P_t G_t G_r}{(4\pi d / \lambda)^2}$$ \hspace{1cm} (0.13)

where P_r is the received power, P_t the transmitted power, G_t and G_r the gains of the transmit and receive antennas, d the distance between the antennas and λ the wavelength. Take ten times the logarithm (to the base ten) of this equation, and we get:
If the transmit power P_t and receive power P_r are expressed in Watts, then we can write this as:

$$P_r \ (\text{dBW}) = P_t \ (\text{dBW}) + G_t \ (\text{dB}) + G_r \ (\text{dB}) - 20\log_{10} (4\pi d / \lambda)$$

(0.15)

Specifying the gains of the antennas in decibels, and the transmitted and received powers in dBW saves a lot of multiplication and division, replacing these operations with additions and subtractions, and speeding up the calculations significantly.

Note that the power transmitted and power received are expressed in terms of dBW, but the gains of the antennas are expressed in terms of dB. Since antenna gains are defined in terms of the ratio of two powers (the power in a given direction divided by the power that would have been transmitted in this direction by an omnidirectional antenna), this is fine – we don’t need a reference power for a simple gain.

Note that we could equally well have written:

$$P_r \ (\text{dBW}) = 60 + P_t \ (\text{dBW}) + G_t \ (\text{dB}) + G_r \ (\text{dB}) - 20\log_{10} (4\pi d / \lambda)$$

(0.16)

since $60 \ \mu W = 0 \ \text{dBW}$, and $60 + P_t \ \text{dBW} = P_t \ \text{dBW}$. Similarly:

$$P_r \ (\text{dBmW}) = 30 + P_t \ (\text{dBmW}) + G_t \ (\text{dB}) + G_r \ (\text{dB}) - 20\log_{10} (4\pi d / \lambda)$$

(0.17)

since $30 + P_t \ \text{dBW} = P_t \ \text{dBmW}$.

A useful rule: if you find you are dividing or multiplying two quantities expressed in terms of dB or dBW, then you’re almost certainly doing something wrong. Equally, if you find you are adding two quantities both expressed in dBW, you are probably doing something wrong: this is the equivalent of multiplying two powers together.

14.4 Some Examples

1) An amplifier has a power input of 2 Watts, and an output power of 8 Watts. What is the gain in dB?

$$10\log_{10} \left(\frac{8}{2} \right) = 10\log_{10} (4) = 6.02 \ \text{dB}$$

In practice, it’s usually just quoted as 6 dB. This is a very useful thing to know – a factor of two in power is 3 dB, a factor of four in power is 6 dB, a factor of eight in power is 9 dB, etc. This is accurate enough for most purposes.

2) An amplifier has a voltage input of 2 Volts, and an output voltage of 8 Volts. What is the gain in dB?

2 One exception is if you’re using the log-normal distribution to represent a distribution of receive signal powers, and using the Q or erf functions to calculate the probability of a fade. In these cases, the standard deviation is expressed in dB, and to work out the argument of the Q-function requires a division by the standard deviation.
The simple answer is: it’s impossible to tell. You are not told what the input and output impedances are, so you can’t tell what the input power or output power are.

3) An amplifier has a voltage input of 3 Volts with a 50-ohm impedance, and supplies an output voltage of 4 Volts into a 100-ohm impedance. What is the gain in dB?

\[
10\log_{10} \left(\frac{P_{out}}{P_{in}} \right) = 10\log_{10} \left(\frac{V_{out}^2}{R_{out}} \frac{R_{in}}{V_{in}^2} \right) = 10\log_{10} \left(\frac{4^2}{100} \frac{50}{3^2} \right) = -0.51 \text{ dB}
\]

Note that even though the voltage at the output is greater than the voltage at the input, the power in the output is less than the power in the input, so the gain in dB is negative.

4) Convert the formula \(E^2 = P / 120\pi \) into decibel form, where \(P \) is the power in Watts and \(E \) is the electric field strength in V/m.

Take 10 times the \(\log_{10} \) of both sides, and we get:

\[
10\log_{10} \left(E^2 \right) = 10\log_{10} \left(P \right) - 10\log_{10} \left(120\pi \right)
\]

\[
20\log_{10} \left(E \right) = P \text{ (dBW)} - 25.76
\]

5) Express a power of 70 dB\(\mu \)W in dBW, dBmW, and dB\(\mu \)V assuming an impedance of 100 ohms.

\[
70 \text{ (dB\(\mu \)W)} = 10\log_{10} \left(\frac{P(W)}{10^{-6}(W)} \right)
\]

\[
P = 10^7 \mu \text{W} = 10 \text{ W}
\]

Therefore,

\[
P \text{ (dBW)} = 10\log_{10} \left(\frac{P(W)}{1(W)} \right) = 10\log_{10} \left(10 \right) = 10 \text{ dBW}
\]

\[
P \text{ (dBmW)} = 10\log_{10} \left(\frac{10(W)}{10^{-3}(W)} \right) = 10\log_{10} \left(10^4 \right) = 40 \text{ dBmW}
\]

\[
P \text{ (dB\(\mu \)V in 100ohms)} = 10\log_{10} \left(\frac{10(W)}{\left(10^{-6}/100 \right)} \right) = 10\log_{10} \left(10^{15} \right) = 150 \text{ dB\(\mu \)V}
\]

14.5 Problems

1) Express the following linear power ratios in dB: 0.1; 10\(^{-7} \); 1000; 16; 0.125.

2) Express the following quantities in dB in linear power ratios: –13 dB; 9 dB; 30 dB.

3) A high power amplifier is rated as having a gain of 36 dB. It receives an input power of 10 mW. What is the output power?
4) A radio transmitter transmits a total of 100 W. A radio receiver, listening to the transmitter receives 10 pW. What is the loss of the radio channel, expressed in dB?

5) An impedance-matching transformer accepts a sine-wave input from a 100-ohm transmission line at 0.2 V peak-to-peak, and outputs a 0.12 Volt peak-to-peak signal into a 50-ohm matched transmission line. Express the loss of this transformer in dB.

(Note that the mean power in a sine wave of peak-to-peak amplitude A Volts on a transmission line of amplitude Z ohms is \(A^2 / 8Z \) Watts.)

6) The gain of antennas is often expressed in terms of dBi, the power gain relative to an isotropic antenna. The gain of the antenna used is 10 dBi, and the radio signal strength received at a receiver is 50 pW. The antenna is then replaced by a new antenna, and the received signal strength increases to 200 pW. What is the gain of the new antenna in dBi?

7) A sine wave of amplitude 2 Volts is sent into a long length of cable. At the other end, 250 meters away, the sine wave emerges with an amplitude of 0.2 mV. What is the attenuation of the cable, expressed in dB/m (decibels per metre)?