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Executive Summary  

  

Introduction  

Cognitive ability – our capacity for reasoning, thinking, and learning – predicts a wide range of 

important life outcomes, including access to education, work, and civic life. Likewise, social-

emotional development – the ability to express, understand, and regulate our own and others’ 

emotions, and to form and maintain relationships with others – predicts our life outcomes. 

Children begin to show differences in cognitive ability and social-emotional behaviour during the 

early years of life and these differences magnify across the lifespan. Children’s differences in 

cognitive and social-emotional development result from the interplay between their inherited 

genetic differences and their environmental experiences. The current project set out to explore 

one specific aspect of this interplay: We sought to identify which environmental experiences 

interacted with children’s genetic propensities in the development of their early life cognitive 

abilities and social-emotional traits. The DNA revolution made it possible to identify some of the 

specific DNA differences, passed on from parents to children, that are linked to different traits. 

These DNA differences can be aggregated to create so-called polygenic scores – values that 

indicate how likely a person is to, for example, be emotionally stable or do well at school. This 

project constitutes the first systematic study of gene-environment interactions in early life that 

used polygenic scores for cognitive and social-emotional development and tested their 

interactions with a broad range of environmental factors. 

  

Background and Aims  

Children’s differences in early life cognitive abilities and social-emotional traits are driven by a 

complex interplay between biological and experience-dependent processes of development. 

According to behavioural genetics – the study of how our genetic differences influence how we 

think and behave – the gene-environment interplay is borne out through two key processes: 

gene-environment correlation and gene-environment interaction.   

Gene-environment correlation (rGE) describes the way in which inherited genetic differences 

are associated or correlated with a person’s environmental experiences and vice versa. Genes 

and environments are systematically linked, rather than co-occurring at random. There are 

three different types of rGE. Passive rGE occurs when a genetic propensity for a given trait, like 

reading aptitude and enjoyment, is passed from parent to child both genetically, via DNA, and 
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environmentally (e.g., by parents keeping books in the family home, which children may read). 

Continuing with this example, children who enjoy reading may evoke more or stronger 

encouragement to read from adults around them. This is termed evocative rGE. Finally, active 

rGE can occur when children who enjoy reading create their own opportunities to read more by 

visiting libraries or sourcing books themselves.  

Gene-environment interaction (GxE) explains why individuals come to develop different traits 

through the mutual influence between genetic and environmental factors. For example, two 

siblings brought up in the same family home may show different traits because of underlying 

differences in their genetic makeup. Conversely, two individuals who share a common genetic 

propensity to a given trait or traits may show different outcomes if they have different 

environmental experiences. GxE imply that genetic propensities for a trait may be more or less 

predictive of developing the trait phenotypically depending on the environment. There are three 

principal theories on GxE. Continuing, again, with the examples of reading aptitude and 

enjoyment, the diathesis-stress model suggests that children who are less strongly genetically 

predisposed towards these traits may be at a greater disadvantage than children who are more 

strongly genetically predisposed towards these traits if exposed to literacy deprived 

environments, for example when they receive little encouragement to read. The bio-ecological 

model suggests that a high genetic propensity for reading aptitude and enjoyment may be 

phenotypically expressed in stimulating reading environments, but may be suppressed if a child 

is not given adequate exposure to stimulating reading environments. The model of differential 

susceptibility suggests that children with a lower genetic propensity for reading aptitude and 

enjoyment may benefit more than children with higher propensities to these traits from 

stimulating reading environment and, at the same time, may be more disadvantaged if they are 

not given stimulating reading environments. In summary, rGE describes how genetic 

tendencies and environmental experiences go hand-in-hand, whereas GxE describes the 

continuous ‘conversation’ that takes place between them throughout development. Both rGE 

and GxE offer helpful insights into how and why individual differences in complex psychological 

traits emerge. 

Yet to date, no robust evidence of specific gene-environment interactions in the prediction of 

early life cognitive and social-emotional development has been found, although some studies 

reported GxE effects in the prediction of outcomes when children were older (e.g., Cheesman 

et al., 2022). To support children’s development effectively from as early as possible, building 

an empirical evidence-base of GxE in cognitive and social-emotional development is key. 
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Understanding which environmental factors and genetic propensities exert most influence on 

the expression of cognitive and social-emotional traits would allow researchers and 

practitioners to design and implement effective interventions that stimulate the development of 

these traits. The studies we conducted during this research project investigated relationships 

between polygenic scores for years spent in education, childhood ADHD, and neuroticism, and 

39 types of environmental experience, which we divided into four categories. These categories 

were homelife and learning environment (e.g., sleep schedule, siblings, learning resources and 

toys), neighbourhood (housing and facilities, education, employment), childhood adversity (life 

events, parent and child health risks), and exposure to pollution (harmful chemical exposure).  

 

A cautionary note on genetic propensities   

Genetically-informed research on psychological or behavioural traits is often met with 

scepticism and even hostility, and findings relating to heritability are frequently misinterpreted. A 

common misconception is that genetic influences mean that people’s differences are ‘fixed’ or 

‘destined’ – an idea also known as biological or genetic determinism. In reality, genetic 

influences neither determine destiny nor do they imply immutability. Rather, genetic and 

environmental factors both influence our thinking and our behaviour, each to a sometimes 

greater, sometimes lesser extent. If environments vary greatly in a population, for example 

when the opportunity to go to school is only available to some but not others, genetic influences 

will only explain a small proportion of children’s differences in educational outcomes, like years 

spent in school or school grades. In this case, the effects of having access to a school versus 

having little or no access to school would have the much stronger impact on children’s 

educational success. However, if environmental conditions are more equal for people, then 

genetics will account for a greater proportion of the differences seen between them. For 

example if schooling is available to, or even compulsory to a certain age for all children in a 

given population (i.e., when there is less difference between people’s environmental 

experiences), then more of those children’s differences in educational success may be caused 

by differences in their individual genetic propensities for learning.   

DNA-based predictions for phenotypic traits like cognitive and social-emotional development 

reflect people’s differences in their genetic propensities to think, feel, and behave in certain 

ways. For example, children with lower genetic propensities for cognitive ability might on 

average find concentrating on homework from school more difficult, might be less engaged with 
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lessons, and might forgo study sessions in favour of other activities more often than children 

with higher genetic propensities for cognitive ability. It may therefore take more effort, time, and 

educational support for children with lower genetic propensities for cognitive ability to achieve 

the same educational success as others with higher propensities, but they could nonetheless 

perform just as well or even better. At the other end of the spectrum, children with higher 

genetic propensities for cognitive ability may show greater interest and aptitude in studying at 

school and home, but this tendency may be over-ridden if a child suffers severe adverse 

experiences in school or their home learning environment. In other words, children’s genetic 

propensities for cognitive ability and social-emotional traits describe tendencies or preferences 

but are not solely responsible for determining their developmental trajectories.  

  

Methods  

We capitalised on data from identical and fraternal twins participating in the Twins Early 

Development Study (TEDS), a genetically informative, representative cohort study in the UK 

that comprises data from initially over 15,000 families with twins born between 1994 and 1996 

in England and Wales. Over the course of this longitudinal study, twins’ verbal and nonverbal 

cognitive development was assessed at the ages 2, 3, 4 years via standardised testing and 

extensive parent and self-reports. Children’s social-emotional behaviour was assessed at ages 

7, 9, and 12 using information from teacher reports about the extent to which children’s showed 

problems with peer relationships, conduct, inattention/hyperactivity, and emotional regulation. 

Additionally, information on a wide range of environmental factors were assessed (e.g., parental 

behaviour, the family home environment, early life experiences, family adversity, neighbourhood 

characteristics and measures on environmental pollution).  

Children’s genetic propensities for cognitive and social-emotional outcomes were 

operationalised as polygenic scores that aggregated DNA variants associated with cognitive 

and social-emotional traits. To predict cognitive outcomes, we used polygenic scores for years 

spent in full-time education (Lee et al., 2018). Although these polygenic scores were aimed at 

capturing adults’ educational attainment, they are also powerful predictors of individual 

differences in learning-related traits, such as school performance and intelligence (e.g., Allegrini 

et al., 2019). For prediction of social-emotional outcomes, we used polygenic scores for ADHD 

(Demontis et al., 2019) and neuroticism (Luciano et al., 2018), since these explain substantial 

variance in children’s social-emotional behaviour (Gidziela et al., 2021).  
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To investigate effects of gene-environment interactions in early life development, we applied 

regression-type analyses to predict development from environmental and genetic measures as 

well as their interaction effects. We included environmental factors in our models in the form of 

single measures as well as composite scores. This allowed us to test how strongly children’s 

environmental experiences predicted their cognitive ability and social-emotional traits. We 

differentiated different levels of measurement to model the environment, including individual 

environmental experiences (e.g., having books in the family home vs not) and sets of related 

environmental experiences (e.g., ratings of the home learning environment). As an alternative 

methodological approach, we investigated the underlying factors that drive associations 

between child development and environmental factors using a cross-lagged twin model. For the 

purpose of developing recommendations around statistical power in future GxE research, we 

conducted simulation studies to estimate the sample sizes that are required to robustly identify 

interaction effects.  

 

Findings  

The findings from our studies on GxE in children’s early life development conducted over the 

course of this project did not reveal robust GxE effects on children’s cognitive ability or their 

social-emotional development. The broad range of environmental measures included in our 

analyses predicted up to 20% of the variance in children’s developmental outcomes. By 

comparison, children’s genetic propensities operationalised as polygenic scores explained 

independently only up to 2% of the variance in their cognitive and social-emotional 

developmental outcomes. These findings suggest that, in early life, environmental factors are 

stronger predictors of developmental differences than DNA-based predictors. We hasten to add 

that these differences in prediction strengths do not allow inferring conclusions about the 

importance of environmental factors relative to that of genetic influences on children’s early life 

development. Rather they reflect the amount of variance in children’s cognitive and social-

emotional traits that can be attributed to genetic and environmental factors using currently 

available methods. The environmental and genetic prediction estimates may change in the 

future as we learn more about how our individual differences unfold over time. 

We found direct effects of environments and polygenic scores, but no significant interaction 

effects emerged that explained significantly more variance in children’s development. However, 

we do not interpret our findings to imply that there are no GxE in children’s early life 
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development. Instead, we suspect that our results are false negatives, which may have 

emerged for three main reasons. First, our studies might not have had sufficient statistical 

power to robustly identify the potentially miniscule and complex GxE effects on children’s 

cognitive and social-emotional development. To test this hypothesis, we conducted novel 

simulation studies on statistical power and found that sample sizes of over N = 70,000 would be 

needed to detect interactions of realistic effect sizes. For this project data were available from 

only about 7,000 children. Second, the measures we used to operationalise environments and 

genetic propensities may have been unsuitable for identifying effects at the level of observation 

at which GxE occur. Since both our genetic and environmental measures are composites 

comprising information at a comparatively coarse level, we cannot rule out that GxE effects 

may exist at a more fine-grained level, that is, at the level of single genetic variants and narrow 

environmental factors. Lastly, we investigated alternative modelling approaches to the gene-

environment interplay to test if children’s cognitive development ‘caused’ the cognitive 

stimulation they received in early life for genetic reasons, or if their cognitive development was 

‘caused’ by their environmental experiences in the family home. We found bidirectional effects, 

due to common genetic and shared environmental factors which suggested that children are 

not passive recipients of the environments that they are exposed to. Instead, they actively 

select, shape, and create the environmental experiences that match their genetic propensities.  
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Glossary of terms common in behavioural genetic research  

(Adapted from Wilding et al., 2023)  

  

Term  Definition  

Causality and 

prediction  

Causality describes a relationship between two events, whereby one 
event causes the other as a direct result e.g., when clouds become 
saturated, this causes it to rain.   
By contrast, prediction describes a relationship whereby two or more 
events are linked in such a way that if one event takes places, the other 
event is also very likely to take place too. For example, if it rains for a 
long time, it is more likely that you may get wet. However, prediction 
does not mean that an event is inevitable – other factors may influence 
the final outcome. If it rains for a long time and you go outside, you are 
more likely to get wet. However, if you stay indoors, the likelihood of 
getting wet will be low (unless the roof leaks).  
  

Discovery 

sample  

In a genome-wide association study, the discovery sample is the group 
of people that researchers study in order to look for DNA differences or 
SNPs that are associated with a particular trait or traits. Because each 
SNP only has a very small influence on individual development on its 
own, discovery samples need to be extremely large – ideally in the 
millions of people – in order to make it clear which SNPs have a real 
impact on development. GWAS with larger sample sizes typically yield 
more strongly predictive polygenic scores. This is because they have 
greater statistical power.   
  

DNA and genes  Deoxyribonucleic acid (DNA) is an organic chemical that carries the 
genetic instructions for the development, functioning, growth and 
reproduction of all known organisms. It is present in the nucleus of each 
cell of the organism and is shaped in the form of a double helix, 
consisting of bases (Adenine (A), Thymine (T), Guanine (G), and 
Cytosine(C)) and phosphates. Both strands of the ‘ladder’ are held 
together by bonds between the bases: A binds with T and C with G.  
Each ‘rung’ is referred to as a base-pair.  

Sequences of DNA form genes. They can vary in size from a few 
hundred DNA bases to more than two million bases.  

  

Genetic  

propensity   

  

This term is used describe people’s likelihood of showing or developing 
a particular trait based on their genetic makeup. It is important to note 
that our genes do not determine outright who we are. Our DNA 
differences make certain outcomes more likely, but our experiences in 
the world also play an important role. For instance, a person with a low 
genetic propensity for reading enjoyment may still develop a love of 
reading if they are provided with positive and stimulating experiences of 
reading. Other terms include genetic tendency and genetic 
predisposition.  
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Genome  The genome is the complete set of genetic information of an 
organism.  See also DNA  
  

Genome-wide 
association  

studies  

  

In a genome-wide association study, researchers collect genotype 
information and information about a particular trait or traits (e.g., 
intelligence test scores, years spent in education, height) from a very 
large group of people. First, researchers identify which individuals show 
the trait of interest. Second, researchers compare genotype data from 
people who show the trait against genotype data from people who do not 
show the trait. This is done to discover which SNPs are linked to 
showing the trait. Some SNPs may be more commonly linked to a 
certain trait than others SNPs are, suggesting that these SNPs may 
have a greater influence on trait expression.   
  

Genotype  A genotype is a scoring of the type of genetic variant that exists at a 
particular location (i.e., a locus) in the genome. For example, the 
sequence of DNA bases at a specific location, such as CC, CT, TT.   
  

Heritability  Heritability is the proportion of differences in a trait that can be 
explained by genetic differences between people in a population at a 
given time.  Genetic and environmental influences exist together: 
Individual differences between people in all traits are heritable to 
some extent, but no trait is 100% heritable. That means, even if a trait 
is highly heritable, the environment is still important, because 
environmental factors support or limit the extent to which someone’s 
genetic propensities for a trait can be developed.   
  

Missing 

heritability gap  

The heritability of a trait can be assessed by comparing individuals who 
share DNA and life experiences with individuals who share only DNA, 
only life experiences, or neither (see Twin and adoption studies). Since 
the DNA revolution, heritability can also be assessed by identifying DNA 
differences between people (e.g., SNPs) and generating polygenic 
scores to predict observable phenotypic differences between people. 
Genotyping studies have so far yielded much smaller heritability 
estimates than twin and adoption studies.  
This is because genetic research is a relatively young and still-
developing field. This discrepancy is known as the missing heritability 
gap and it is encountered in genetic research across the social sciences. 
However, new methods are constantly being developed, which are 
gradually narrowing the missing heritability gap.  
  

Phenotype  Phenotype refers to a person’s observable or expressed traits. 
Differences between people in these observable traits are the result of 
their genes as well as the environments they experience.  
In GWAS, the trait for which SNP associations are tested is called ‘target 
phenotype’.  
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Pleiotropy  Pleiotropy refers to the phenomenon of one single genetic variant 
affecting two or more distinct phenotypic traits. That means, genetic 
influences are then shared between or common to these phenotypes, 
not specific to just one.  

  

Polygenic 

scores  

If we have genotype information for a person or group of people – that 
is, if we know what SNPs they possess – we can create polygenic 
scores for them, to predict how likely they are to show certain traits (e.g., 
height, colouring, intelligence etc). Polygenic scores are created by 
adding together the effects of all of the SNPs a person possesses that 
are associated with a particular trait. The SNPs associated with 
phenotypic traits of interest are identified using genomewide association 
studies.  
 

Polygenicity  Most traits that we can observe (like height, colouring, musical aptitude, 
intelligence and so on) are influenced, not by one SNP alone, but by 
many thousands of them across many different genes, working together. 
Each SNP only has a very small influence on development, but certain 
combinations of SNPs can cause measurable differences between 
individuals, such as differences in physical appearance, personality, or 
academic success. This phenomenon is termed polygenicity and traits 
like these are described as polygenic.  
  

Singlenucleotide 

polymorphisms  
(SNPs)  

  

A SNP (pronounced ‘snip’) is a base-pair difference in the genome, 
which occurs at one location of the genome (i.e., in a single nucleotide), 
independent of basepair differences in other locations, and presents in 
many (i.e., poly) different versions (i.e., morphisms). SNPs are the 
smallest genetic variants that can differ between people. The human 
genome includes about three billion base-pairs, and SNPs occur about 
once in every 300 base-pairs (i.e., there are about ten million SNPs 
within the human genome).  
  

Socioeconomic 
status  
  

Someone’s socioeconomic status (SES) refers to the person’s position 
in society in terms of their social standing or class in relation to others. It 
is often measured as a combination of educational, occupational and 
economic (e.g., income) criteria.  
  

Statistical  

power  

The statistical power of a study refers to the likelihood that the study will 
be able to identify the effect or effects of what that study is testing if, 
indeed, there truly is an effect. If a study has high statistical power, there 
is a stronger chance that its results will be reliable, and vice versa. 
When the effect/s being measured is/are very small, a very large sample 
of data is needed to determine whether the effect under investigation is 
really there. If a study uses too small a sample, there is a risk that the 
study will fail to capture the relationship between the phenomena 
studied and their outcome/s. A null finding like this resulting from a study 
with low statistical power is termed a false negative or a Type II error.  
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Twin and 

adoption study 

designs  

The classic twin study design relies on comparing twin similarity on a 
given trait between identical (monozygotic) and fraternal (dizygotic) 
twins. Monozygotic twins share 100% of their genes, while dizygotic 
twins share on average 50% of the genetic variants that vary between 
humans; they resemble each other genetically as much as other 
biological siblings. If monozygotic twins are more similar to each other in 
a given trait than dizygotic twins, we can conclude that genetic factors 
influence people’s differences in that trait.  
In sophisticated statistical models, we can use these twin correlations 
from identical and fraternal twins to calculate how much of the variation 
in a trait in the population is explained by genetic factors and how much 
is due to environmental factors.  

  

In adoption studies, the similarity between adoptees and their biological 
as well as adoptive families is compared. If children were adopted early 
in life, similarity with their biological parents and siblings is entirely due 
to genetic factors, while similarity with their adoptive family members is 
fully accounted for by shared environmental factors, because they are 
genetically unrelated.   
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Introduction   

  

Genetic and environmental contributions to individual differences  

The human genome describes the complete set of genetic information (DNA) that an organism 

possesses. The DNA differences that children inherit from their parents contribute to their 

phenotypic differences in physiological and psychological traits throughout the life course. That 

is to say, all traits are heritable to a certain extent (Turkheimer, 2000; Polderman et al., 2015). 

Amongst these heritable traits, intelligence (i.e., our ability to reason, think, and learn) and 

social-emotional behaviour (i.e., how we cultivate relationships with others) have particularly 

far-reaching impacts for an array of life outcomes. These include how much time a person 

spends in full-time in education, how many qualifications they attain, what their employment 

prospects are, their socio-economic status, their access to civic and social life, and their mental 

and physical health and wellbeing (Deary, 2012; Duckworth & Gross, 2014; Goodman et al., 

2015; Fawns-Ritchie et al., 2017). Individual differences in these domains begin to manifest 

during early years development and become magnified across the lifespan (von Stumm et al., 

2019). Behaviour genetic research can offer valuable insights into how and why these 

differences emerge and develop.   

Genetic influences do not act alone or independently of the environmental context in predicting 

individual differences in phenotypic development. Rather, DNA differences act in concert with 

our everyday environmental experiences throughout our lives (Turkheimer, 2000; Dick, 2011; 

Polderman et al, 2015; Plomin et al, 2016; Black, 2017; Cattan et al, 2021). No two people 

have precisely the same set of experiences and interactions with the environment, even if they 

are genetically identical (i.e., monozygotic twins). Experiences that siblings in a family share, 

like parents reading a bed-time story to all siblings, make up the shared environment and 

explain siblings’ similarities in cognitive and social-emotional outcomes. By contrast, things 

experienced by one sibling but not by others (e.g., one sibling joining the local library, while the 

other sibling joins a sports club) make up the non-shared environment. Non-shared 

environmental experiences can explain why  two siblings of a family might show less similar or 

more different traits and life outcomes.  

Understanding how our genetic make-up and our environmental experiences shape us 

cognitively and socially will, in the long term, help us to identify individuals who may benefit 

from additional support and enable us to deliver truly effective support within the appropriate 
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timeframe. Promoting equity of life outcomes across society is a social justice issue and merits 

our urgent attention.  

  

Heritability  

The term heritability denotes the proportion of individual differences – that is, of variance – in a 

given trait that can be explained by genetic differences between people (Plomin, 2018; Visscher 

et al., 2008). Intelligence is around 50% heritable across the lifespan, increasing from 20% in 

infancy, to 41% in childhood, to 66-80% in early to late adulthood (Haworth et al., 2010; 

Polderman, 2015; Plomin and Deary, 2015). That is to say, genetic makeup can explain, on 

average, 50% of the differences in intelligence that can be observed between individuals. Note 

that heritability does not explain what proportion of a given trait in a given individual is inherited, 

so genetic makeup does not explain 50% of a given person’s overall intelligence. It is also 

important to note again that heritability does not mean immutability. Genetics makes us prone 

to develop certain traits but biology alone does not determine who we are and how we develop. 

Rather, as mentioned earlier, the expression of phenotypic traits is influenced by the interplay 

between genetics and the environment.  

  

Early approaches to inferring heritability  

Earlier behaviour genetic research used twin and adoption studies to investigate the heritability 

of a range of traits including intelligence, educational attainment and achievement, and social-

emotional behaviour (Knopik et al., 2017). Comparing trait development in identical 

(monozygotic) and non-identical (dizygotic) twins allows us to gauge to what extent individual 

differences in psychological traits can be attributed to genetic and environmental factors. When 

raised together, both identical and non-identical twins share a rearing environment (e.g., their 

family home). However, identical and non-identical twins differ in terms of their genetic similarity 

to one another. Identical or monozygotic twins shared 100% of their genetic makeup, while 

fraternal or dizygotic twins share only 50% of their segregating genes. If identical twins are 

more similar to one another in a given trait – for example height – than are dizygotic twins, then 

we can conclude that differences seen in the expression of that trait are influenced by genetics 

(Turkheimer, 2000; Moore & Shenk, 2017; Polderman et al., 2015).   
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Likewise, comparing trait resemblance across biological siblings and adopted siblings, who are 

not biologically related, can offer insights about the extent to which traits are transmitted from 

generation to generation through biological or experience-dependent mechanisms. Biological 

siblings share, on average, 50% of their segregating genes and their entire rearing 

environment, whilst adopted siblings share only the latter (assuming adoption takes place vary 

early in life) (Knopik et al., 2017). If both biological and adopted siblings show strong similarities 

in a given trait, then these similarities most likely stem from shared environmental factors. If 

biological and adopted siblings differ substantially in a given trait, then we can conclude that 

individual differences in these traits can be largely attributed to genetic differences between the 

siblings.   

  

Candidate gene approach: Early attempts at identifying DNA-based predictors  

Candidate gene studies focused on small groups of genes that were hypothesised to be 

responsible (i.e., candidates) for the expression of a given trait. Candidate genes were typically 

identified by examining a limited number of pre-specified genes using case-control studies. 

These candidate genes were detected in individuals with a given trait (cases), who were 

compared with individuals (controls) who did not show that trait to test whether candidate gene 

frequencies were higher in cases than controls (Kwon & Goate, 2000). Candidate gene studies 

can be effective in identifying alleles (or sets of alleles) in genes associated with diseases. 

Alleles are the alternative variants of a gene, inherited from our parents, that code for a certain 

trait e.g., blue versus brown eyes. For example, two rare variants of the BRCA gene, BRCA1 

and BRCA2, have been shown to substantially increase the risk of breast, ovarian, and other 

cancers in women who carry this gene (Chen & Parmigiani, 2007). A key limitation of candidate 

gene research is that it relies on researchers selecting single genes to investigate a priori, and 

does not, by design, consider the whole genome. Most phenotypic traits, including 

psychological traits like cognitive development, are complex or polygenic, meaning that they 

are influenced by many thousands of DNA variants across many genes, not just one or two 

genes. Thus, traditional candidate gene studies excluded many genetic variants that are likely 

to play a role in trait expression. As a result, findings from candidate genes have largely failed 

to replicate, and significant candidate gene effects on developmental differences are now, in 

hindsight, mostly understood to be false positives (e.g., Chabris et al., 2012, Culverhouse et al., 

2018, Border et al., 2019; van de Weijer et al., 2022). For instance, a body of candidate gene 
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research has identified 18 individual genetic variants to be linked to the risk of major depression 

(Border et al., 2019). However, when these genetic variants were considered together, neither 

reliable links between participants’ alleles and their diagnosis emerged, nor clear evidence of 

interactions between these alleles and participants’ shared environmental experiences (Border 

et al., 2019). 

  

DNA revolution: GWAS and Polygenicity  

The DNA revolution and the mapping of the human genome made it possible to examine the 

specific genetic differences that drive some of the heritability that is estimated in twin and 

adoption studies. This alternative to the candidate gene approach involves collecting genetic 

information from across the genome to aggregate DNA variants, or single-nucleotide 

polymorphisms (SNPs, pronounced ‘snips’), that are associated with a given trait. This is the 

method utilised in the present project.  

Genetic variance in complex traits, like cognitive and social-emotional development, is due to 

many thousands of single alleles or SNPs at positions across the human genome that are 

associated with a target trait. This phenomenon is termed polygenicity. SNP associations with a 

target trait have very small effect sizes, meaning that they can only be detected in studies 

termed genome-wide association studies (GWAS), which have very large discovery samples. In 

a GWAS, data from hundreds of thousands of individuals, who underwent genotyping and 

phenotypic testing, are pooled together. Testing for psychological phenotypes usually involves, 

for example, intelligence tests, surveys on psychological traits and behaviour, and clinical 

diagnoses. Researchers can then test whether there are associations between individual DNA 

variants across the genome and individual differences in traits between people (Uffelmann et 

al., 2021). Using the association data generated by GWAS (i.e., their summary statistics), 

person-specific polygenic scores can be computed in any sample that includes information on 

participants’ genotype, for example from saliva or blood samples (Choi et al., 2020). To 

compute polygenic scores, all of the many small effects of each person’s SNPs, which were 

found to be associated with the target phenotype in a GWAS, are aggregated and, typically, 

weighted by their strength of association with the target phenotype to create the polygenic 

score (Plomin & von Stumm, 2018).   

Polygenic scores for certain traits can be used to help to identify individuals at risk of 

developing diseases, learning difficulties, and developmental delays in a range of domains 
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(e.g., physical, cognitive, and social development). However, as discussed previously with 

regard to heritability, a person’s polygenic score does not determine outright whether they will 

show a given trait. Rather, a polygenic score is a measure of genetic propensity, indicating their 

likelihood to show that trait. Additionally, although genetic propensities are connected with 

environmental experiences, a polygenic score does not, in and of itself, capture to the role of 

environmental influence in trait expression (see Pingault et al., 2022).  

  

Statistical power  

Because SNPs show very small effect sizes, it is necessary for GWAS to recruit very large 

discovery samples of participants in order to identify trait-associated SNPs. GWAS with larger 

sample sizes typically produce more strongly predictive polygenic scores, since they are 

statistically better powered to detect these small effect sizes (Wilding et al., 2023). Recent 

GWAS of educational attainment (measured by asking participants how many years they had 

spent in education) recruited discovery samples of 1.1 million (Lee et al., 2018) and >3 million 

participants (Okbay et al., 2022) and have yielded polygenic scores predicting 11% and 13% of 

variance in phenotypic educational success, respectively. By contrast, the largest GWAS of 

intelligence to date (Savage et al., 2018) recruited a discovery sample of ~270,000 and the 

resulting polygenic score predicted a weighted mean of 4.8% of variance in cognitive ability 

across independent samples in this GWAS (Oxley et al., 2023).  

  

Missing heritability  

Polygenic scores at present predict a smaller portion of heritability than twin and adoption 

studies. The upper limit of variance that could be explained by polygenic score predictions is 

defined by the SNP heritability. This indexes the proportion of phenotypic variance explained by 

all measured SNPs in a GWAS. SNP heritability is, on average, lower than twin study estimates 

of heritability but higher than polygenic score prediction effects. The difference between twin 

heritability, SNP heritability, and polygenic score prediction in the proportion of variance 

explained is termed the missing heritability gap, and is seen in behaviour genetic research 

across the social and psychological sciences (Yang et al., 2011; Plomin & von Stumm, 2018). 

Given that larger sample sizes typically give rise to more predictive polygenic scores, it is 

possible that the missing heritability gap will narrow as further GWAS with increasingly larger 

sample sizes are undertaken (Yengo et al., 2022). The predictions from presently available 
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polygenic scores offer valuable insights into the genetic causes of individual differences, 

although their predictive powers are probably lower bounds and underestimate the prediction 

from future polygenic scores.  

  

Gene-environment interplay  

The relationship between genetic and environmental factors influencing early years cognitive 

development is complex and driven by two key processes: gene-environment correlation (rGE) 

and gene-environment interaction (GxE). rGE describes how our individual genetic differences 

are linked to our individual environmental experiences. GxE explains how genetic differences 

can give rise to different outcomes in individuals who share their environmental experiences, 

and how non-shared environmental experiences can lead to different outcomes in individuals 

who share a common genetic propensity to a given trait. 

Gene-environment correlation denotes the fact that individuals, including children, are not 

randomly assorted across environments. Instead, individuals select, shape, and create the 

environments that match their genotypes (Plomin et al., 1977). Our genetic makeup correlates 

with our environmental experiences in three different ways – passively, evocatively, and 

actively. Passive rGE describes how children are experiencers of environments created for 

them by their parents. The environments that parents create are shaped by their own genetic 

predispositions which were, in part, transmitted to their offspring. For example, parents who 

enjoy reading may pass this tendency on to their children via inherited DNA differences, and 

may also encourage the reading of stories at bedtime, which indirectly strengthens children’s 

genetically predisposed literacy skills. Evocative rGE describes how individuals bring about 

certain environmental experiences by acting on or in their environment, influenced by their own 

genetic predispositions. For example, children who are genetically predisposed to enjoy 

reading may show great interest in reading and this might cause them to receive more support 

and encouragement from parents and teachers to further develop this tendency. Active rGE 

refers to the fact that our genetic makeup predisposes us to prefer and select certain 

environmental experiences. For example, children who are predisposed to enjoy reading may 

visit the library more often or spend their pocket money on books, while children who find 

reading less enjoyable may prefer to focus on other activities that interest them more.   

Gene-environment interaction denotes cases where people with similar genetic predispositions 

show different traits and outcomes according to their environmental experiences, and where 
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similar environmental experiences may give rise to different traits and outcomes in people with 

different genetic predispositions. For instance, different children may benefit from reading 

support in school or at home to different extents depending on their genetic predisposition for 

reading skills and reading enjoyment (Plomin et al., 1977; Price & Jaffee, 2008; Anreiter et al., 

2018). It is important to note that identifying a gene-environment interaction can only tell us 

about the presence of that interaction and not about the directionality of the interaction. That is, 

we cannot determine whether the developmental impact of environmental factors varies 

between individuals according to their genetic make-up, or whether the developmental impact 

of genetic make-up varies between individuals as a result of differing environmental 

experiences. There are three conceptual frameworks for understanding gene-environment 

interaction: the diathesis-stress model, the bio-ecological model, and the model of differential 

susceptibility (also see Figure 1).   

  

The diathesis-stress model  

This framework takes the view that negative environmental experiences affect individuals 

differently based on their genetic propensity for specific developmental outcomes (Zuckerman, 

1999; Dick, 2011; Sigelman & Rider, 2009). That is, children with a stronger predisposition 

towards cognitive developmental outcomes, for example, may be more resilient to 

environmental experiences that are either harmful or not conducive to cognitive development, 

like receiving little or insufficient cognitive stimulation in early life. By contrast, children with a 

weaker genetic propensity for cognitive development may be disproportionately vulnerable to 

such experiences. For instance, children with a weaker propensity for literacy or verbal 

reasoning may be more significantly disadvantaged if they have little exposure to reading 

practice in their early life, such as joint book reading (cf., Noble et al., 2019) or bedtime story 

telling, than children with a greater propensity for these traits. This difference may contribute to 

the emergence of delays or differences in written and oral communicative development.  

  

The bio-ecological model  

This model proposes that development results from cyclical transactions between the genome 

and the environment (Bronfenbrenner & Morris, 2006; Pluess & Belsky, 2013). The extent to 

which a given trait is expressed is influenced by interactions between an individual’s genetic 

propensity for that trait and their environmental experiences that might stimulate or suppress 
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that propensity (i.e., their interactions with their families, peers, nurseries, schools, and the 

wider world). Some environmental experiences may increase the likelihood that a trait will be 

expressed, whilst others may impede the expression of the same trait. For instance, a child with 

a strong genetic predisposition for literacy or verbal reasoning skills who is exposed to a 

stimulating reading environment (e.g., a child who is often read to or encouraged to read) may 

become proficient at reading but the same child’s inclination to read might be suppressed if 

they experience little or no exposure to reading. In this case, enriched environments would 

maximise the expression of genetic differences, while scant environments would mask them 

(Figure 1b).  

  

The model of differential susceptibility  

This framework posits that children with greater genetic susceptibility to environmental 

influences may be disproportionately affected in their development when exposed to either 

positive and negative environments (Greven et al., 2019). For example, reading books with 

parents frequently may greatly benefit language development in children who have inherited a 

greater sensitivity to the environment, while less joint book reading may badly impair language 

development in the same children (Figure 1c). By contrast, in children who are genetically less 

susceptible to the environment, language development may be relatively unaffected regardless 

of the degree to which reading is encouraged by adults in their environment. This notion is 

central to theories of environmental sensitivity, which propose that individuals differ in their 

sensitivity to both aversive as well as supportive environments (Belsky & Pluess, 2009).  
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Figure 1. Models of the gene-environment interplay   

Note. Panel (a) illustrates the diathesis-stress model, where negative environments have 

detrimental effects on the phenotypic development of individuals with greater genetic risk (G-) 

but not those with low genetic vulnerability (G+). Panel (b) shows the bioecological model, 

where environmental stress masks genetic differences, so that genetic differences become 

phenotypically expressed in positive but not in negative environments. Panel (c) demonstrates 

differential susceptibility, where negative and positive environments have disproportionately 

larger effects on individuals with greater sensitivity to environmental influences (S+) compared 

to those with low environmental sensitivity (S-). Panel (d) shows additive effects of genetic and 

environmental factors without gene-environment interaction. Adapted from von Stumm and 

Nancarrow (2023).  
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Challenges in gene-environment interaction research  

Whilst it is now well-established that the interplay between genetic makeup and environmental 

experience is critical in shaping development, previous research has struggled to produce 

replicable, robust evidence of gene-environment interactions (e.g., Tucker-Drob & Bates, 2016). 

One possible reason for this is that previous studies may not have had the statistical power that 

is needed to detect gene-environment interactions. Such interactions typically have small effect 

sizes, meaning that very large participant samples (i.e., in the hundreds of thousands) are 

required to in order to detect significant effects and reject the null hypothesis (Cohen, 1992a, 

1992b). Another possible reason is that, while there are many environmental factors that are 

known to influence development, previous genetically sensitive research has incorporated only 

a narrow range of these factors, focusing on only one or two variables (Schmitz & Conley, 

2017). Thus, may environmental factors have yet to be considered in GxE studies. Additionally, 

previous research on GxE effects did not systematically incorporate polygenic scores, but 

instead relied on candidate gene and twin and family study designs.  

The present project aimed to address these lacunae by testing for interactions between genetic 

and environmental factors known to affect cognitive and social-emotional development, using 

polygenic scores derived from the summary statistics from a range of recent large GWAS, 

including those for neuroticism, ADHD, and educational success (Luciano et al., 2018; Demontis 

et al., 2019; Lee et al., 2018), and data pertaining to a wide range of environmental variables in 

a longitudinal, UK population representative cohort study of children born between 1994 and 

1996 in England and Wales.  

We used Lee et al.’s (2018) polygenic score for educational success as a proxy for genetic 

propensity for cognitive ability. While it was designed to predict educational success rather than 

intelligence per se, these polygenic scores actually predict a higher proportion of peoples’ 

differences in intelligence than any polygenic scores for intelligence to date. This is because the 

GWAS that produced these polygenic scores (Lee et al., 2018) used a much larger discovery 

sample of ~1.1million than the largest GWAS of intelligence to date (Savage et al., 2018), which 

used a discovery sample of only ~270,000. Measuring educational success is relatively 

straightforward, involving only a single self-reported item (i.e., ‘How many years did you spend 

in education?’) compared with measuring intelligence, which requires complex and time-

consuming IQ testing. Larger discovery samples are therefore more feasible for the former. We 

used Luciano et al.’s polygenic score for neuroticism (N~329,821) and Demontis et al.’s 
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polygenic score for ADHD (N~55,374) as measures of genetic propensity for social-emotional 

traits. Gidziela et al.'s (2021) meta-analysis assessing the predictive validity of 15 distinct 

polygenic scores for social-emotional traits established that these polygenic scores, amongst 

others, are positively associated with parent and teacher ratings of children’s social emotional 

behaviour (see Methodology: Sample below). 

Identifying gene-environment interactions in early years cognitive development could offer 

important insights into how we can best support children at risk of developmental difficulties and 

delays. Gathering knowledge about how inherited DNA differences and environmental 

experiences jointly influence the expression of cognitive and social-emotional traits during early 

life development will provide an evidence base for researchers and practitioners to work 

collaboratively to understand whether and how personalising learning could improve outcomes 

for some or all children. In the long term this could enable the design and implementation of truly 

effective therapies and interventions, within the most appropriate timeframe. Understanding 

which outcomes are or are not associated with which gene-environment interactions could, in 

this way, help us to identify at-risk individuals early in life, and to devise personalised 

programmes to ameliorate cognitive and social-emotional development (e.g., literacy and verbal 

reasoning skills, behavioural tendencies and well-being). The fact that cognitive and social-

emotional development predict a wide range of life outcomes makes supporting individuals at 

risk for unfavourable development in these domains a clear priority for societies that aspire to 

fairness. Understanding how and why individual differences in cognitive and social-emotional 

development manifest is an essential step in working towards achieving greater equity in life 

outcomes for all members of society.  
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Aims and Research Questions  

The present project set out to conduct exploratory empirical research to identify gene-

environment interactions (GxE effects) in children’s early life cognitive and social-emotional 

development. In doing so, we also built on previous research by elucidating to what extent 

cognitive and social-emotional development can be predicted by rGE and by environmental 

experiences directly. However, our specific aim for this project was to test for GxE effects during 

early life cognitive and social-emotional development by examining the combined predictive 

power of polygenic scores and environmental factors known to influence development. We 

sought to address the following research questions:  

i. Can GxE effects in children’s early life cognitive and social-emotional development 

be identified?  

ii. If GxE effects can be identified, to what extent do they explain children’s differences 

in early life cognitive and social-emotional development, independent of additive 

genetic and environmental effects?  

iii. Which environmental variables, if any, interact most strongly with polygenic scores in 

the prediction of children’s differences in early life cognitive and social-emotional 

development?  

Because previous research has not produced reliably replicable GxE effects, our analyses 

rested on the following assumptions rather than testing specific hypotheses:  

i) That our samples had adequate statistical power to produce reliable estimates of  

GxE effects across all environmental variables included in our analyses  

ii) That confounding would be reduced by testing simultaneously for multiple 

interactions between polygenic scores and a wide range of environmental variables, 

which assessed different levels and domains of environmental influences  

iii) That any identified GxE effects should also be identifiable (i.e., replicable) using 

alternative modelling approaches and additional samples.  
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Methodology  

  

Sample: The Twins Early Development Study  

We capitalised on data from the Twins Early Development Study (TEDS), the world’s largest 

genetically sensitive study of development, that initially included 13,759 families with twins born 

between 1994 and 1996 in England and Wales. When twins reached 18 months of age, families 

provided data about demographics, pregnancy, childbirth, and zygosity (i.e., whether twins are 

identical or fraternal). During subsequent assessments when the twins were aged 2, 3, and 4 

years, data were collected on cognitive and social-emotional development and environmental 

factors, including parenting, the family home environment, and early life experiences. At ages 7, 

9, and 12, the twins’ teachers provided information about their social-emotional behaviour in 

school. DNA samples were collected throughout the twins’ childhood, which are the basis for 

generating polygenic scores that indicate the twins’ genetic propensities for later educational 

attainment and various cognitive and social-emotional developmental outcomes.   

Table 1 provides an overview of the representativeness and data availability in TEDS (adapted 

from Rimfeld et al., 2019). Of the families who contributed to the first assessment wave, 83.5% 

(i.e., 10,336 families) also provided data between the ages 2 and 4 years, including 6,287 twin 

pairs for whom genotype data are available. After stringent quality control, the sample size 

available for the proposed analyses is 10,117, including 6,797 unrelated individuals and 3,320 

dizygotic co-twins (i.e., non-identical twins). Although TEDS has suffered some attrition over the 

years, the analysis sample for this project differs only slightly in demographic characteristics 

from national estimates for all UK parents with children born in the 1990s. For example, in the 

1990s, 35% of mothers and 47% of fathers had achieved A-levels or higher educational 

qualifications (DfEE, 2000), compared to 40% and 47%, respectively, in the subsample from 

TEDS used in our analyses. Similarly, 50% of mothers and 91% of fathers in the 1990s are 

estimated to have been in full-time employment while their youngest child was below the age of 

2 years (ONS, 2017; Rimfeld et al., 2019). In our analysis sample, the corresponding estimates 

are 45% and 93%.  

An extremely conservative preliminary power analysis for our proposed investigations 

(conducted in G*Power; Faul et al., 2019) indicated that this sample of 10,117 exceeded the 

minimum sample required to detect GxE effects at 80% power (N=8,358), assuming. This 

estimate was based on the assumption that environmental variables would exert no direct 

causal effect on outcomes, and that 100 gene-environment interaction terms would exert very 
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small effects (1%). A more realistic yet still conservative estimate, assuming small direct causal 

effects of environmental variables (5%) and very small GxE effects (1%) indicated a smaller 

participant sample (N=3,755). Thus, while a small proportion of the participant sample have 

partially incomplete data on our 39 environmental variables of interest, the TEDS database was 

deemed to constitute a more than sufficient sample for our proposed analyses. 

     

Table1. Sample properties and characteristics in TEDS  

 Returned families  % 

Response 

% 

White 

% Mother 

A-levels + 

% Father 

A-levels + 

% Mother 

employed 

% Father 

employed 

% 

Girls 

Full sample  

First contact  13759  

 

84.4 

 

91.7 

 

35.5 

 

44.8 

 

43.1 

 

91.6 

 

50.0 

Age 2 to 4  10336  70.5 92.9 37.8 46.3 43.2 92.2 50.7 

Genotyped sample  

First contact  7019  

 

99.9 

 

99.9 

 

39.6 

 

46.9 

 

45.6 

 

92.9 

 

51.9 

Age 2 to 4  6287  90.1 99.9 40.1 47.1 45.4 93.2 52.0 

Note. Numbers adapted from Rimfeld et al. (2019).  

  

Study materials and data collection: Children’s development and genetic propensities  

In TEDS, several measures for cognitive ability were available longitudinally at the ages 2, 3 

and 4 years, using established, standardised scales that allowed us to analyse children’s early 

development. In addition, data on anxiety and behaviour problems were collected as well as 

on physiology, including anthropometric data that were not relevant to our analyses.  

Cognitive development. Nonverbal cognitive performance was assessed using age-appropriate 

versions of the Parent Report of Children's Abilities (PARCA). This is an hour-long test 

consisting of three parent-administered tasks: a “find the pair” task, a drawing task, and a 

matching task. Items in these tasks assessed number, shape, size, conceptual grouping, and 

orientation skills. Some items were newly created for administration in TEDS, while others were 

adapted from previously well-validated measures, such as the McCarthy Scales of Children's 

Abilities (McCarthy, 1972) or the Bayley Scales of Infant Development (Bayley, 1993). The 

parent-administered PARCA component was supplemented by eight parent-report items 

anchored on concrete behaviours and requiring simple ‘yes’ or ‘no’ answers. Some of these 

items were newly created; others were adapted from the Minnesota Child Development 

Inventory (MCDI; Ireton & Thwing, 1974) and the Ages and Stages Questionnaires (Bricker, 
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Squires, & Mounts, 1995). Verbal ability, including vocabulary and grammar, was assessed by 

parent reports for the CDI-III, an extension of the short form of the MacArthur Communicative 

Development Inventories: Words and Sentences (Fenson et al., 2000). The PARCA has 

undergone testing and is established to be a valid and reliable measure of children's cognitive 

abilities (Bayley, 1993; Blaggan et al., 2014; d'Apice, Latham, & von Stumm, 2019; Martin et al., 

2013; McCarthy, 1972; Oliver et al., 2002; Saudino et al., 1998). The United Kingdom's National 

Institute for Clinical Excellence (NICE, 2017) uses a revised version (PARCA-R) in their 

developmental assessment guidelines. For our analyses, at each age, scores were 

standardised and summed to form z-scores of cognitive ability.   

Social-emotional development. Information on children’s behaviour problems was captured by 

the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). The SDQ is a brief 

screening questionnaire asking about attributes of children’s behaviour divided into four scales: 

Emotional symptoms, peer relationship problems, hyperactivity/inattention, and conduct 

problems. We used these scales to assess teacher ratings of children’s behaviour problems at 

ages 7, 9 and 12 years. Teacher ratings of behaviour problems were obtained via mail and 

included a total of 20 items at each age, that is, five items for each of the four scales. Teachers 

assessed, for example, if the child is “Restless, overactive, cannot stay still for long”, is 

“Generally liked by other children” or is “Often argumentative with adults”. The items were rated 

on a three-point Likert scale (certainly true; sometimes true; not true), wherein higher scale 

scores always indicated more challenging behaviour.  

Polygenic scores. In TEDS, the twins’ DNA was extracted from saliva and buccal cheek swab 

samples, collected in two waves, 5 years apart. Raw data from 10,346 individuals on over 

600,000 SNPs underwent quality control and genome-wide information was imputed for 

subsequent computation of polygenic scores. In the analyses in this project, we used polygenic 

scores for educational attainment (measured as years spent in education; Lee et al., 2018), 

attention deficit hyperactivity disorder (ADHD; Demontis et al., 2019) and the personality trait 

neuroticism (Luciano et al., 2018). Because the genetic information encoded in the DNA (i.e., 

one’s inherited DNA differences or SNPs) remains unaltered across the lifespan, the validity of 

polygenic scores is unaffected by the age at which DNA was collected. As discussed earlier, the 

polygenic scores that we used for our analyses have been found elsewhere to predict children’s 

educational attainment and achievement (Wilding et al., 2023), cognitive ability (Allegrini et al., 

2019), and childhood behaviour problems (Gidziela et al., 2022).  
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Measuring the environment   

To assess the environment, TEDS collected data on a number environmental factors that are 

important for developmental outcomes from birth up to early childhood, including child- and 

parent-reports of their experiences of family-, childcare-, and neighbourhood-level 

environments. Survey data on environmental factors was then linked with data from 'geo-

coding', which captures sociodemographic data, such as deprivation, type of housing and 

households, air quality, health factors, life expectancy, crime statistics, and proximity to green 

areas, all based on UK postcodes.   

 To adequately address diversity in the environmental factors experienced by different 

individuals, we adopted an 'atheoretical' approach to model environments: We included as many 

environmental factors as were available in the data in our analyses to explore which factors 

predicted cognitive development. Just as we assumed for individual DNA variants or SNPs, we 

assumed that each environmental factor would only have a very small effect and, therefore, that 

these effects would need to be added together to explain any substantial proportion of variation 

in the trait of interest. For our analyses of gene-environment interactions in children’s cognitive 

development, 39 environmental factors were available that broadly fell into four categories, 

including the home environment, family adversity, the neighbourhood environment, and 

environmental pollution variables (also see Figure 2). We summarise the measures included in 

each category measures in the following sections.  

Home environment. Information on children’s home environment includes parental reports on 

breastfeeding (number of days for which the child was breastfed) as well as the child’s overall 

eating and sleeping behaviour. Parents reported the number of books, puzzles and children’s 

tapes, records, and CDs available in the household and indicated how often the child engaged 

in various types of games (e.g., messy, physical, music, and board games). Information on 

parents’ verbal interaction with the child (e.g., correcting pronunciation or sentence structure), as 

well as on interactions such as singing nursery rhymes and joint book reading were included.  

In addition, parents’ provided ratings on their views on discipline, using the Parent Feelings 

Questionnaire (Deater-Deckard, 2000), and on chaos in the family home, using the CHAOS 

scale (Matheny et al., 1995). Lastly, the overall family socioeconomic status (SES) was 

assessed using information on mother’s and father’s educational qualification levels (1 = no 

qualifications to 8 = postgraduate qualifications), their employment status, and mother’s age 

when they gave birth to their first child. These variables were included in the analyses both as 

individual variables, and in the form of a composite score.  
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Family adversity. Indicators of adversity included medical risk factors both for the mother, 

relating to pregnancy and birth (e.g., number of weeks gestation at birth, number of days 

prescribed bed rest during pregnancy, number cigarettes smoked per day and units of alcohol 

consumed per week during pregnancy), and for the twins themselves (e.g., birth weight, number 

of days in neonatal intensive). In addition, maternal postnatal depression was recorded and 

previous experiences of major life events were assessed. Life events included, for example, 

whether a family member has ever had a serious illness, whether the respondent’s job or marital 

status changed, and new children living at home.  

Neighbourhood environment. To assess the neighbourhood environment, several aspects were 

taken into account, including the overcrowding factor of the area (i.e., average household size 

divided by average number of rooms), occupancy ratings (i.e., proportion of households that 

have fewer rooms/bedrooms than inhabitants), the proportions of people who were living in 

social housing, who had no qualifications, who were in full- and part-time employment, and who 

were lone parents.  

Pollution variables. To estimate air pollution in the area where children grew up, we included 

data on benzene, sulphur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxides (NOX) and 

particulate matter at less than 10 micrometres in diameter (PM10) and less than 2.5 

micrometres in diameter (PM2.5). Benzene is used widely in major industrial manufacturing 

process, including plastics, foams, dyes, detergents, solvents, and insecticides. Other major 

sources of benzene include vehicle exhaust and the evaporation and manufacturing of petrol. 

Thus, high levels of benzene pollution are seen around industrial areas and roads. The majority 

of sulphur dioxide in the environment comes from burning of coal and oil at large industrial 

plants. Vehicle exhaust, domestic boilers and fires also contribute to increased levels of sulphur 

dioxide. Nitrogen dioxides are a group of gases that form mainly during the combustion of fossil 

fuels, mostly coming from vehicle exhaust and energy and manufacturing industries. Particulate 

matter (PM10 and PM2.5 here) covers all material in the air that is not a gas and is measured by 

the size of the matter. Around 15% of particulate matter in the UK comes from natural sources 

such as pollen and sea spray. Particulate matter can travel large distances, resulting in a third of 

particulate matter in the UK coming from other European countries. Half of the particulate matter 

in the UK comes from domestic wood burning and tyre and brake wear from vehicles. The 

modelled background air pollution data at 1x1 km resolution was obtained from the UK AIR 

website (https://uk-air.defra.gov.uk/data/pcm-data). These data have been routinely collected 

every year (since 2001/2002 depending on which pollutant) to provide policy support to Defra, 
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for reporting on air pollution levels to Europe, and are made publicly available for other research 

purposes such as epidemiology and public health research. More details on the modelling of the 

air pollution measures can be found online (Technical Report on assessments of air quality in 

the UK).   

  

Figure 2. Environmental measures in TEDS, grouped by environmental domain for analyses in  

GxE in cognitive development. Adapted from von Stumm et al. (2023).    

 

https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf
https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2102111100_2019_PCM_technical_report.pdf
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For our analyses on gene-environment interactions in children’s development of behaviour 

problems (Plomin et al., 2022), we took a different approach compared to modelling interactions 

between the polygenic scores and the above outlined individual environmental factors. Instead, 

we selected eight parent-reported environmental variables that are related to behaviour 

problems in childhood from several hundred available in the TEDS data using two criteria. 

Firstly, we only included environmental factors that were at least moderately associated with 

children’s behaviour problems and, secondly, we excluded highly correlated environmental 

measures. We began with two environmental risk measures at age 3 and at age 4: A family-

general measure based on variables that are the same for co-twins (as a measure of shared 

environmental factors) and a twin-specific measure based on variables that differentiated 

between co-twins (as a measure of non-shared environmental factors). The family-general 

environmental risk composite included five standardised scores: Family SES, prenatal and 

perinatal medical risk, household chaos (the Confusion, Hubbub and Order Scale; Matheny et 

al., 1995), maternal postnatal depression the Edinburgh Postnatal Depression Scale (Cox et al., 

1987), and life events such as changes to marital status, new siblings, mother’s pregnancy, job 

changes and serious illness/accident). The twin-specific environmental risk measure included 

the same five variables as the family-general environmental risk measure, along with 17 

additional variables detailing twin medical risk factors, parental discipline, and a parental 

feelings (Deater-Deckard et al., 1998). At each age we also included a separate item about 

smacking and shouting because of its predictiveness (Gidziela et al., 2022).  

Because the environmental measures that we used here were correlated with one another 

across age 3 and 4, we grouped variables into two categories. The first category comprised 

general environmental risk factor and included both twin-specific and family-general 

environmental risk composites at ages 3 and 4, as well as SES. The second category 

comprised discipline and included the parental discipline composites and smacking/shouting 

variables at ages 3 and 4. The environmental risk and discipline categories correlated 

moderately. We used both categories as environmental predictors in the analyses.  

  

Analytical approach   

To address our research questions, we systematically tested for GxE effects in TEDS. The main 

analyses used regression analyses to model interactions between environmental variables and 

polygenic scores for years spent in education (Lee et al., 2018), as a proxy for genetic 
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propensities for cognitive development, and polygenic scores for child ADHD (Demontis et al., 

2019) and neuroticism (Luciano et al., 2018), as proxies for social-emotional development.  

Specifically, interaction terms were usually first modelled at the level of single variables, the 

smallest available unit of measurement, and then tested jointly in the prediction of children’s 

development. For predicting cognitive development, each environmental variable was included 

as a separate variable in our analyses, even in cases where they are known to be 

intercorrelated. For example, father's and mother's occupation, which are quantified using the 

census coding Standard Occupational Classification 2000; ONS, 2000) and correlate about 

0.40, were initially each modelled with their own interaction terms, rather than including a family-

level occupation variable that summarises multiple components (i.e., both mother’s and father’s 

occupation). This was to ensure that our findings provided the richest information possible about 

the specific mechanisms that are relevant in potentially very fine-grained effects of gene-

environment interaction.  

Although the proposed analytical approach relied on established statistical tools, no prior 

investigation has set out to simultaneously estimate a vast number of GxE effects. Thus, our 

approach was complemented by further statistical analyses, including (a) modelling GxE terms 

from composites for the environmental variable, and (b) investigating effects of gene-

environmental correlation, which are highly relevant for finding GxE, by testing cross-lagged twin 

models that allowed us to infer causal, directional effects between variables.   

For our analyses, we used polygenic scores to operationalise individuals’ genetic propensities 

whereas previous studies have used candidate gene designs or indirect estimates of genetic 

influences from twin and family studies. Using polygenic scores is a decisive advantage of our 

approach with regards to granularity. The increased use of GWAS in recent years has shown 

that all complex traits, including cognitive and social-emotional development and educational 

outcomes, exhibit strong polygenicity. That is, the heritability of complex traits is driven not by a 

few individual genes, but by a large number of the smallest genetic variants (SNPs) across 

many genes, whose effects must be cumulated to explain individual variance (see Wilding et al., 

2023 for an overview of DNA-based prediction of education-related traits).   

Previous studies on GxE effects were also limited due to including only one or two 

environmental measures to capture children’s rearing environment and any environmental 

experiences they encounter during their development. This is problematic since the effects of 

environments on development are likely to be at least as complex and manifold as that of 
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genetic information. Yet approaches to measuring and modelling the environment have not 

changed much for several decades, especially compared to the dramatic advances that 

occurred for the operationalisation of individuals’ genetic propensities. Also, while inherited DNA 

sequences remain unaltered across age and have comparable units of measurement (i.e., 

SNPs), the environment that people experience changes in every moment and cannot be 

quantified in directly comparable units. Environmental factors are much more diverse and their 

influences are harder to quantify since they depend on how experiences are perceived 

subjectively by the individual (von Stumm & d’Apice, 2022). In our analyses, we address this 

challenge by including broad indicators of the environment as described above, which have 

been measured longitudinally and through ratings from multiple respondents where possible.  

 

 

Summary of findings  

  

Using the approach outlined above, we have conducted several studies over the course of this 

project to investigate GxE effects in children’s development and to answer our research 

questions. We have disseminated our findings in research papers that have been published in 

scientific journals, are pre-printed and submitted for review, or are in preparation. We list all 

research papers connected to this project above (see section Overview of scientific 

publications). Here, we briefly summarise the results and discuss their implications. For more 

specific information on the measures and statistical methods used in each study, the results 

reported in detail as well as an in-depth discussion of these findings, please refer to the 

published, open-access papers or preprints, respectively.  

  

  

Do GxE effects exist in the prediction of children’s early life cognitive development?   

von Stumm et al. (2023) analysed the relationship between the above-described range of 39 

early life experiences, polygenic scores indexing children’s genetic propensities for cognitive 

development, and composite measures indexing their phenotypic cognitive development, as 

tested at the ages 2, 3 and 4 years. We explored the main effects of these 39 environmental 

experiences and of polygenic scores for years spent in education (Lee et al., 2018) on 

cognitive development individually, as well as testing for potential interactions between these 

polygenic scores and each of these 39 environmental experiences. Specifically, we tested 
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whether GxE effects existed in the prediction of cognitive development in early life and if so, to 

what extent these GxE effects could account for children’s differences in cognitive development 

that were not accounted for by direct effects of genetic or environmental factors alone. We also 

investigated which environmental variables were particularly relevant for GxE effects i.e., which 

of these variables explained most variance in children’s cognitive development.  

Our analyses revealed that all environmental measures together explained about 20% of 

variance in children’s early cognitive development, with the strongest effects being observed for 

talking and playing with the child, the degree of family home chaos, and parental discipline. By 

itself, the educational attainment polygenic score explained 0.5% of the variance in cognitive 

development, but it no longer emerged as an independent predictor when added to a model that 

also included the environmental measures (Figure 3), suggesting that gene-environment 

correlations fully explained the independent prediction from polygenic scores. None of the tested 

GxE interaction effects for any environmental factor reached significance after controlling for 

multiple testing. Adding all interaction effects into the model with all environmental measures 

and the polygenic scores did not significantly improve the prediction of children’s cognitive 

development beyond the direct effects of polygenic scores and environments. In short, we found 

no evidence for gene-environment interactions in the prediction of cognitive development from 

age 2 to 4 years. Yet, we found that the ‘environmental’ measures are substantially correlated 

with the polygenic score (–0.23 to 0.37), indicating that they are not truly external to the 

individual. Finding such strong evidence for gene-environment correlations (rGE) suggests that 

children’s genetic propensities for cognitive development influence which environmental 

experiences they encounter and how they actively select, modify, and create their environments.  
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Figure 3. PGS and environment predictions of early cognitive development  

Note. The bars show variance explained (adjusted R2 in early cognitive development) by the 

polygenic score (PGS; first bar from left), all 39 environmental variables (E; second bar), PGS 

and E measures together (third bar), and combining all direct and indirect interaction effects 

from PGS and E (PGS + E + GxE: fourth bar). Adapted from von Stumm et al. (2023).  

 

What drives the interplay between children’s cognitive development and the environment they 

experience?  

While we did not identify robust GxE effects in children’s development, we gained valuable 

insights into the mechanisms underlying the developmental association of environmental stimuli 
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and children’s cognitive development. As putatively environmental factors are often assumed to 

exert causal influences on children’s development, we tested the potentially causal relationship 

between children’s cognitive development between the ages 3 and 4 years and the cognitive 

stimulation they receive from their parents (e.g., activities such as talking and rhyming, joint 

book reading and playing games; Oginni, Starr, & von Stumm, 2024). Receiving more cognitive 

stimulation is associated with more favourable cognitive development but it is unclear whether 

this association is due to a common origin (i.e., shared genetic or environmental factors 

throughout development) or due to causal directional paths and, if so, in which direction. Here, 

we aimed to clarify whether cognitive stimulation causes cognitive development or vice versa, 

and to shed light on potential common genetic and environmental influences.  

Our analyses investigated prospective causal effects in both directions between cognitive 

stimulation and children’s cognitive development (Figure 6). When controlling for correlations at 

each assessment and the developmental stability of cognitive ability and stimulation over time, 

we found consistent, bidirectional effects from cognitive development at age 3 to cognitive 

stimulation at age 4, and from cognitive stimulation at age 3 to cognitive development at age 4. 

However, these cross-lagged longitudinal effects were largely explained by underlying common 

genetic and shared environmental factors, rather than reflecting causal mechanisms.  This 

indicates that contemporaneous mechanisms drive the causal influences between cognitive 

ability and stimulation: Children benefit from experiencing cognitively stimulating environments, 

and at the same time their cognitive development evokes the cognitive stimulation that their 

parents provide. Yet, interventions aiming to improve the stimulation children receive may only 

have limited purchase in directly influencing their cognitive development. These findings 

challenge long-held assumptions that children are simply passive recipients of the environments 

created for them by the adults around them (i.e., passive rGE). Rather, these analyses provided 

evidence that children exercise agency in co-creating cognitively stimulating environments 

tailored to their own genetic propensity for cognitive development, along with their parents and 

caregivers (evocative rGE).  
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Figure 6. Cross-lagged model using twin data on the association between cognitive 

development and cognitive stimulation.   

Note. The cross-lagged effects f and g are controlled for stability over time (dashed paths) and 

cross-sectional correlations (double-headed arrows) due to common genetic (A), shared 

environmental (C) and non-shared environmental (E) factors. The model additionally accounts 

for common genetic effects (red paths) and common shared environmental effects (blue paths) 

over time. Adapted from Oginni, Starr, & von Stumm (2024).  

 

 
Our modelling approach allowed us to disentangle potentially confounding effects of common 

causes for both measures from true directional, causal influences. This represents a clear 

advantage over phenotypic, observational studies on children’s development, which cannot 

account for mechanisms of genetic confounding. Estimating the proportions of causal influences 

and common causes in the overall relationship between children’s cognitive stimulation and their 

cognitive development allows realistic estimates for the magnitude of the potential impact of 

interventions that seek to improve children’s cognitive development. Our results confirmed that 

putatively environmental traits, such as the cognitive stimulation that children receive are 

genetically influenced. This finding is likely a result of gene-environment correlations, meaning 
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that, due to their genotype, parents may create rearing environments for their children that also 

correlate with said children’s offspring genotypes, which in turn affects the children’s phenotypic 

development. Our findings contribute to a growing body of evidence showing that children are 

not passive recipients of environmental inputs but select, modify, and create experiences that 

are correlated with their own genetic proclivities (Bronfenbrenner & Morris, 2006; Wertz et al., 

2019).  

  
Are GxE effects relevant in predicting children’s social-emotional development?  

Plomin et al. (2022) investigated effects of gene-environment interactions for children’s social-

emotional development, in terms of hyperactivity/inattention, conduct problems, emotional 

symptoms and peer relationship problems (assessed using the Strengths and Difficulties 

Questionnaire; SDQ). These behaviour problems are known to be related to the environmental 

risks that children experience early in life, such as adverse family home conditions. However, it 

is unclear so far if children’s genetic propensities for psychopathological disorders moderate this 

relationship.  

Hence, we tested to what extent children’s problem behaviour could be predicted by 

environmental risk (E), polygenic scores for ADHD and neuroticism (G) and their interactions 

(GxE). We also investigated whether these effects varied developmentally across childhood at 

the ages of 7, 9, and 12 years.  

We found that the ADHD polygenic score (Demontis et al., 2019) was overall more predictive for 

behaviour problems than the neuroticism polygenic score (Luciano et al., 2018) except for with 

regard to emotional symptoms, explaining up to 2% of the variance. Similarly, environmental risk 

explained up to 2.7% of variance in behaviour problems and was on average more predictive for 

hyperactivity/inattention and conduct problems than for peer relationships and emotional 

symptoms. No clear developmental trends in these associations emerged across children’s 

ages. Including GxE effects in the analyses improved the prediction of behaviour problems only 

slightly (Figure 4). Twelve out of 48 interaction tests were significant but they accounted on 

average only for 0.2% of variance, which was below the power threshold for detecting 

interaction effects in this sample. Despite their modest size, the interactions indicated that 

children with a higher genetic propensity for psychopathology showed disproportionally more 

problem behaviour when they experienced high levels of environmental risk. However, given the 

small effect sizes observed here, we caution against interpreting these findings with reference to 

any particular theoretical model of GxE. In order to be able to draw stronger conclusions from 
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these findings, GxE effects on children’s behaviour problems need to be validated in future 

studies involving even larger sample sizes.    
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Figure 4. G + E and GxE prediction of teacher-rated hyperactivity/inattention (a), conduct 

problems (b), emotional symptoms (c) and peer relationship problems (d) at ages 7, 9 and 12.   

Note. Each line shows how much variance the environmental risk or discipline composite 

explains together with the polygenic score. Blue circles represent the additive prediction effects 

of environmental measures and the PGS, yellow circles show the interaction effects (controlling 

for the additive effects), and red shows the total variance explained by both additive and 

interaction effects. Adapted from Plomin et al. (2022).  

  

Interim summary of empirical GxE findings  

We did not find conclusive evidence for gene-environment interaction effects in explaining 

children’s cognitive and social-emotional development. If these findings reflected true 

(nonsignificant) effects, we could conclude that interventions which target children’s cognitive 

and social-emotional development may be equally effective for all children that face challenges 

due to environmental risk and may therefore yield comparable results independent of child 

genotype. However, while this conclusion is supported by this project’s empirical evidence, we 

caution that our null effects may be false negative findings for several reasons.  

First, the polygenic scores currently available only explain a small proportion of variance in 

children’s cognitive and social-emotional development and suffer from “missing heritability”, 

meaning that these scores do not capture all trait-relevant DNA differences. The polygenic score 

for years spent in education (Lee et al., 2018) explains about 16% of the variation in educational 

achievement (GCSE results) and about 11% of variation in cognitive ability at age 16 (Allegrini 

et al., 2019; Wilding et al., 2023), while twin studies have confirmed heritability estimates of at 

least 50% (Polderman et al., 2015). One possible explanation is that polygenic scores only 

include more common DNA differences, and not those that are rare in the population. Some of 

these rarer variants might be just as predictive or perhaps even more predictive for trait 

outcomes than common DNA variants. Another possible explanation is that polygenic scores do 

not include gene-gene interactions such as dominance effects – that is, cases where the effect 

of one SNP on a trait outcome depends on another SNP; Manuck & McCaffery, 2014). Because 

interaction and main effects are independent of each other, the modest predictive validity of 

polygenic scores for children’s differences in early life cognitive and social-emotional 

development does not necessarily cause null findings regarding potential interaction effects. 

However, as the polygenic score only captured a fraction of the DNA differences associated with 
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the trait of interest, true GxE effects may have been missed in the analyses we conducted here. 

It is also possible that our operationalisation of genetic propensities via polygenic scores might 

have not been suitable to identify GxE effects, because interactions might happen at a different 

level of measurement. That is, interaction effects may take place at the level of single genes or 

single SNPs. If this is the case, using polygenic scores, which are a composite measure, 

combining many SNPs together, would be too coarse and high-level to detect interactions.  

Second, while we investigated a much broader range of environmental variables than previous 

studies in this field, there are many more that we did not test here. In the same way that traits 

are affected by many genetic variants across the genome, many environmental factors (e.g., 

family characteristics, parental behaviour, economic factors, educational provision, etc.) may 

influence observable trait outcomes. These measures broadly comprise the ‘environome’, a 

term coined to summarise all environmental factors that give rise to individual differences in 

cognitive and social-emotional development (von Stumm & d’Apice, 2022). However, there is no 

agreed-upon theory of how to map all possible environmental factors, rendering it impossible to 

know if all environmental domains were measured. It is possible, therefore, that GxE effects 

may exist in environments which were not measured, or that our results may have been affected 

by unobserved environments. Alternatively, our environmental measures might not have been 

well-suited in terms of the measurement level to detect GxE effects, in a similar way to our 

operationalisation of genetic propensities.  

Taken together, the lack of GxE effects observed here may be due to methodological limitations 

of these papers, and GxE effects may be found if these limitations are overcome. Therefore, 

there is currently absence of evidence for GxE in children’s cognitive and social-emotional 

development, and no true evidence for the absence of these interaction effects. Regarding our 

aforementioned research questions, we conclude that future studies on GxE in children’s early 

development are needed to yield more conclusive results about the existence of interaction 

effects.  

  

Why did our analyses not reveal robust GxE effects in children’s development?  

The approach we took in the research outlined here does provide not produce strong, robust, 

conclusive evidence as to whether GxE effects are relevant for children’s cognitive and social-

emotional development. Results from previous research were also inconclusive (Hsu et al, 

2012; Manuck & McCaffery, 2014). We therefore reviewed the methodological issues that might 
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have contributed to our null findings (von Stumm & Nancarrow, 2023). A crucial issue for 

identifying interaction effects is statistical power, which refers to the probability that a statistical 

test can detect a true effect (Abraham & Russell, 2008; Cohen, 1992). Underpowered studies 

lead to inconsistent results, as true effects are likely to go undetected, and effects which are 

detected may be artefacts (Abraham & Russell, 2008; Sham & Purcell, 2014). Because GxE 

effect sizes tend to be very small, detecting them in empirical studies requires large samples of 

thousands of participants, rendering many existing studies underpowered. No ‘hard and fast’ 

rule exists to calculate power for interaction studies (Shieh, 2009). We therefore performed 

simulation studies to estimate the required sample sizes needed to ensure sufficient statistical 

power (i.e., typically 80%) in order to detect GxE effects with different effect sizes (𝛽 = 0.01 - 

0.10). Our simulations suggested that a sample of over N = 75,000 is necessary to detect the 

smallest effects, while even for mid-sized interaction effects sample sizes of close to N = 4,000 

are required (see Figure 5 for required sample sizes along the entire span of effect sizes 

modelled).  

To inform future research on GxE effects, we have drawn several recommendations from our 

findings. For example, since the issue of statistical power is closely tied to a study’s sample 

size, we recommend collecting data from larger numbers of participants or to increase sample 

sizes through collaborations and pooling of data. To realise such collaborations and the pooling 

of data, consistent data collection protocols need to be implemented, so that data can easily be 

harmonised and shared. Our recommendations on sample size, together with those on 

measurement quality and confounding, will provide a valuable resource for researchers studying 

GxE in child development, to detect true interaction effects and correctly interpret null results.   
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Figure 5. Sample sizes to achieve 80% statistical power for identifying interaction effect sizes 

from β = 0.01 to 0.10. Adapted from von Stumm and Nancarrow (2023).   
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Discussion & Implications  

  

Recap: Key findings and discussion points  

Our studies on GxE in children’s early life development conducted over the course of this project 

did not identify robust GxE effects in the prediction of children’s cognitive and social-emotional 

development. Both the wide variety of environmental measures included in our analyses and 

children’s genetic propensities, operationalised as polygenic scores, explained significant 

portions of variance in children’s developmental outcomes. However, over and above these 

direct, additive effects, interactions between genetic and environmental predictors do not add 

substantially to the variance explained.   

Our null findings might indicate true absence of GxE in children’s early life development.  

Alternatively, and more likely, our results may be false negatives that may have emerged for 

three main reasons. First, despite our preliminary power analyses, our studies might not have 

had sufficient statistical power to robustly identify the potentially miniscule and complex GxE 

effects in children’s cognitive and social-emotional development. To explore this possibility, we 

conducted simulation studies on statistical power and reported the sample sizes needed to 

discover interactions of varying effect sizes. Second, the measures we used to operationalise 

environments and genetic propensities may have hindered detecting GxE effects, because they 

did not capture environments and genetic propensities at the right level to detect GxE. Since 

both, our genetic and environmental measures, can be seen as composites comprising 

information at a comparatively coarse level, we cannot rule out with certainty that GxE effects 

may exist at a more fine-grained level, that is, at the level of single genes or DNA variants and 

specific, narrow environmental factors. Third, our null findings may have resulted from the fact 

that the mechanisms driving gene-environment interplay are highly complex. We therefore 

investigated the bidirectional developmental relationship between children’s cognitive 

development and their environmental experiences, in particular the cognitive stimulation they 

receive in their family homes in early life. We found bidirectional effects between cognitive 

stimulation and cognitive development, which were explained by common genetic and shared 

environmental factors. This finding illustrates that children are not passive recipients of the 

environments that they are exposed to. Instead, they actively select, shape, and create the 

environmental experiences that match their genetic propensities.  
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Implications and impact  

While no robust evidence for GxE in children’s early development emerged from our studies, we 

have confirmed the prediction from a wide variety of environmental factors and children’s 

genetic propensities for cognitive and social-emotional development in the first years of life. 

From these findings, we can draw several implications for theory and practice, which are key to 

advancing the development of interventions that effectively ameliorate the pervasive effects of 

childhood inequality.  

In general, the ability to systematically predict children’s developmental differences, indicates 

the possibility to reliably identify children who are at an increased risk for poor developmental 

outcomes. Reliable identification of at-risk individuals is key to intervening and reducing the 

consequences of early life disadvantage (von Stumm, 2022). Our studies have revealed two 

principles that drive the relationship between environmental factors and children’s 

developmental outcomes. First, we have found that many environmental factors, each with very 

small effects, seem to be involved in shaping child development, instead of just a handful of 

factors exerting stronger influences. This finding reflects the genetic principle of polygenicity – 

the phenomenon whereby each trait is influenced by a large number of genetic variants with 

miniscule effects that add up and, in sum, predict significant proportions of variance in traits. The 

same seems to be true for environmental factors when considering that up to 39 environmental 

predictors together account for about 20% of the variance in children’s cognitive development 

(von Stumm et al., 2023). Second, these environmental factors most likely do not predict 

outcomes in one specific developmental domain, but are likely associated with children’s 

development across domains, i.e., across both cognitive and social-emotional outcomes. This is 

akin to the principle of pleiotropy in genetics – the phenomenon whereby one genetic variant is 

associated with differences in trait expression for more than one phenotype.  

Regarding the environment, these principles imply that changing a single or very few 

environmental factors may only have a rather small effect on development. Yet, at the same 

time, these changes to a single or very few environmental factors are likely to affect outcomes in 

more than one developmental domain, if they have an effect at all, even though their effect sizes 

are likely to be small. For example, regarding the bidirectional relationship we observed 

between children’s cognitive development and the cognitive stimulation they receive, we 

speculate that increasing cognitive stimulation will be associated, not only with children’s 

cognitive abilities, but also their social-emotional developmental outcomes, such as sociability 

and self-control. However, the link between cognitive stimulation and development should not be 
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deemed causal, because it rather is accounted for by common genetic and shared 

environmental factors. Further research should explore other aspects in the wide range of other 

putatively environmental factors, which can be expected to also play a role.   

Our findings contribute to the development of realistic expectations for the effectiveness of 

interventions that seek to reduce early childhood inequality. Interventions are unlikely to produce 

large effects that are limited to one or two developmental domains; instead, they are likely to 

create very small changes which are spread broadly across developmental domains, if they are 

indeed successful. Recognising this is key to realistically predicting what an intervention can 

and cannot achieve. While interventions are typically costly to design and implement, upholding 

these efforts is crucial to eventually reduce the long-term effects of experiencing early life 

disadvantages. Recognising the potential for positive change and the limitations of interventions 

will help to maintain public support for continuing to develop and implement interventions, even 

if their benefits unfold only slowly and step by step (von Stumm, 2022).  

  

Recommendations for future research  

 

Overcoming missing heritability: capturing more genetic differences  

As discussed above, our null GxE effects may be false negative results due methodological 

limitations of our work. One of these limitations is the problem of missing heritability. To ensure 

that possible GxE effects do not go unobserved, future research should strive to close the 

missing heritability gap. A possible solution to this problem could be using polygenic scores from 

larger GWAS that are sufficiently powered to detect more of the SNPs that are associated with 

the trait of interest, including SNPs that occur less frequently across individuals in a given 

population. A GWAS for human height with a sample size of N > 5,000,000 recently became the 

first GWAS to overcome the missing heritability gap, proving that this goal is attainable (Yengo 

et al, 2022). Larger GWASs are also presently being conducted for psychologically relevant 

traits, such as educational achievement, and efforts to pool samples and harmonize measures 

are increasing. This means that future studies will be able to utilise polygenic scores with higher 

predictive validity. Additionally, future studies could refer to methods that combine GWAS for 

different traits (such as genomic structural equation modelling; Grotzinger et al, 2019) to 

improve the predictive ability of polygenic scores.  
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If, alternatively, the reason was for our null findings was that polygenic scores represent too 

coarse a level of measurement, then using stronger polygenic scores in future analyses may not 

overcome this limitation. However, in this case, a larger GWAS, identifying more of the SNPs 

associated with a trait of interest would also enable researchers to search for a larger set of 

gene-environment interactions at the more fine-grained SNP-level. 

  

Studying the Environome: capturing more environmental differences  

Complex traits such as child development are associated with many environmental factors 

across the ‘environome’. However, there are no guidelines or methods for assessing the 

environome, akin to those for assessing a person’s genome (von Stumm & d’Apice, 2022). 

Therefore, GxE effects may be missed if environmental domains are not studied 

comprehensively, but instead through cumulative risk indices. Future research should therefore 

be targeted at collecting naturalistic observations in real time, for instance by using digital 

technologies such as mobile sensing for “capturing the environome across levels, dimensions, 

and time in unprecedented depth and detail” (von Stumm & d’Apice, 2022, p. 6). This is needed 

to develop a scientific framework of environmental domains, and to investigate GxE in children’s 

development across these domains. By observing finer-grained individual differences in genetic 

and environmental factors, future research can determine where GxE effects exist in early life 

development.  

  

The utility of polygenic scores in intervention research  

The key motivation for studying GxE in children’s cognitive and social-emotional development is 

to inform interventions that improve children’s developmental trajectories. The effectiveness of a 

given intervention may depend on participating children’s genotype if the environment that is 

targeted by the intervention is subject to GxE effects. The effectiveness of interventions varies 

substantially across children (Jeong et al, 2021; Protzko et al, 2013). To better understand how 

genetics may contribute to children’s differences in responding to interventions, study designs 

for evaluating the effectiveness of interventions should be genetically sensitive. That is, such 

studies should include genetic propensities as predictors or confounders alongside their other 

variables. Polygenic scores offer an unprecedented opportunity for integrating genetic effects in 

intervention studies, because they are easily obtained and can be modelled like any other 

predictor variable. GWAS summary statistics are openly available, and genotyping samples has 
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become increasingly affordable, facilitating the inclusion of genetics, in the form of polygenic 

scores, into studies that previously relied solely on phenotypic and environmental measures of 

children’s developmental differences. The methodological accomplishment of polygenic scores – 

perhaps the epitome of the DNA revolution – will not only advance our understanding of 

children’s genetic propensities, but strengthen discoveries of environmental influences as 

previously unobserved, confounding genetic factors can be accounted for. We predict that the 

advent of more robust findings on the gene-environment interplay in children’s early life 

development is imminent, and that intervention researchers who incorporate polygenic scores in 

their study designs will be key drivers of this process.   

  

Conclusions  

The aim of our project was to investigate GxE effects in children’s early life cognitive and social-

emotional development, since previous findings in this area have been inconclusive. While no 

robust findings on GxE emerged from our analyses, our findings contribute to improving our 

understanding of how genetic and environmental factors jointly predict differences in children’s 

cognitive and social-emotional development. We identified a wide range of genetic and 

environmental factors, that – each with small effects – are likely to drive children’s differences 

over the course of development. The influences of these genetic and environmental factors are 

neither specific to a particular phenotypic trait or developmental outcome, nor are they 

independent of each other. Overlapping or correlated sets of genetic and environmental factors 

drive children’s developmental differences across domains, with small individual effect sizes. We 

recommend that future research on GxE places particular emphasis on statistical power and 

seeks large sample sizes that allow for reliably detecting small interaction effects.   
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