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Abstract 

Cost-effectiveness analyses (CEAs) that use patient-specific data on costs and health 

outcomes from a randomized controlled trial (RCT) are popular, yet such CEAs are 

often criticized because they neglect to incorporate evidence external to the trial. 

Although evidence directly defined on cost and health outcomes is often not 

transferrable across jurisdictions, evidence on biologic aspects of treatments such as 

the treatment effect can be transferred, and incorporating such evidence in the CEA can 

conceivably affect the results. Fully parametric Bayesian evidence synthesis for RCT-

based CEAs is possible, but there are challenges involved in parametric modeling of 

cost and health outcomes and their relation with external evidence. A popular method 

for quantifying uncertainty in a RCT-based CEA is the bootstrap. It will be attractive to 

further expand this method for the incorporation of external evidence. To this end, we 

utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost 

and effectiveness outcomes after observing the current RCT data and the external 

evidence. We propose simple modifications of the bootstrap for sampling from such 

posterior distributions. We use data from a clinical trial and incorporate external 

evidence on the effect size of treatments to illustrate the method in action. Compared to 

the parametric models of evidence synthesis, the proposed approach requires fewer 

distributional assumptions, does not require explicit modeling of the relation between 

external evidence and outcomes of interest, and is generally easier to implement.  

Keywords: Cost-Benefit Analysis+ Bayes Theorem+ Clinical Trial+ Statistics, 

Nonparametric 
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1 Introduction 

Randomized controlled trials (RCTs), especially ‘pragmatic’ trials that measure the 

effectiveness of interventions in realistic settings, are an attractive opportunity to provide 

information on cost-effectiveness [1]. In the context of such a RCT, many aspects of 

treatment from the clinical outcomes to adverse events to costs are measured at the 

individual level, which can be used to formulate an efficient policy based on cost-

effectiveness principles. A growing number of trials incorporate economic end-points at 

the design stage and there are established protocols and guidelines for conducting cost-

effectiveness analysis (CEA) alongside a RCT [2,3].  

The statistic of interest in a CEA is the incremental cost effectiveness ratio (ICER), 

which is defined as the difference in cost (��) between two competing treatments over 

the difference in their health outcome (effectiveness) (��). ICER is often compared with 

a willingness-to-pay (WTP) value that reflects the maximum amount the decision maker 

is willing to pay to receive the health outcome [4]. An ICER below this value means the 

alternative treatment is cost-effective compared with the baseline treatment. With 

patient-specific cost and health outcomes at hand, estimating the population value of 

the ICER from an observed sample becomes a classical statistical inference problem. 

However, given the awkward statistical properties of cost data and some health 

outcomes such as quality-adjusted life years (QALYs), and issues around parametric 

inference on ratio statistics, many investigators choose resampling methods for 

quantifying the sampling variation around costs, health outcomes, and the ICER [5]. In 

parallel-arm RCTs, this can be performed by obtaining a bootstrap sample within each 

arm of the trial, and calculating the mean cost and effectiveness within each arm from 
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the bootstrap sample; repeating this step several times provides a random sample from 

the joint distribution of arm-specific cost and effectiveness outcomes. This sample can 

then be used to make inference on (e.g., calculate the confidence interval for) the ICER 

[6]. Uncertainty in the results can also be communicated in alternative ways such as the 

cost-effectiveness plane and the cost-effectiveness acceptability curve (CEAC) [7], or 

value of information measures [8].  

Recently, such a framework for evaluating the cost and health outcomes of health 

technologies has received some criticism [9–11]. Specifically, critics argue that making 

decisions on the cost-effectiveness of competing treatments should be based on all the 

available evidence, not just those obtained from a single RCT. Lack of 

comprehensiveness in evidence synthesis in CEAs can potentially result in suboptimal 

decision-making [11]. In this context, evidence synthesis is the practice of combining 

multiple sources of evidence (from other RCTs, expert opinion, case histories) in 

informing the treatment decision, a task that is quantitatively performed using the Bayes' 

rule [12].  

1.1 Challenges in Bayesian evidence synthesis in CEAs 

In the biostatistics literature, Bayesian analysis of clinical trials is an active and 

flourishing area of research [12–15]. Trialists, however, have mainly focused on 

statistical inference on a single trial outcome, the effect size, incorporating prior 

knowledge on the effect size from previous trials, other experimental studies, expert 

opinion, as well as ‘off the shelf’ priors [12]. For trial-based CEAs, if external evidence 

on cost or effectiveness is available, then the investigator can use such Bayesian 

methods to combine this information with trial results. This has been the dominant 
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paradigm in the Bayesian analysis of RCT-based CEAs [16–20]. However, prior 

information on cost and effectiveness is rarely available and if it is, it is often 

inappropriate to transfer to other settings [21]. This is because cost and typical 

effectiveness outcomes such as QALYs are, to a large extent, affected by the specific 

settings in the jurisdiction in which they are measured (e.g., unit prices for medical 

resources, practice patterns, organizational peculiarities, population preferences, and so 

on). On the contrary, evidence on the aspects of the intervention that relate to the 

pathophysiology of the underlying health condition and the biologic impact of treatment, 

such as the effect size of treatment or rate of adverse events, are less affected by 

specific settings and are therefore more transferable. This puts the investigator in a 

difficult situation for a RCT-based CEA: inference is made directly on the cost and 

effectiveness using the observed sample, but evidence is available on some other 

aspects of treatment that is not necessarily identified during the CEA.  

As an example, consider a hypothetical trial in which the investigator is interested in 

inference on the incremental costs per QALY gained between two treatments, and that 

both costs and QALYs are collected at the individual level during a RCT. Without any 

external evidence, the investigator can make direct inference on the joint distribution of 

cost and QALYs across the trial arms based on the observed sample, for example, to 

construct a CI for the ICER, and to draw the cost-effectiveness plane and the CEAC. 

But now imagine there is external evidence on the effect size of treatment from another 

RCT, as well as adverse drug reaction rates for the control arm from an observational 

study. How can external evidence on such parameters be incorporated in the analysis 

and then be propagated to population values of cost and QALYs? One way to do so is 
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to create a parametric model to connect cost-effectiveness outcomes with parameters 

for which external evidence is available. The model can be updated using a variety of 

techniques such as Markov Chain Monte Carlo (MCMC) methods or through the 

maximization of likelihood as used in the Confidence Profile method [22]. But a model 

for this example should connect several parameters through link functions, regression 

equations, and error terms. This involves a multitude of parametric assumptions, and 

there is always the danger of model misspecification [23,24]. In addition, even with the 

advent of generic statistical software for Bayesian analysis, implementing such a model 

and comprehensive model diagnostics are not an easy undertaking. For an investigator 

using resampling methods for the CEA who wishes to incorporate external evidence in 

the analysis, this paradigm shift to parametric modeling can be off-putting. An 

alternative approach is to combine the popular resampling methods of RCT-based 

CEAs with Bayesian evidence synthesis. 

In the present work we propose and illustrate simple modifications of the bootstrap 

approach for RCT-based CEAs that enable Bayesian evidence synthesis. Our proposed 

method requires a parametric specification of the external evidence while avoiding 

parametric assumptions on the cost-effectiveness outcomes and their relation with the 

external evidence. The methods presented are a form of rejection sampling [25] and 

importance sampling [26] applied to the bootstrap– approaches that are very simple to 

implement.  

The remainder of the paper is structured as follows: after outlining the context, a 

Bayesian interpretation of the bootstrap is presented. Next, the theory of the 

incorporation of external evidence into such sampling scheme is explained. A case 
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study featuring a real world RCT shows the practical aspects of implementing such a 

method. A discussion section on the various aspects of the new methods and their 

strengths and weaknesses compared to parametric approaches concludes the paper.  

2 Concept and notation 

Let � = {�� , �	} be the set of parameters to be estimated from the data of a RCT and 

some external evidence. It consists of two subsets:	��, the outcomes parameter(s) for 

which there is no external evidence, and �	, some auxiliary parameters for which 

external evidence is available. Typically, �� includes cost and effectiveness outcomes, 

and �	 consists of some biological measures of treatment such as treatment effect size. 

Let � represent the individual-level data of the current parallel-arm RCT, fully available 

to the investigator; let �	 be some external data providing evidence on	�	. While the 

external data is not fully available to the investigator, evidence is available most typically 

in the form of the likelihood	
(�	; �	), for example, recovered from the reported 

maximum likelihood estimate and confidence bounds of treatment effect from a 

previously published study. Throughout this work we assume � and �	 are 

independent, and that the population of interest for inference is the same as the 

population from which � is obtained (the assumption that �	 comes from the same 

population can be partially relaxed through discounting the external evidence, as will be 

described later). 

2.1 A Bayesian interpretation of the bootstrap 

In a Bayesian context, the problem of inference on � from a sample	� can be 

conceptualized as incorporating some prior information with the information provided by 

the data to obtain a posterior distribution for	�.  



8 

 

  �(�|�) ∝ �(�). 
(�; �),     (1 

omitting a normalizing constant which is the function of �, but not �. Here	�(�) is our 

prior distribution on	�, 
(�; �) is the likelihood of current data, and �(�|�) is the 

posterior distribution having observed the trial data	�. If prior and posterior distributions 

are from a parametric family indexed by a set of distribution parameters, then a fully 

parametric model can be used to draw inference on	�(�|�). However, one can also 

perform such Bayesian inference non-parametrically: Rubin [27] showed that if we 

assume a prior non-informative Dirichlet distribution for � itself (regardless of which 

parameter to estimate), then we can directly draw from �(�|�) using a simple process 

called the Bayesian bootstrap. In the Bayesian bootstrap of a dataset	� consisting of � 

independent observations, a probability vector � = (��, . . . , ��) is generated by randomly 

drawing from	�����ℎ� !(�; 1, . . . ,1). The probability distribution that puts the mass of #$ 

on the �%& observation in � can be considered a random draw from the 'distribution of 

the distribution' that has generated	�. Let �∗ present a bootstrapped sample of	� 

generated in this way, then according to the argument made above,	�∗, the value of � 

measured in this sample, is a random draw from	�(�|�). [Citation: manuscript to appear 

in Health Economics, available before appearing on the publisher website at 

http://webservices.core.ubc.ca/wp-content/uploads/rct.voi_.www_.pdf]  

Operationally, as described by Rubin [27], one Bayesian bootstrap replication of a 

vector of size � can be generated by drawing (� − 1) observations from )��*+�,(0,1) 

random variables )�, . . . , )�.�, ordering them, and calculating the gaps #$ = )$ −

)$.�,	where )/ = 0 and )� = 1. In this case � = (��, . . . , ��) is the weight vector 
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associated with the current Bayesian bootstrap replication. Alternatively, one can 

generate � 01,,1(1,1) random variables 2�, . . . , 2�	and then rescale them to �$ =

2$/∑ 25
�
56�  to obtain the weight vector for a Bayesian bootstrap replication [28].  

For a typical parallel arm RCT, the data structure is more complicated than that of a 

real-valued vector. But the bootstrap remains a valid inferential technique as long as the 

bootstrapping mechanism mirrors the mechanism that has generated the data [29], 

which, for parallel arm RCTs, means obtaining bootstrap sets separately within each 

arm of the RCT, with unit of sampling being the entire set of data pertaining to each 

individual [5,30,31].  

2.2 CEA without the incorporation of external evidence 

In a CEA in which we do not intend to incorporate any external evidence, the quantity of 

interest for inference is	�(�|�). As described in the previous section, a sample from this 

quantity can be obtained using a simple resampling algorithm:  

1. For � = 1, . . . , 7, where 7 is the number of simulations: 

2. Generate	�∗, a Bayesian bootstrap sample with bootstrapping performed 

within each arm of the trial.  

3. Calculate	�∗ from	�∗.  

4. Store the value of	�∗ and jump to 1. 

This approach generates 7 random draws from the posterior distribution of � having 

observed the RCT data. This is very similar to the bootstrap method of the RCT-based 

CEAs [5], except that the regular bootstrap is replaced by the Bayesian bootstrap. Let 

��$
∗ and ��$

∗ be the estimates of the expected value of the incremental costs and 
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effectiveness between two treatments from the ith bootstrap. An estimator for the ICER 

from the bootstrapped data can be obtained as	∑ ��$
∗8

$6� /∑ ��$
∗8

$6�  [5]. Various methods 

can be used to construct a confidence interval from the bootstrapped sample around 

this value [5,32].  

2.3 Incorporating external evidence 

In the presence of external data	�/, the quantity of interest is	�(�|�, �/), which can be 

expanded as 

�(�|�, �	) ∝ �(�). 
(�, �	; �) ∝ �(�). 
(�; �). 
(�	; �) ∝ �(�). 
(�; �). 
(�	; �	),  (2 

omitting a normalizing constant which is the function of	� and �/, but not �. In the above 

derivations, we have used the independence of the external and current data to 

factorize the likelihood, as well as the fact that external data provides no information 

about	��, so the likelihood term 
(�	; �) is replaced by its partial version	
(�	; �	). This 

substitution effectively means the investigator a priori (before the external and current 

data become available) assumes there is no dependence between �	 and	��, which, as 

Chen et al. mention while investigating a similar problem  "is a sensible assumption if in 

fact the new set of covariates in the current study is being scientifically investigated for 

the first time"([33], page 58). Indeed, if any information exists on the dependence 

between θ: and θ;, it should have been incorporated in the evidence using a different 

likelihood.  

An important consideration is that such a model gives equal weights to the external and 

current data. The external data might have been obtained through a process that is 

different in some aspects from the process that has generated the data of the current 
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RCT (a different intervention protocol, an outdated method of practice, different dose of 

the treatment, and so on). Because we have assumed the investigator is interested in 

inference on the population of the current RCT, such discrepancy between the current 

and external data should lead to the external evidence being given lower importance 

than the current data. One way to give lower weights to the external evidence is to 

'discount' the information in the external data using the power prior proposed by Chen et 

al. [13,33]: 

�(�|�, �	 , <) ∝ �(�). 
(�; �). 
(�	; �	)=,     (3 

where < ∈ [0,1] is the discounting factor. An < = 1 means external and current data are 

given equal weights, and < = 0 means external data is ignored altogether.  

Further, in both (2) and (3), the external evidence is defined as the likelihood for	�	. In 

some situations such evidence might more precisely be defined as a (posterior) 

probability distribution	�(�	|�	), which is connected to the likelihood through the initial 

prior : �(�	|�	) ∝ �/(�	). 
(�	; �	). An example where evidence can better be explained 

as a probability distribution than likelihood is the predicted distribution of effect size in a 

future study from a random-effects meta-analysis of previous studies [35]. So the 

likelihood term in (2) can be replaced by	�(�	|�	), but this means the investigator is 

also incorporating the information in the initial prior, and this requires that such a prior 

be independent of all other components in (2). Finally, a probability distribution for �	 

can be obtained via a more subjective process such as elicitation of the expert opinion, 

or use of a 'default prior' reflecting our skepticism or enthusiasm about the result of the 

experiment [13], or a 'structural prior' coming from logical expectations about the 
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structure of the data [36]; in all such cases the external data �/ becomes an abstract 

entity.  

Therefore the information in the external evidence can be in the form of likelihood, 

discounted likelihood, a probability distribution estimated from an external data, or a 

probability distribution elicited subjectively. In all such situations the external evidence is 

represented by a scalar function from �	 to the positive real line quantifying the degree 

of the plausibility of a value of �	 against external evidence; as such, and for the 

generalizability and clarity of notations, we hereafter denote such function 

by	A(�	 , �	 , … ), with optional extra parameters such as the discount factor for a power 

prior, or an estimate of between-study variance for a random-effects model [37]. We can 

therefore write: 

�(�|�, �	) ∝ �(�). 
(�; �). A(�	 , �	 , … ) ∝ �(�|�). A(�	 , �	 , … ).  (4 

2.4 Sampling from the posterior distribution 

Suppose that a random sample can be generated from an 'easy' distribution	2(�), but 

we are actually interested in obtaining a sample from a 'difficult' distribution	ℎ(�). How 

can we use the samples from 2(�) to obtain samples from	ℎ(�)? Two popular methods 

for converting samples from 2(�) to ℎ(�) are rejection sampling [25] and importance 

sampling [26]; both are based on applying weights proportional to ℎ(�)/2(�) to each 

observation from	2(�). In the present context, 2(�) = �(�|�) and	ℎ(�) = �(�|�, �	); the 

weights are, according to (4), proportional to	A(�	 , �	 , … ). That is, to obtain samples 

from	�(�|�, �	), each �∗ as a sample from	�(�|�) needs to be weighted by	A(�	∗, �	 , … ). 

To operationalize this, we propose two approaches: a rejection sampling scheme, and 
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an importance sampling scheme. The reader can refer to Smith and Gelfand for an 

elegant elaboration on these two sampling schemes (along with the derivations) [25]. 

We note that both sampling methods only require weights to be specified up to a 

multiplicative constant, avoiding the often intractable integrals required for normalizing 

the weights [25]. 

2.4.1 Rejection sampling: the ‘vetted’ bootstrap 

In this scheme, each	�∗, the entire bootstrap sample of the RCT data, is accepted by a 

probability that is proportional to	A(�	∗, �	 , … ), the weight of �	∗ obtained from �∗ given 

the external evidence (hence ‘vetting’ the bootstrap). To change weights to valid 

probabilities, we need only to divide them by maximum A to make sure that the weights 

will remain in the interval [0,1]. This results in the following algorithm: 

1. Calculate ACDE = ,1FGH A(�	 , �	 , … )	 as the scaling factor for weights from 

the function representing the external evidence.   

2. For � = 1, . . . , 7, where 7 is the desired size of the sample: 

3. Generate	�∗, a Bayesian bootstrap sample of	�, with bootstrapping 

performed separately within each arm of the trial.  

4. Calculate the parameters �∗ = {��∗, �	∗} in this sample. 

5. Calculate A∗ = A(�	∗, �	 , … ), the weight of �	∗ according to external 

evidence. 

6. Randomly draw ) from a uniform distribution in the interval [0,1]. If	) >

A∗/ACDE , then ignore the bootstrap sample and jump to step 3. 

7. Store the value of	�∗ and jump to 2.  
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This approach generates 7 random draws from the posterior distribution of � having 

observed the RCT data and the external evidence. All the subsequent steps of the CEA, 

such as calculating the average cost and effectiveness outcomes, interval estimations, 

drawing the cost-effectiveness plane and the CEAC, remain unchanged.  

2.4.2 Importance sampling: the ‘weighted’ bootstrap 

As an alternative to probabilistically accepting or rejecting bootstrap samples based on 

the weights	A, one can assign the weights directly to each bootstrap sample. With 7 

bootstrap estimates of the parameters of interest (��∗,...,�8∗ ) at hand, one constructs a 

discrete distribution by putting weights J5
∗ ∝ A(�5

∗, �	 , … ) on �5
∗. As 7 grows, this 

distribution approaches the distribution of	�(�|�, �	) [25]. This mechanism is especially 

helpful when ACDE cannot be determined. Many outcomes of the CEA can directly be 

estimated from this discrete distribution by incorporating weights in their calculations; for 

example, with ��$
∗ and ��$

∗ being the estimates of incremental costs and effectiveness, 

respectively, in the ith bootstrap, an estimate for the ICER between treatments can be 

obtained as ∑ J$
∗. ��$

∗8
$6� /∑ J$

∗. ��$
∗8

$6� . For some other outcomes, the unequal weights 

can be problematic; an example is the cost-effectiveness plane which is often presented 

through the scatter plot of the bootstrapped pairs. In the importance sampling method 

each (��∗, ��∗) has a weight determined by the external evidence; hence a simple 

scatter plot will no longer be a faithful presentation of the joint distribution. As a solution, 

one can obtain , secondary samples from the aforementioned discrete distribution, and 

work with this sample instead. This is very similar to the sampling/importance 

resampling (SIR) method [38].  
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2.4.3 Regularity conditions 

The general regularity conditions required for the rejection and importance samplings 

should hold [25]. Particularly, since	�(�|�) is most often continuous, the weight function 

A too should be continuous; otherwise the chance of samples from �(�|�) hitting non-

zero areas of A will be infinitely small. Next, �	 should be identifiable (unique) within 

each	�∗. This assumption seems to hold for the most typical forms of external evidence 

such as event rates or measures of treatment effect. Further, A should be bounded. If A 

has an infinite maximum, for example if it is proportional to the density function of a beta 

distribution with either of its parameters being less than one, the proposed sampling 

schemes will fail. Such distributions are however mainly used as non-informative priors 

and seldom represent external evidence in realistic scenarios. On the other hand, 

mixed-type distributions such as the so called lump-and-smear priors that put point 

mass on the value of the parameter consistent with the null hypothesis ([13] page 161) 

have unbounded density functions and cannot readily be used in the proposed sampling 

methods.  

2.5 An illustrative example 

Here, we use data from a real-world RCT to show the practical aspects of implementing 

the proposed algorithms. We describe the original steps taken for the CEA of the RCT 

[39] and show that such steps can easily be modified to incorporate external evidence 

on treatment effect size. This case study is to demonstrate the operational aspects of 

implementing the algorithm and is not intended to be a practice in comprehensive 

evidence synthesis to inform policy. 
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The case study is based on the OPTIMAL trial, a multi-center study evaluating the 

benefits of combination pharmacological therapy in preventing respiratory exacerbations 

in patients with COPD [40,41]. COPD is a chronic airway disease characterized by 

progressive airflow limitations and periods of exacerbations. COPD exacerbations are 

associated with morbidity and mortality and are responsible for substantial costs [42]. 

Pharmacological treatment of COPD, typically with inhaled medications, is often 

required to keep the symptoms under control and reduce the risk of exacerbations. 

Sometimes patients receive combinations of treatment of different classes in an attempt 

to bring the disease under control. However, there is lack of evidence on whether the 

potential improvement in symptoms and reduction in exacerbation rates justify the extra 

cost and the risk of adverse drug reactions associated with combination therapies. The 

OPTIMAL trial was designed to estimate the comparative efficacy and cost-

effectiveness of single and combination therapies in COPD. It included 449 patients 

randomized into three treatment groups: T1: monotherapy with an inhaled 

anticholinergic (tiotropium, current standard of care, N=156); T2: double therapy with an 

inhaled anticholinergic plus an inhaled beta-agonist (tiotropium+salmeterol, N=148); T3:  

triple therapy with an inhaled anticholinergic, an inhaled beta-agonist, and an inhaled 

corticosteroid (tiotropium+fluticasone+salmeterol, N=145). The primary outcome 

measure of the RCT was the proportion of patients who experienced at least one 

respiratory exacerbation by the end of follow-up (52 weeks). This outcome was not 

significantly different across the three arms: The OR for the risk of having at least one 

exacerbation by the end of follow-up was 1.03 (95%CI, 0.63 to 1.67) for T2 versus T1 

and 0.84 (95%CI, 0.47 to 1.49) for T3 vs. T1 (lower OR indicates a better outcome).  
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Details of the original CEA are reported elsewhere [39]. Data on both resource use and 

quality of life were collected at individual level during the trial, which was used to carry 

out the CEA. The outcomes of the CEA were the incremental costs per exacerbation 

avoided and incremental costs per QALY gained. For the original CEA, and in line with 

guidelines, the time series data on resource use and exacerbations was partitioned into 

13 intervals; a nested sequence of bootstrapping and imputation of missing values was 

used to generate random samples from the distribution of costs and QALYs for each 

arm [39]. Since individual level resource use and effectiveness outcomes were 

available, the CEA was based on the direct inference on their distribution. No external 

information was incorporated in the analysis in the original CEA.  

The vector of data for an individual patient used in the CEA consists of 13 cost values 

collected in each period, 13 values indicating the number of exacerbations in each 

period, 5 utility values measured at baseline and follow-up visits, and the baseline 

covariates used to adjust the QALY. The outcome parameters in this analysis (��) are 

costs, exacerbation rates, and QALYs for the first year after the initiation of treatment for 

monotherapy, double therapy, or triple therapy. 

2.5.1 External evidence 

The set of parameters with external evidence in this analysis (�	) consists of two 

quantities: the natural logarithm of the OR between T2 and T1 (denoted by	�KL,K�), and 

between T3 and T1 (denoted by �KM,K�). The process of synthesizing external evidence 

for the above sources is summarized in Table 1. We used the results of a meta-analysis 

comparing exacerbation rates between COPD patients receiving tiotropium plus 

formoterol (in the same class as salmeterol) versus tiotropium alone as the source of 
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external evidence for the effect size between T2 and T1 [43]. The authors pooled five 

studies using a random-effects model on the log(OR) scale using the Dersimonian-Laird 

method [44]. In this context, the most relevant estimate for the effect size of the 

OPTIMAL trial is the predictive distribution of the effect size in the population of a new 

RCT [35]. This quantity has an approximate normal distribution with mean equal to the 

pooled estimate of the effect size and a variance that is the sum of the variance of the 

pooled estimate and the estimated between-trial variance (τ2=0.34) (see page 150 of 

[13]).  

We incorporated evidence on the effect size of T3 versus T1 from a RCT on comparing 

budesonide (in the same class as fluticasone) and formoterol added to tiotropium 

versus tiotropium alone in COPD patients [45]. The evidence was parameterized by 

using normal likelihoods on the log (OR) scale. Because only one study on this 

comparison was at hand, no estimate for between-study variation could be obtained. As 

such, we assumed the between-study heterogeneity for the T3/T1 comparison is similar 

to the heterogeneity in the T2/T1 comparison, and used the same value of 0.34 for 

between-study variance of log(OR). 

In addition, we note that external evidence is generated from the studies that used 

drugs within the same class nonetheless not exactly the same drugs as those in the 

OPTIMAL trial. However, both inhaled steroids and beta-agonists have proven 'class 

effects' and are treated as such in many pharmaco-epidemiology studies [46–48]. For 

inhaled steroids, there are published dose equivalence tables ([49], page 31). 

Therefore, the assumption of class effect seems justifiable. However, to account for any 

concerns with regard to this assumption, it was decided a priori that the external 
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evidence should be discounted by inflating the variance by 50% (see page 151 of [13]). 

This reflects our desire to use external evidence but to avoid the assumption that these 

data were obtained from the same population that received the study drugs [50]. 

Because the distribution of external evidence was modeled as normal, such discounting 

amounts to assigning a power prior with	< = 2/3 [33].  

<<Table 1 around here>> 

Putting all these together, the external evidence can be parameterized as: 

A(�KL,K�, �KM,K�) ∝  .
PQRS,RTUV.VWXY

S

T.ZZ[
.
PQRX,RTUV.\[]Y

S

	T.S[] , 

the product of two normal likelihoods representing our knowledge on treatment efficacy.. 

Since right side of the above equation is already scaled to have a maximum of 1, all 

weights generated from A(. )	are valid probabilities without further manipulation.  

The original algorithm for the CEA can now be updated to incorporate the external 

evidence as follows (using the rejection sampling scheme): 

1. For � = 1,2, . . . , 7. 

2. Generate �∗, a Bayesian bootstrap sample within each of the three arms of the 

RCT. 

3. Impute the missing values in costs, utilities, and exacerbations in �∗.  

4. Calculate	�KL,K�∗  and	�KM,K�∗ , the log(OR) of experiencing at least one exacerbation 

during the follow-up period for T2 vs. T1 and T3 vs. T1, respectively, from the 

bootstrapped sample.    

5. Calculate	A = AP�KL,K�∗ 	, �KM,K�∗ Y using the distribution constructed for the external 

evidence. 
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6. Randomly draw ) from a uniform distribution in the interval [0,1]. If	) > A , then 

ignore the bootstrapped sample and jump to step 2. 

7. Calculate mean costs, exacerbations, and QALYs for each arm from �∗. 

8. Store the average values for costs, exacerbation rates, and QALYs; then jump to 

1. 

 

Results were obtained using both rejection and importance sampling. The simulation 

was stopped after 10,000 accepted bootstraps for the rejection sampling method 

incorporating the external evidence were generated. To obtain the results using the 

importance sampling method, we used the same set of bootstraps generated in the 

above algorithm, including all the accepted and rejected bootstraps.  

 

In addition to the ICER, we also reported the expected values of the cost and health 

outcomes for each trial arm, and also plotted the cost-effectiveness acceptability curve 

(CEAC), without and with the incorporation of the external evidence. The CEAC 

between two treatments is the probability that a treatment is cost-effective compared to 

another at a given value of the decision-maker's willingness-to-pay (^) for one unit of the 

health outcome [7]. The CEAC is drawn as a function of	λ, and for a pair of treatments 

at a given value of λ it can be estimated from the bootstrapped samples 

as	∑ 7.�. `(��∗. ^ − ��∗ > 0)8
$6� , with  `(. ) being the indicator function. 

To test the performance of the sampling algorithms in terms of the rejection rate as well 

as the sensitivity of the estimates to assumptions made in synthesizing external 

evidence, we also conducted a `sensitivity analysis scenario` in which we assumed zero 

between-study variance for the T3/T1 comparison (so we directly used the effect size 
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estimate from the external RCT, equal to a fixed-effects analysis) and also did not 

further inflate the variance (i.e., setting < = 1). Because the estimates of effect size from 

the external RCT on T3/T1 is more favorable for T3 compared with the estimate from 

the OPTIMAL trial, it is expected that the incorporation of external evidence will result in 

more favorable outcomes for T3 (lower costs, exacerbation rates, and ICERs, and 

higher QALYs). Since more information is being incorporated from external sources into 

the estimation process in the sensitivity analysis scenario, it is expected this analysis 

will produce results that are even more strongly in favor of T3. On the other hand, 

external evidence for T2/T1 comparison, while still in favor of T2, is relatively weak, with 

a point estimate indicating near equivalence and a wide variance; therefore it is 

expected that the outcomes for T2 will not substantially change with the incorporation of 

external evidence. 

 

2.5.2 Results 

Table 2 presents the expected value of costs, exacerbation rates, and QALYs for each 

of the three arms of the OPTIMAL trial, without and with the incorporation of the external 

evidence. The rejection and importance sampling methods generated very similar 

results. As this table demonstrates, the incorporation of external evidence shifted the 

outcomes of the T3 arm in the favorable direction (lower costs, lower exacerbation rate, 

and higher QALYs), and shifted the outcomes of the T1 arm in the opposite direction. 

This is an expected finding given the strong evidence in favour of T3 for the effect size 

of T3 vs. T1 from the external source. As expected, results of the sensitivity analysis 

scenario were even more in favor of T3. Changes in the outcomes for T2 were modest. 
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<<Table 2 around here>> 

The impact of incorporating external evidence is more evident on the ICER. The ICER 

for T3 vs. T1 decreased by 14% for both exacerbations avoided and QALYs gained 

after the incorporation of external evidence, and by 55% for both outcomes in the 

sensitivity analysis scenario. Again, this is reflective of the fact that external evidence is 

more in favour of T3 than the likelihood (RCT data) is.  

 

Figure 1 presents the results of incorporating external evidence on the CEAC, for all 

pair-wise comparisons and for both exacerbations avoided and QALYs gained as the 

effectiveness outcome. The incorporation of external evidence increased the probability 

of cost-effectiveness for T3 for both outcomes, especially with higher willingness-to-pay 

(^) values. With QALY gain as the effectiveness outcomes and without the incorporation 

of external evidence, the probability of T3 being cost-effective compared with T1 

surpassed the 50% mark at ^ values greater than $240,000/QALY, whereas the 

incorporation of the external evidence in the base case and sensitivity analyses 

scenarios moves this threshold to, respectively, $200,000/QALY and $110,000/QALY. 

Changes in the ICER and CEAC for all other comparisons were also generally in line 

with the expected results. 

<<Figure 1 around here>> 

A total of 16,180 bootstraps were required to obtain 10,000 accepted bootstraps in the 

rejection sampling methods (38.1% rejection rate). The number of bootstraps required 

for the sensitivity analysis scenario was 198,866 (95% rejection rate). This relatively 
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high rate of rejection in the sensitivity analysis scenario is the reflective of the strong 

evidence which is in conflict with the likelihood (RCT data) with regard to the effect size 

of T3 vs. T1. Of course, the authors of external RCT had come to a very different 

conclusion than the OPTIMAL trial investigators about the clinical efficacy of 

combination pharmacotherapy in COPD [45]. 
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3 Discussion 

In the health economics literature, when an economic evaluation is conducted alongside 

a single RCT, the practice of evidence synthesis is not currently an integral part of the 

analysis. In our opinion, this is partly because parametric evidence synthesis can result 

in problem-specific and complex statistical models. In this work we proposed simple and 

intuitive algorithms for the incorporation of external evidence in RCT-based CEAs that 

use bootstrapping to draw inference. Rejection sampling and importance sampling 

which form the basis of the proposed sampling schemes are popular methods in which 

sampling from a ‘difficult’ distribution is replaced by sampling from a proposal (or 

instrumental) distribution [51]. Here, sampling from �(�|�, �	)	is performed via �(�|�), 

and the latter can easily be sampled through (Bayesian) bootstrapping. These forms of 

sampling have seldom been applied to the bootstrap. This uncommon mixture was 

employed here because of the need for evidence synthesis in CEAs and the popularity 

of bootstrap in RCT-based CEAs.  

In synthesizing evidence for RCT-based CEAs, a carefully crafted parametric model 

with comprehensive analysis of model convergence and sensitivity of results to 

parametric assumptions has indisputable strengths over resampling approaches, 

including the higher computational efficiency of MCMC or likelihood-based methods and 

the ability to synthesize and propagate all evidence in a single analytical framework 

[52,53]. Nevertheless, important advantages make the proposed resampling methods a 

competitive option. The proposed methods are intuitive and easy extensions of the 

popular bootstrap method of RCT-based CEAs; they do not require specialist software 

and in-depth content expertise for implementation. In addition to such practical 
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advantages, these methods connect the parameters for which external evidence is 

available to the cost and effectiveness outcomes without an explicit model. In our case 

study, for example, the evidence defined on the effect size of treatments was 

propagated to cost and QALY outcomes without the need to assume any explicit 

relation between such parameters. Rather such propagation of evidence occurred 

because of the experience of patients in the course of a real-world RCT in which, 

roughly speaking, the occurrence of the clinical outcome (exacerbation) was associated 

with higher costs and lower quality of life.  

Our paper provides mainly a conceptual framework and further research into theory, as 

well as practical issues in using this method, should follow. The apparent simplicity of 

the bootstrap may conceal the rather strong assumptions being made, especially with 

small datasets [27,54]. For one, bootstrapping methods assume that the population 

distribution can only generate the observed data and any other data has zero probability 

[27]. There are modified versions of bootstrapping that can address this problem and 

might be considered in this context [55,56]. Furthermore, if the external evidence and 

RCT data substantially differ on the information they provide for the evidence (i.e., the 

prior and data are in conflict) [57], then the sampling methods will become inefficient. 

This was demonstrated in the sensitivity analysis scenario of our case study, as 

incorporating rather strong external evidence resulted in the rejection of 95% of 

bootstraps. Finally, how to weight the bootstrap sample against the external evidence 

might not be straightforward in some situations, such as cluster or cross-over RCTs.  

This paper deliberately stays away from the debate on 'whether to' incorporate external 

evidence for a given situation and focuses on the 'how to' question. The 'whether to' 
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question is context-specific, and great care is required for sensible use of external 

evidence in each setting. For the case study, for example, the substantial discrepancy in 

the results between the external and current RCTs (especially with regard to the 

efficacy of triple therapy versus monotherapy) should more than anything generate 

misgivings about the suitability of borrowing evidence from that external source. 

However, the case study was undertaken as a step in the direction of proof of concept, 

applicability, and face validity of the proposed methods. This is not a withdrawal from 

the deep thoughts required for sensible evidence synthesis. 

Faced with the soaring costs of RCTs and the requirement by many decision-making 

bodies for formal economic evaluation of emerging health technologies, trialists and 

health economists are hard-pressed to generate as much relevant information for policy 

makers as possible. As such, and despite criticisms, it appears that RCT-based CEAs 

are here to stay. The incorporation of external evidence help optimize adoption 

decisions. The proposed methods, aside from their theoretical contribution, provide the 

large camp of analysts using bootstrap for RCT-based CEAs with a statistically sound, 

easily implementable tool for such purpose.  
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Table 1: Synthesizing external evidence for comparison of treatments in the OPTIMAL trial 

  
Comparison T2 vs. T1 T3 vs. T1 

Source of 
Evidence 

Meta-analysis by Wang et al. 
[43] 

RCT by Welte et al. [45] 

Effect size 0.93 (95% CI 0.45 – 1.93) 0.38 (95% CI 0.25–0.57) 

Distribution of 
effect size  

Log(OR)~Normal(-0.073,0.139) Log(OR)~Normal(-0.97, 0.043) 

Distribution of 
effect size in 
a new study 

Log(OR)~Normal(-0.073, 
0.519)* 

Log(OR)~Normal(-0.97, 0.423)# 

Distribution of 
discounted 

effect size in 
a new study 

Log(OR)~Normal(-0.073, 
0.778)* 

Log(OR)~Normal(-0.97, 0.634)# 

Effect size in 
a new study 

0.93 (95% CI 0.17 – 5.24) 0.38 (95% CI 0.08 – 1.81) 

* Based on the between-study variance of 0.38, reported by Wang et al. 

# Assuming the same value of between-study variance as in Wang et al. 

Normal distribution is denoted by Normal(mean,variance) 
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Table 2: Outcomes of the OPTIMAL CEA without and with the incorporation of external evidence 

  T1 T2 T3 

No external evidence 

Costs 
2640.0 2827.1 4077.0 

Exacerbation 
1.5739 1.6958 1.3441 

QALY 
0.7071 0.7018 0.7127 

ICER  

Reference 

  
Exacerbation avoided as 

outcome 
-1534.9 6252.9 

QALY as outcome -35752.8 254781.2 

With external evidence (base case analysis) 

Rejection 
sampling 

Importance 
sampling 

Rejection 
sampling 

Importance 
sampling 

Rejection 
sampling 

Importance 
sampling 

Costs 
2666.4 2663.0 2825.3 2825.1 4056.4 4058.1 

Exacerbation 
1.5923 1.5919 1.6918 1.6923 1.3288 1.3303 

QALY 
0.7066 0.7067 0.7019 0.7019 0.7132 0.7131 

ICER  

Reference 

  
Exacerbation avoided as 

outcome 
-1597.7* -1614.3* 5275.6 5331.7 

QALY as outcome 
-33809.5* -34004.0* 212402.7 216704.4 

With external evidence (sensitivity analysis) 



34 

 

Rejection 
sampling 

Importance 
sampling 

Rejection 
Sampling 

Importance 
sampling 

Rejection 
sampling 

Importance 
sampling 

Costs 2766.7 2767.3 2825.6 2823.5 3943.6 3948.9 

Exacerbation 
1.6671 1.6677 1.6956 1.6941 1.2552 1.2550 

QALY 
0.7050 0.7050 0.7019 0.7019 0.7155 0.7155 

ICER  

Reference 

  

Exacerbation as outcome 
-2073.2* -2127.0* 2857.2 2863.4 

QALY avoided as outcome 
-19309.1* -18029.9* 112286.2 112838.6 

* Negative ICERs in this table indicate that the comparator was 'dominated compared with T1'; that is, resulted in higher costs and worse health outcomes 
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Figure 1: Cost-effectiveness acceptability curve (CEAC) without incorporation of 
external evidence (dotted line), with the incorporation of external evidence (solid line), 
and with the incorporation of external evidence in the sensitivity analysis scenario 
(dashed line) 
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QALY: quality-adjusted life years 
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