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Abstract

Cost-effectiveness analyses (CEAs) that use patient-specific data on costs and health
outcomes from a randomized controlled trial (RCT) are popular, yet such CEAs are
often criticized because they neglect to incorporate evidence external to the trial.
Although evidence directly defined on cost and health outcomes is often not
transferrable across jurisdictions, evidence on biologic aspects of treatments such as
the treatment effect can be transferred, and incorporating such evidence in the CEA can
conceivably affect the results. Fully parametric Bayesian evidence synthesis for RCT-
based CEAs is possible, but there are challenges involved in parametric modeling of
cost and health outcomes and their relation with external evidence. A popular method
for quantifying uncertainty in a RCT-based CEA is the bootstrap. It will be attractive to
further expand this method for the incorporation of external evidence. To this end, we
utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost
and effectiveness outcomes after observing the current RCT data and the external
evidence. We propose simple modifications of the bootstrap for sampling from such
posterior distributions. We use data from a clinical trial and incorporate external
evidence on the effect size of treatments to illustrate the method in action. Compared to
the parametric models of evidence synthesis, the proposed approach requires fewer
distributional assumptions, does not require explicit modeling of the relation between

external evidence and outcomes of interest, and is generally easier to implement.

Keywords: Cost-Benefit Analysis+ Bayes Theorem+ Clinical Trial+ Statistics,

Nonparametric



1 Introduction
Randomized controlled trials (RCTs), especially ‘pragmatic’ trials that measure the

effectiveness of interventions in realistic settings, are an attractive opportunity to provide
information on cost-effectiveness [1]. In the context of such a RCT, many aspects of
treatment from the clinical outcomes to adverse events to costs are measured at the
individual level, which can be used to formulate an efficient policy based on cost-
effectiveness principles. A growing number of trials incorporate economic end-points at
the design stage and there are established protocols and guidelines for conducting cost-

effectiveness analysis (CEA) alongside a RCT [2,3].

The statistic of interest in a CEA is the incremental cost effectiveness ratio (ICER),
which is defined as the difference in cost (4C) between two competing treatments over
the difference in their health outcome (effectiveness) (4E). ICER is often compared with
a willingness-to-pay (WTP) value that reflects the maximum amount the decision maker
is willing to pay to receive the health outcome [4]. An ICER below this value means the
alternative treatment is cost-effective compared with the baseline treatment. With
patient-specific cost and health outcomes at hand, estimating the population value of
the ICER from an observed sample becomes a classical statistical inference problem.
However, given the awkward statistical properties of cost data and some health
outcomes such as quality-adjusted life years (QALYs), and issues around parametric
inference on ratio statistics, many investigators choose resampling methods for
quantifying the sampling variation around costs, health outcomes, and the ICER [5]. In
parallel-arm RCTs, this can be performed by obtaining a bootstrap sample within each

arm of the trial, and calculating the mean cost and effectiveness within each arm from



the bootstrap sample; repeating this step several times provides a random sample from
the joint distribution of arm-specific cost and effectiveness outcomes. This sample can
then be used to make inference on (e.g., calculate the confidence interval for) the ICER
[6]. Uncertainty in the results can also be communicated in alternative ways such as the
cost-effectiveness plane and the cost-effectiveness acceptability curve (CEAC) [7], or

value of information measures [8].

Recently, such a framework for evaluating the cost and health outcomes of health
technologies has received some criticism [9—-11]. Specifically, critics argue that making
decisions on the cost-effectiveness of competing treatments should be based on all the
available evidence, not just those obtained from a single RCT. Lack of
comprehensiveness in evidence synthesis in CEAs can potentially result in suboptimal
decision-making [11]. In this context, evidence synthesis is the practice of combining
multiple sources of evidence (from other RCTs, expert opinion, case histories) in
informing the treatment decision, a task that is quantitatively performed using the Bayes'

rule [12].

1.1 Challenges in Bayesian evidence synthesis in CEAs

In the biostatistics literature, Bayesian analysis of clinical trials is an active and
flourishing area of research [12—15]. Trialists, however, have mainly focused on
statistical inference on a single trial outcome, the effect size, incorporating prior
knowledge on the effect size from previous trials, other experimental studies, expert
opinion, as well as ‘off the shelf’ priors [12]. For trial-based CEAs, if external evidence
on cost or effectiveness is available, then the investigator can use such Bayesian

methods to combine this information with trial results. This has been the dominant



paradigm in the Bayesian analysis of RCT-based CEAs [16—20]. However, prior
information on cost and effectiveness is rarely available and if it is, it is often
inappropriate to transfer to other settings [21]. This is because cost and typical
effectiveness outcomes such as QALYs are, to a large extent, affected by the specific
settings in the jurisdiction in which they are measured (e.g., unit prices for medical
resources, practice patterns, organizational peculiarities, population preferences, and so
on). On the contrary, evidence on the aspects of the intervention that relate to the
pathophysiology of the underlying health condition and the biologic impact of treatment,
such as the effect size of treatment or rate of adverse events, are less affected by
specific settings and are therefore more transferable. This puts the investigator in a
difficult situation for a RCT-based CEA: inference is made directly on the cost and
effectiveness using the observed sample, but evidence is available on some other

aspects of treatment that is not necessarily identified during the CEA.

As an example, consider a hypothetical trial in which the investigator is interested in
inference on the incremental costs per QALY gained between two treatments, and that
both costs and QALYs are collected at the individual level during a RCT. Without any
external evidence, the investigator can make direct inference on the joint distribution of
cost and QALYs across the trial arms based on the observed sample, for example, to
construct a Cl for the ICER, and to draw the cost-effectiveness plane and the CEAC.
But now imagine there is external evidence on the effect size of treatment from another
RCT, as well as adverse drug reaction rates for the control arm from an observational
study. How can external evidence on such parameters be incorporated in the analysis

and then be propagated to population values of cost and QALYs? One way to do so is



to create a parametric model to connect cost-effectiveness outcomes with parameters
for which external evidence is available. The model can be updated using a variety of
techniques such as Markov Chain Monte Carlo (MCMC) methods or through the
maximization of likelihood as used in the Confidence Profile method [22]. But a model
for this example should connect several parameters through link functions, regression
equations, and error terms. This involves a multitude of parametric assumptions, and
there is always the danger of model misspecification [23,24]. In addition, even with the
advent of generic statistical software for Bayesian analysis, implementing such a model
and comprehensive model diagnostics are not an easy undertaking. For an investigator
using resampling methods for the CEA who wishes to incorporate external evidence in
the analysis, this paradigm shift to parametric modeling can be off-putting. An
alternative approach is to combine the popular resampling methods of RCT-based

CEAs with Bayesian evidence synthesis.

In the present work we propose and illustrate simple modifications of the bootstrap
approach for RCT-based CEAs that enable Bayesian evidence synthesis. Our proposed
method requires a parametric specification of the external evidence while avoiding
parametric assumptions on the cost-effectiveness outcomes and their relation with the
external evidence. The methods presented are a form of rejection sampling [25] and
importance sampling [26] applied to the bootstrap— approaches that are very simple to

implement.

The remainder of the paper is structured as follows: after outlining the context, a
Bayesian interpretation of the bootstrap is presented. Next, the theory of the

incorporation of external evidence into such sampling scheme is explained. A case



study featuring a real world RCT shows the practical aspects of implementing such a
method. A discussion section on the various aspects of the new methods and their

strengths and weaknesses compared to parametric approaches concludes the paper.

2 Concept and notation
Let 8 = {6,, 6.} be the set of parameters to be estimated from the data of a RCT and

some external evidence. It consists of two subsets: 6,, the outcomes parameter(s) for
which there is no external evidence, and 6,, some auxiliary parameters for which
external evidence is available. Typically, 6, includes cost and effectiveness outcomes,
and 6, consists of some biological measures of treatment such as treatment effect size.
Let D represent the individual-level data of the current parallel-arm RCT, fully available
to the investigator; let D, be some external data providing evidence on 6,.. While the
external data is not fully available to the investigator, evidence is available most typically
in the form of the likelihood L(D,; 8,), for example, recovered from the reported
maximum likelihood estimate and confidence bounds of treatment effect from a
previously published study. Throughout this work we assume D and D, are
independent, and that the population of interest for inference is the same as the
population from which D is obtained (the assumption that D, comes from the same
population can be partially relaxed through discounting the external evidence, as will be

described later).

2.1 A Bayesian interpretation of the bootstrap

In a Bayesian context, the problem of inference on 8 from a sample D can be
conceptualized as incorporating some prior information with the information provided by

the data to obtain a posterior distribution for 6.



P(0|D) x 1 (8).L(D; 6), (1

omitting a normalizing constant which is the function of D, but not 6. Here (6) is our
prior distribution on 8, L(D; 0) is the likelihood of current data, and P(8|D) is the
posterior distribution having observed the trial data D. If prior and posterior distributions
are from a parametric family indexed by a set of distribution parameters, then a fully
parametric model can be used to draw inference on P(8|D). However, one can also
perform such Bayesian inference non-parametrically: Rubin [27] showed that if we
assume a prior non-informative Dirichlet distribution for D itself (regardless of which
parameter to estimate), then we can directly draw from P(6|D) using a simple process
called the Bayesian bootstrap. In the Bayesian bootstrap of a dataset D consisting of n
independent observations, a probability vector P = (p4,..., p,,) is generated by randomly
drawing from Dirichlet(n;1,...,1). The probability distribution that puts the mass of w;
on the i*" observation in D can be considered a random draw from the 'distribution of
the distribution' that has generated D. Let D* present a bootstrapped sample of D
generated in this way, then according to the argument made above, 68*, the value of 6
measured in this sample, is a random draw from P(6|D). [Citation: manuscript to appear
in Health Economics, available before appearing on the publisher website at

http://webservices.core.ubc.ca/wp-content/uploads/rct.voi_.www_.pdf]

Operationally, as described by Rubin [27], one Bayesian bootstrap replication of a
vector of size n can be generated by drawing (n — 1) observations from uniform(0,1)
random variables u,,...,u,_,, ordering them, and calculating the gaps w; = u; —

u;_1, where u, = 0 and u,, = 1. In this case P = (p,, ..., py) is the weight vector



associated with the current Bayesian bootstrap replication. Alternatively, one can
generate n Gamma(1,1) random variables g,,..., g, and then rescale them to p; =

gi/ Xj=1 g; to obtain the weight vector for a Bayesian bootstrap replication [28].

For a typical parallel arm RCT, the data structure is more complicated than that of a
real-valued vector. But the bootstrap remains a valid inferential technique as long as the
bootstrapping mechanism mirrors the mechanism that has generated the data [29],
which, for parallel arm RCTs, means obtaining bootstrap sets separately within each
arm of the RCT, with unit of sampling being the entire set of data pertaining to each

individual [5,30,31].

2.2 CEA without the incorporation of external evidence

In a CEA in which we do not intend to incorporate any external evidence, the quantity of
interest for inference is P(6|D). As described in the previous section, a sample from this

guantity can be obtained using a simple resampling algorithm:

1. Fori=1,...,M, where M is the number of simulations:

2. Generate D*, a Bayesian bootstrap sample with bootstrapping performed
within each arm of the trial.

3. Calculate 8* from D*.

4. Store the value of 6* and jump to 1.

This approach generates M random draws from the posterior distribution of 8 having
observed the RCT data. This is very similar to the bootstrap method of the RCT-based
CEAs [5], except that the regular bootstrap is replaced by the Bayesian bootstrap. Let

AC and AE; be the estimates of the expected value of the incremental costs and



effectiveness between two treatments from the /" bootstrap. An estimator for the ICER
from the bootstrapped data can be obtained as 31, AC; / ¥}, AE; [5]. Various methods
can be used to construct a confidence interval from the bootstrapped sample around

this value [5,32].

2.3 Incorporating external evidence

In the presence of external data D, the quantity of interest is P(6|D, D,), which can be

expanded as
P(6|D,D,) « m(8).L(D,D,;0) «< m(6).L(D;8).L(D,;0) « m(8).L(D;0).L(D,;6,), (2

omitting a normalizing constant which is the function of D and D,, but not 6. In the above
derivations, we have used the independence of the external and current data to
factorize the likelihood, as well as the fact that external data provides no information
about 6,, so the likelihood term L(D,; 0) is replaced by its partial version L(D,; 6,). This
substitution effectively means the investigator a priori (before the external and current
data become available) assumes there is no dependence between 6, and 6, which, as
Chen et al. mention while investigating a similar problem "is a sensible assumption if in
fact the new set of covariates in the current study is being scientifically investigated for
the first time"([33], page 58). Indeed, if any information exists on the dependence
between 6, and 6., it should have been incorporated in the evidence using a different

likelihood.

An important consideration is that such a model gives equal weights to the external and
current data. The external data might have been obtained through a process that is

different in some aspects from the process that has generated the data of the current
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RCT (a different intervention protocol, an outdated method of practice, different dose of
the treatment, and so on). Because we have assumed the investigator is interested in
inference on the population of the current RCT, such discrepancy between the current
and external data should lead to the external evidence being given lower importance
than the current data. One way to give lower weights to the external evidence is to
'discount' the information in the external data using the power prior proposed by Chen et

al. [13,33]:

P(O|D,D,, a) «< n(6).L(D;0).L(D,;6,)%, (3

where a € [0,1] is the discounting factor. An a = 1 means external and current data are

given equal weights, and a = 0 means external data is ignored altogether.

Further, in both (2) and (3), the external evidence is defined as the likelihood for 8,. In
some situations such evidence might more precisely be defined as a (posterior)
probability distribution P(6,|D,), which is connected to the likelihood through the initial
prior : P(6,|D,) < my(6,).L(D,; 8,). An example where evidence can better be explained
as a probability distribution than likelihood is the predicted distribution of effect size in a
future study from a random-effects meta-analysis of previous studies [35]. So the
likelihood term in (2) can be replaced by P(6.|D,), but this means the investigator is
also incorporating the information in the initial prior, and this requires that such a prior
be independent of all other components in (2). Finally, a probability distribution for 6,
can be obtained via a more subjective process such as elicitation of the expert opinion,
or use of a 'default prior' reflecting our skepticism or enthusiasm about the result of the

experiment [13], or a 'structural prior' coming from logical expectations about the
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structure of the data [36]; in all such cases the external data D, becomes an abstract

entity.

Therefore the information in the external evidence can be in the form of likelihood,
discounted likelihood, a probability distribution estimated from an external data, or a
probability distribution elicited subjectively. In all such situations the external evidence is
represented by a scalar function from 6, to the positive real line quantifying the degree
of the plausibility of a value of 6, against external evidence; as such, and for the
generalizability and clarity of notations, we hereafter denote such function

by w(6,, D, ...), with optional extra parameters such as the discount factor for a power
prior, or an estimate of between-study variance for a random-effects model [37]. We can

therefore write:

P(6|D,D,) x 1(0).L(D;0).w(8,, Dy, ...) X P(8]D).w(B,, D, ...). (4

2.4 Sampling from the posterior distribution

Suppose that a random sample can be generated from an 'easy' distribution g(8), but
we are actually interested in obtaining a sample from a 'difficult' distribution h(8). How
can we use the samples from g(8) to obtain samples from h(8)? Two popular methods
for converting samples from g(8) to h(6) are rejection sampling [25] and importance
sampling [26]; both are based on applying weights proportional to h(68)/g(8) to each
observation from g(6). In the present context, g(6) = P(6|D) and h(6) = P(6|D,D,); the
weights are, according to (4), proportional to w(6,, D, ...). That is, to obtain samples
from P(0|D,D,), each 6* as a sample from P(0|D) needs to be weighted by w(6;, D,, ...).

To operationalize this, we propose two approaches: a rejection sampling scheme, and

12



an importance sampling scheme. The reader can refer to Smith and Gelfand for an
elegant elaboration on these two sampling schemes (along with the derivations) [25].
We note that both sampling methods only require weights to be specified up to a
multiplicative constant, avoiding the often intractable integrals required for normalizing

the weights [25].

2.4.1 Rejection sampling: the ‘vetted’ bootstrap

In this scheme, each D*, the entire bootstrap sample of the RCT data, is accepted by a
probability that is proportional to w(6;, D,, ...), the weight of 8, obtained from D* given
the external evidence (hence ‘vetting’ the bootstrap). To change weights to valid
probabilities, we need only to divide them by maximum w to make sure that the weights

will remain in the interval [0,1]. This results in the following algorithm:

1. Calculate wpq, = maxg, w(8,,D,, ...) as the scaling factor for weights from
the function representing the external evidence.

2. Fori=1,...,M, where M is the desired size of the sample:

3. Generate D*, a Bayesian bootstrap sample of D, with bootstrapping
performed separately within each arm of the trial.

4. Calculate the parameters 6* = {6;,6,} in this sample.

5. Calculate w* = w(6;,D,, ...), the weight of 8; according to external
evidence.

6. Randomly draw u from a uniform distribution in the interval [0,1]. If u >

w* /wmax » then ignore the bootstrap sample and jump to step 3.

7. Store the value of 8* and jump to 2.

13



This approach generates M random draws from the posterior distribution of 8 having
observed the RCT data and the external evidence. All the subsequent steps of the CEA,
such as calculating the average cost and effectiveness outcomes, interval estimations,

drawing the cost-effectiveness plane and the CEAC, remain unchanged.

2.4.2 Importance sampling: the ‘weighted’ bootstrap

As an alternative to probabilistically accepting or rejecting bootstrap samples based on
the weights w, one can assign the weights directly to each bootstrap sample. With M
bootstrap estimates of the parameters of interest (65.,...,6;,) at hand, one constructs a
discrete distribution by putting weights q; x w(6;, D,, ...) on 6;'. As M grows, this
distribution approaches the distribution of P(8|D, D,) [25]. This mechanism is especially
helpful when w,,,, cannot be determined. Many outcomes of the CEA can directly be
estimated from this discrete distribution by incorporating weights in their calculations; for
example, with AC; and AE; being the estimates of incremental costs and effectiveness,
respectively, in the i bootstrap, an estimate for the ICER between treatments can be
obtained as ¥V, q;. AC; /M, q;. AE;. For some other outcomes, the unequal weights
can be problematic; an example is the cost-effectiveness plane which is often presented
through the scatter plot of the bootstrapped pairs. In the importance sampling method
each (4E*,AC™) has a weight determined by the external evidence; hence a simple
scatter plot will no longer be a faithful presentation of the joint distribution. As a solution,
one can obtain m secondary samples from the aforementioned discrete distribution, and
work with this sample instead. This is very similar to the sampling/importance

resampling (SIR) method [38].
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2.4.3 Regularity conditions

The general regularity conditions required for the rejection and importance samplings
should hold [25]. Particularly, since P(08|D) is most often continuous, the weight function
w too should be continuous; otherwise the chance of samples from P(6|D) hitting non-
zero areas of w will be infinitely small. Next, 6, should be identifiable (unique) within
each D*. This assumption seems to hold for the most typical forms of external evidence
such as event rates or measures of treatment effect. Further, w should be bounded. If
has an infinite maximum, for example if it is proportional to the density function of a beta
distribution with either of its parameters being less than one, the proposed sampling
schemes will fail. Such distributions are however mainly used as non-informative priors
and seldom represent external evidence in realistic scenarios. On the other hand,
mixed-type distributions such as the so called lump-and-smear priors that put point
mass on the value of the parameter consistent with the null hypothesis ([13] page 161)
have unbounded density functions and cannot readily be used in the proposed sampling

methods.

2.5 An illustrative example

Here, we use data from a real-world RCT to show the practical aspects of implementing
the proposed algorithms. We describe the original steps taken for the CEA of the RCT
[39] and show that such steps can easily be modified to incorporate external evidence
on treatment effect size. This case study is to demonstrate the operational aspects of
implementing the algorithm and is not intended to be a practice in comprehensive

evidence synthesis to inform policy.
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The case study is based on the OPTIMAL trial, a multi-center study evaluating the
benefits of combination pharmacological therapy in preventing respiratory exacerbations
in patients with COPD [40,41]. COPD is a chronic airway disease characterized by
progressive airflow limitations and periods of exacerbations. COPD exacerbations are
associated with morbidity and mortality and are responsible for substantial costs [42].
Pharmacological treatment of COPD, typically with inhaled medications, is often
required to keep the symptoms under control and reduce the risk of exacerbations.
Sometimes patients receive combinations of treatment of different classes in an attempt
to bring the disease under control. However, there is lack of evidence on whether the
potential improvement in symptoms and reduction in exacerbation rates justify the extra
cost and the risk of adverse drug reactions associated with combination therapies. The
OPTIMAL trial was designed to estimate the comparative efficacy and cost-
effectiveness of single and combination therapies in COPD. It included 449 patients
randomized into three treatment groups: T1: monotherapy with an inhaled
anticholinergic (tiotropium, current standard of care, N=156); T2: double therapy with an
inhaled anticholinergic plus an inhaled beta-agonist (tiotropium+salmeterol, N=148); T3:
triple therapy with an inhaled anticholinergic, an inhaled beta-agonist, and an inhaled
corticosteroid (tiotropium+fluticasone+salmeterol, N=145). The primary outcome
measure of the RCT was the proportion of patients who experienced at least one
respiratory exacerbation by the end of follow-up (52 weeks). This outcome was not
significantly different across the three arms: The OR for the risk of having at least one
exacerbation by the end of follow-up was 1.03 (95%CI, 0.63 to 1.67) for T2 versus T1

and 0.84 (95%Cl, 0.47 to 1.49) for T3 vs. T1 (lower OR indicates a better outcome).
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Details of the original CEA are reported elsewhere [39]. Data on both resource use and
quality of life were collected at individual level during the trial, which was used to carry
out the CEA. The outcomes of the CEA were the incremental costs per exacerbation
avoided and incremental costs per QALY gained. For the original CEA, and in line with
guidelines, the time series data on resource use and exacerbations was partitioned into
13 intervals; a nested sequence of bootstrapping and imputation of missing values was
used to generate random samples from the distribution of costs and QALYs for each
arm [39]. Since individual level resource use and effectiveness outcomes were
available, the CEA was based on the direct inference on their distribution. No external

information was incorporated in the analysis in the original CEA.

The vector of data for an individual patient used in the CEA consists of 13 cost values
collected in each period, 13 values indicating the number of exacerbations in each
period, 5 utility values measured at baseline and follow-up visits, and the baseline
covariates used to adjust the QALY. The outcome parameters in this analysis (6,) are
costs, exacerbation rates, and QALYSs for the first year after the initiation of treatment for

monotherapy, double therapy, or triple therapy.

2.5.1 External evidence

The set of parameters with external evidence in this analysis (6,) consists of two
quantities: the natural logarithm of the OR between T2 and T1 (denoted by 61, 1), and
between T3 and T1 (denoted by 83 r1). The process of synthesizing external evidence
for the above sources is summarized in Table 1. We used the results of a meta-analysis
comparing exacerbation rates between COPD patients receiving tiotropium plus

formoterol (in the same class as salmeterol) versus tiotropium alone as the source of
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external evidence for the effect size between T2 and T1 [43]. The authors pooled five
studies using a random-effects model on the log(OR) scale using the Dersimonian-Laird
method [44]. In this context, the most relevant estimate for the effect size of the
OPTIMAL trial is the predictive distribution of the effect size in the population of a new
RCT [35]. This quantity has an approximate normal distribution with mean equal to the
pooled estimate of the effect size and a variance that is the sum of the variance of the

pooled estimate and the estimated between-trial variance (1°=0.34) (see page 150 of

[13]).

We incorporated evidence on the effect size of T3 versus T1 from a RCT on comparing
budesonide (in the same class as fluticasone) and formoterol added to tiotropium
versus tiotropium alone in COPD patients [45]. The evidence was parameterized by
using normal likelihoods on the log (OR) scale. Because only one study on this
comparison was at hand, no estimate for between-study variation could be obtained. As
such, we assumed the between-study heterogeneity for the T3/T1 comparison is similar
to the heterogeneity in the T2/T1 comparison, and used the same value of 0.34 for

between-study variance of log(OR).

In addition, we note that external evidence is generated from the studies that used
drugs within the same class nonetheless not exactly the same drugs as those in the
OPTIMAL trial. However, both inhaled steroids and beta-agonists have proven 'class
effects' and are treated as such in many pharmaco-epidemiology studies [46—48]. For
inhaled steroids, there are published dose equivalence tables ([49], page 31).
Therefore, the assumption of class effect seems justifiable. However, to account for any
concerns with regard to this assumption, it was decided a priori that the external

18



evidence should be discounted by inflating the variance by 50% (see page 151 of [13]).
This reflects our desire to use external evidence but to avoid the assumption that these
data were obtained from the same population that received the study drugs [50].

Because the distribution of external evidence was modeled as normal, such discounting

amounts to assigning a power prior with « = 2/3 [33].

<<Table 1 around here>>

Putting all these together, the external evidence can be parameterized as:

(9T2,T1+0-073)Z (9T3,7~1+0.968)2
(072,71, 0r3,71) X € 1.556 1.268 ,

the product of two normal likelihoods representing our knowledge on treatment efficacy..
Since right side of the above equation is already scaled to have a maximum of 1, all

weights generated from w(.) are valid probabilities without further manipulation.

The original algorithm for the CEA can now be updated to incorporate the external

evidence as follows (using the rejection sampling scheme):

1. Fori=1,2,...,M.

2. Generate D*, a Bayesian bootstrap sample within each of the three arms of the
RCT.

3. Impute the missing values in costs, utilities, and exacerbations in D*.

4. Calculate 67,1 and 875 11, the log(OR) of experiencing at least one exacerbation
during the follow-up period for T2 vs. T1 and T3 vs. T1, respectively, from the

bootstrapped sample.

5. Calculate w = w(07, 71,075 71) Using the distribution constructed for the external

evidence.
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6. Randomly draw u from a uniform distribution in the interval [0,1]. If u > w , then

ignore the bootstrapped sample and jump to step 2.
7. Calculate mean costs, exacerbations, and QALYs for each arm from D*.

8. Store the average values for costs, exacerbation rates, and QALYs; then jump to
1.

Results were obtained using both rejection and importance sampling. The simulation
was stopped after 10,000 accepted bootstraps for the rejection sampling method
incorporating the external evidence were generated. To obtain the results using the
importance sampling method, we used the same set of bootstraps generated in the

above algorithm, including all the accepted and rejected bootstraps.

In addition to the ICER, we also reported the expected values of the cost and health
outcomes for each trial arm, and also plotted the cost-effectiveness acceptability curve
(CEAC), without and with the incorporation of the external evidence. The CEAC
between two treatments is the probability that a treatment is cost-effective compared to
another at a given value of the decision-maker's willingness-to-pay (1) for one unit of the
health outcome [7]. The CEAC is drawn as a function of A, and for a pair of treatments
at a given value of A it can be estimated from the bootstrapped samples

as YM,  M~LI(AE*.2 — AC* > 0), with I(.) being the indicator function.

To test the performance of the sampling algorithms in terms of the rejection rate as well
as the sensitivity of the estimates to assumptions made in synthesizing external
evidence, we also conducted a “sensitivity analysis scenario” in which we assumed zero

between-study variance for the T3/T1 comparison (so we directly used the effect size
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estimate from the external RCT, equal to a fixed-effects analysis) and also did not
further inflate the variance (i.e., setting a = 1). Because the estimates of effect size from
the external RCT on T3/T1 is more favorable for T3 compared with the estimate from
the OPTIMAL trial, it is expected that the incorporation of external evidence will result in
more favorable outcomes for T3 (lower costs, exacerbation rates, and ICERs, and
higher QALYSs). Since more information is being incorporated from external sources into
the estimation process in the sensitivity analysis scenario, it is expected this analysis
will produce results that are even more strongly in favor of T3. On the other hand,
external evidence for T2/T1 comparison, while still in favor of T2, is relatively weak, with
a point estimate indicating near equivalence and a wide variance; therefore it is
expected that the outcomes for T2 will not substantially change with the incorporation of

external evidence.

2.5.2 Results

Table 2 presents the expected value of costs, exacerbation rates, and QALYs for each
of the three arms of the OPTIMAL trial, without and with the incorporation of the external
evidence. The rejection and importance sampling methods generated very similar
results. As this table demonstrates, the incorporation of external evidence shifted the
outcomes of the T3 arm in the favorable direction (lower costs, lower exacerbation rate,
and higher QALYs), and shifted the outcomes of the T1 arm in the opposite direction.
This is an expected finding given the strong evidence in favour of T3 for the effect size
of T3 vs. T1 from the external source. As expected, results of the sensitivity analysis
scenario were even more in favor of T3. Changes in the outcomes for T2 were modest.
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<<Table 2 around here>>

The impact of incorporating external evidence is more evident on the ICER. The ICER
for T3 vs. T1 decreased by 14% for both exacerbations avoided and QALYs gained
after the incorporation of external evidence, and by 55% for both outcomes in the
sensitivity analysis scenario. Again, this is reflective of the fact that external evidence is

more in favour of T3 than the likelihood (RCT data) is.

Figure 1 presents the results of incorporating external evidence on the CEAC, for all
pair-wise comparisons and for both exacerbations avoided and QALYs gained as the
effectiveness outcome. The incorporation of external evidence increased the probability
of cost-effectiveness for T3 for both outcomes, especially with higher willingness-to-pay
(A) values. With QALY gain as the effectiveness outcomes and without the incorporation
of external evidence, the probability of T3 being cost-effective compared with T1
surpassed the 50% mark at A values greater than $240,000/QALY, whereas the
incorporation of the external evidence in the base case and sensitivity analyses
scenarios moves this threshold to, respectively, $200,000/QALY and $110,000/QALY.
Changes in the ICER and CEAC for all other comparisons were also generally in line

with the expected results.

<<Figure 1 around here>>

A total of 16,180 bootstraps were required to obtain 10,000 accepted bootstraps in the
rejection sampling methods (38.1% rejection rate). The number of bootstraps required

for the sensitivity analysis scenario was 198,866 (95% rejection rate). This relatively
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high rate of rejection in the sensitivity analysis scenario is the reflective of the strong
evidence which is in conflict with the likelihood (RCT data) with regard to the effect size
of T3 vs. T1. Of course, the authors of external RCT had come to a very different
conclusion than the OPTIMAL trial investigators about the clinical efficacy of

combination pharmacotherapy in COPD [45].
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3 Discussion

In the health economics literature, when an economic evaluation is conducted alongside
a single RCT, the practice of evidence synthesis is not currently an integral part of the
analysis. In our opinion, this is partly because parametric evidence synthesis can result
in problem-specific and complex statistical models. In this work we proposed simple and
intuitive algorithms for the incorporation of external evidence in RCT-based CEAs that
use bootstrapping to draw inference. Rejection sampling and importance sampling
which form the basis of the proposed sampling schemes are popular methods in which
sampling from a ‘difficult’ distribution is replaced by sampling from a proposal (or
instrumental) distribution [51]. Here, sampling from P(6|D, D,) is performed via P(6|D),
and the latter can easily be sampled through (Bayesian) bootstrapping. These forms of
sampling have seldom been applied to the bootstrap. This uncommon mixture was
employed here because of the need for evidence synthesis in CEAs and the popularity

of bootstrap in RCT-based CEAs.

In synthesizing evidence for RCT-based CEAs, a carefully crafted parametric model
with comprehensive analysis of model convergence and sensitivity of results to
parametric assumptions has indisputable strengths over resampling approaches,
including the higher computational efficiency of MCMC or likelihood-based methods and
the ability to synthesize and propagate all evidence in a single analytical framework
[52,53]. Nevertheless, important advantages make the proposed resampling methods a
competitive option. The proposed methods are intuitive and easy extensions of the
popular bootstrap method of RCT-based CEAs; they do not require specialist software

and in-depth content expertise for implementation. In addition to such practical
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advantages, these methods connect the parameters for which external evidence is
available to the cost and effectiveness outcomes without an explicit model. In our case
study, for example, the evidence defined on the effect size of treatments was
propagated to cost and QALY outcomes without the need to assume any explicit
relation between such parameters. Rather such propagation of evidence occurred
because of the experience of patients in the course of a real-world RCT in which,
roughly speaking, the occurrence of the clinical outcome (exacerbation) was associated

with higher costs and lower quality of life.

Our paper provides mainly a conceptual framework and further research into theory, as
well as practical issues in using this method, should follow. The apparent simplicity of
the bootstrap may conceal the rather strong assumptions being made, especially with
small datasets [27,54]. For one, bootstrapping methods assume that the population
distribution can only generate the observed data and any other data has zero probability
[27]. There are modified versions of bootstrapping that can address this problem and
might be considered in this context [55,56]. Furthermore, if the external evidence and
RCT data substantially differ on the information they provide for the evidence (i.e., the
prior and data are in conflict) [57], then the sampling methods will become inefficient.
This was demonstrated in the sensitivity analysis scenario of our case study, as
incorporating rather strong external evidence resulted in the rejection of 95% of
bootstraps. Finally, how to weight the bootstrap sample against the external evidence

might not be straightforward in some situations, such as cluster or cross-over RCTs.

This paper deliberately stays away from the debate on 'whether to' incorporate external
evidence for a given situation and focuses on the 'how to' question. The 'whether to'
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question is context-specific, and great care is required for sensible use of external
evidence in each setting. For the case study, for example, the substantial discrepancy in
the results between the external and current RCTs (especially with regard to the
efficacy of triple therapy versus monotherapy) should more than anything generate
misgivings about the suitability of borrowing evidence from that external source.
However, the case study was undertaken as a step in the direction of proof of concept,
applicability, and face validity of the proposed methods. This is not a withdrawal from

the deep thoughts required for sensible evidence synthesis.

Faced with the soaring costs of RCTs and the requirement by many decision-making
bodies for formal economic evaluation of emerging health technologies, trialists and
health economists are hard-pressed to generate as much relevant information for policy
makers as possible. As such, and despite criticisms, it appears that RCT-based CEAs
are here to stay. The incorporation of external evidence help optimize adoption
decisions. The proposed methods, aside from their theoretical contribution, provide the
large camp of analysts using bootstrap for RCT-based CEAs with a statistically sound,

easily implementable tool for such purpose.
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Table 1: Synthesizing external evidence for comparison of treatments in the OPTIMAL trial

Comparison T2vs. T1 T3 vs. T1
Source of Meta-analysis by Wang et al.
Evidence [43] RCT by Welte et al. [45]
Effect size 0.93 (95% CI 0.45 - 1.93) 0.38 (95% CI 0.25-0.57)

Distribution of
effect size

Log(OR)~Normal(-0.073,0.139)

Log(OR)~Normal(-0.97, 0.043)

Distribution of
effect size in
a new study

Log(OR)~Normal(-0.073,
0.519)*

Log(OR)~Normal(-0.97, 0.423)#

Distribution of
discounted
effect size in
a new study

Log(OR)~Normal(-0.073,
0.778)*

Log(OR)~Normal(-0.97, 0.634)#

Effect size in
a new study

0.93 (95% CI1 0.17 —5.24)

0.38 (95% CI 0.08 — 1.81)

* Based on the between-study variance of 0.38, reported by Wang et al.

# Assuming the same value of between-study variance as in Wang et al.

Normal distribution is denoted by Normal(mean,variance)
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Table 2: Outcomes of the OPTIMAL CEA without and with the incorporation of external evidence

No external evidence

2640.0 2827.1 4077.0
Costs
Exacerbation 1.5739 1.6958 1.3441
QALY 0.7071 0.7018 0.7127
ICER
Exacerbation avoided as -1534.9 6252.9
outcome Reference
With external evidence (base case analysis)
Rejection Importance | Rejection Importance | Rejection Importance
sampling sampling sampling sampling sampling sampling
2666.4 2663.0 2825.3 2825.1 4056.4 4058.1
Costs
Exacerbation 1.5923 1.5919 1.6918 1.6923 1.3288 1.3303
QALY 0.7066 0.7067 0.7019 0.7019 0.7132 0.7131
ICER
Exacerbation avoided as -1597.7* -1614.3* 5275.6 5331.7
outcome Reference
_ * - *
QALY as outcome 33809.5 34004.0 212402.7 216704.4

With external evidence (sensitivity analysis)
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Rejection Importance | Rejection Importance | Rejection Importance
sampling sampling Sampling sampling sampling sampling
Costs 2766.7 2767.3 2825.6 2823.5 3943.6 3948.9
. 1.6671 1.6677 1.6956 1.6941 1.2552 1.2550
Exacerbation
QALY 0.7050 0.7050 0.7019 0.7019 0.7155 0.7155
ICER
Ex rbation tcom -2073.2* -2127.0* 2857.2 2863.4
acerbation as outcome Reference
-19309.1* -18029.9* 112286.2 112838.6

QALY avoided as outcome

* Negative ICERs in this table indicate that the comparator was ‘dominated compared with T1'; that is, resulted in higher costs and worse health outcomes
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Figure 1: Cost-effectiveness acceptability curve (CEAC) without incorporation of
external evidence (dotted line), with the incorporation of external evidence (solid line),
and with the incorporation of external evidence in the sensitivity analysis scenario

(dashed line)
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