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Abstract 

 

We highlight the role of local instrumental variable (LIV) methods in exploring treatment effect 

heterogeneity using an empirical example of evaluating the use versus non-use of prehospital 

intubation (PHI) in patients with traumatic injury on inpatient mortality. We find evidence that the 

effect of PHI on inpatient mortality varies over levels of unobserved confounders giving rise to a 

phenomenon known as essential heterogeneity. Under essential heterogeneity, the traditional 

instrumental variable (IV) method, when using a continuous IV, estimates an effect that is an 

arbitrary weighted average of the casual effects for marginal groups of patients whose PHI 

receipt are directly influenced by the IV levels. Instead, the LIV methods estimate the 

distribution of treatment effects for every margin that is identified by data and allow for 

predictable aggregation to recover estimates for meaningful treatment effect parameters such 

as the Average Treatment Effect (ATE) and the Effect on the Treated (TT). LIV methods also 

allow exploring heterogeneity in treatment effects over levels of observed confounders. In the 

PHI analysis, we estimate an ATE of 0.074 (se=0.02, p<0.001) and a TT of -0.079 (se=0.09, 

p=0.38). We find strong evidence of positive self-selection in practice based on observed and 

unobserved characteristics, whereby patients who were most likely to be harmed by PHI were 

also less likely to receive PHI. However, the degree of positive self-selection mitigates in 

regions with higher rates of PHI use. We also explore factors associated with the prediction of 

significant harm by PHI. We provide clinical interpretation of results and discuss the importance 

of these methods in the context of comparative effectiveness research. 

 

Key words: Instrumental variables; local IV methods; heterogeneity; prehospital intubation; 
mortality.  
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Introduction 

With enriched resources available for conducting comparative effectiveness research (CER) in 

the United States and the continuous development of more comprehensive observational 

databases based on electronic medical records, statistical and econometric methods for 

estimating treatment effects are in great demand. Treatment effects are the primary parameters 

of interest in comparative effectiveness research, albeit some effects are more useful for linking 

results to decision making within health care than others. Since the goal of CER is to help make 

better decisions within health care [1], two fundamental requirements arise in the development 

of such methods: 1) the treatment effect parameters reflect the needs of the specific decision 

maker in question, and 2) the estimates for these parameters carry a causal interpretation.  

In this paper, we explore the comparative effectiveness of prehospital intubation (PHI) 

compared to no PHI on inpatient mortality following traumatic injury among patients who 

reached the emergency department alive. The safety and efficacy of PHI in trauma patients is 

controversial; there are currently no definitive guidelines as to when it is better to perform 

intubation at the scene by first responders or to defer definitive airway management until after 

arrival at a hospital to facilitate the most rapid conveyance to advanced medical care. A registry-

based retrospective cohort study demonstrated increased risk of death and long-term disability 

in patients with severe traumatic brain injury (TBI) who were intubated prior to arrival to the 

hospital, compared to those intubated in the emergency department (EDI) [2].  In contrast, the 

largest single-center study, comparing PHI to EDI, demonstrated no significant difference in 

rates of ventilator associated pneumonia or death [3].  It was suggested that the results, 

contrary to those of prior retrospective cohort studies demonstrating a higher incidence of 

pneumonia in prehospital-intubated patients, may have been influenced by a well-established, 

standardized paramedic rapid sequence intubation training program with continuous quality 

improvement measures.   

The problem with these studies, as is widely recognized as the fundamental challenge of 

estimating treatment effects from observational data, is selection bias. Selection bias (i.e., 

confounding by indication) arises when factors that can influence the treatment choice, such as 

patient health, resource availability and provider skills, also influence outcomes.  The 

significance of this well-known limitation was famously illustrated in the case of hormone 

replacement therapy in post-menopausal women.  As several large-scale observational studies 

consistently showed these treatments to be effective for preventing chronic cardiovascular 

disease, hormone replacement therapy was widely adopted.  Use then plummeted when these 

studies were eventually disproven by a large randomized trial [4].  It has been shown 
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subsequently that the reason for the discrepant results was that the observational studies failed 

to consider certain confounders such as socioeconomic status [5] or failed to distinguish 

initiation of therapy from prevalence of therapy [6].  The significance of overcoming the 

limitations of common observational study designs cannot be overstated as it could lead to 

fewer mistaken conclusions regarding treatment effectiveness and a greater use of sound 

observational studies to develop the evidence base of comparative effectiveness research.  

Unfortunately, a study with a randomized design, which can ideally overcome these selection 

biases, may be logistically and/or ethically challenged in the context of many crucial clinical 

questions, including the case of when to perform intubation in patients with traumatic injury. 

Even in the case of the only RCT performed to date in a traumatic brain injury population, 

blinding as to the treatment group amongst providers was not possible (as the intubation could 

not be concealed), potentially affecting the results of the study [7]. 

In order to address selection bias, in line with what a pragmatic randomized design should have 

accomplished, we will focus our attention to the use of instrumental variables (IV). In what 

follows, we highlight the role of traditional and newer IV methods in comparative effectiveness 

research, substantiated with evaluating the effectiveness of prehospital intubation using these 

methods. 

 

Overview of Instrumental Variable Methods and Interpretation of Results 

Instrumental variable (IV) methods have been a cornerstone method for observational studies in 

the economics literature and its origins date back to the 1920s [8]. In the last couple of 

decades, these methods have gained popularity in the medical literature on the evaluation of 

alternative medical treatments [9,10,11,12,13], the types of evaluations that were by and large 

restricted to clinical trials.  The instrumental variables determine or affect treatment choice, but 

do not have a direct effect on outcomes, except to the extent that they influence the choice of 

treatment [14,15,16]. Thus, by using IVs, one can induce substantial variation in the treatment 

variable, but have no direct effect on the outcome variable of interest. One can then estimate 

how much of the variation in the treatment variable induced by the instrument—and only that 

induced variation—affects the outcome measure. In econometric terminology, this induced 

variation is called the exogenous variation and identifies the desired estimate. These analyses 

constitute an important body of work that have advanced the field of CER by going beyond 

establishing associations between treatments and outcomes to estimating causal effects of 
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treatments on outcomes, such as a RCT conducted on a similar population can inform.  The 

adoption of these techniques for CER, although limited thus far, appears to be accelerating.  

Non-essential heterogeneity 

The field of CER is also devoted to estimating heterogeneity in treatment effects [17]. In the 

presence of treatment effect heterogeneity, however, results from traditional IV approaches may 

suffer from lack of interpretability. An IV estimate of treatment effect using standard methods 

(e.g. two-stage least squares) is comparable to that arising from an RCT only under the 

assumption that treatment effects are constant for everyone in the population with the same 

observed characteristics. Even if treatment effects are allowed to be heterogeneous, IV 

estimates assume patients or their physicians do not have any additional information beyond 

what the analyst of an observational data possess that can enable them to anticipate these 

effects and select into treatment that would potentially give them the largest benefit.  In other 

words, unobserved confounders are assumed not to be moderators of treatment effects (this 

situation is denoted as non-essential heterogeneity [20]).  

An underlying data generating mechanism for non-essential heterogeneity is illustrated with a 

stylized example of potential outcomes in Figures 1(a) and 1(b). In these figures, the X-axis 

represents levels of an unobserved confounder, while the Y-axis represents the potential 

outcomes. The line connecting the ‘+’s represents the schedule of potential outcomes in the 

population had every patient received the control treatment. As constructed, people respond 

differently to the same treatment. This is called response heterogeneity. The line connecting 

circles represent the schedule of potential outcomes for the same people had they received the 

new treatment.  Although there is also response heterogeneity from the new treatment, the 

differential responses across alternative treatments (denoted by the grey bars in Figure 1(a)) 

are held constant across people. That is, treatment-effect heterogeneity is constant across 

levels of the unobserved confounders. Technically, treatment-effect heterogeneity is denoted as 

non-essential only when it is statistically independent of response heterogeneity.1  Figure 1(b), 

illustrates how IVs produce interpretable results in this situation.  In practice, we do not observe 

the potential outcomes under both treatments for each patient. Rather, we observe outcomes 

for a self-selected group of patients receiving each treatment. An IV helps match the 

unobserved level of confounding. Therefore, an IV compares outcomes for a treated and an 

untreated group of patients, whose treatment choices are driven by the levels of the IV, and 

                                                            
1 Note that for non‐essential heterogeneity, there should be full independence between response and treatment 
effect heterogeneity, and not just mean independence. 
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hence the levels of their unobserved confounders are held fixed at some arbitrary value defined 

by the specific instrument used [18].  For example, an analyst using distance to treatment 

facilities as an instrument would, in effect, hold the levels of unobserved confounding fixed at a 

specific level, which may be different that the level held fixed by another analyst using physician 

preferences as instruments. However, with non-essential heterogeneity, the level of unobserved 

confounder at which an instrument is ‘acting’ is inconsequential, since each IV will estimate the 

constant treatment effect, which is also the average treatment effect in the population. The 

interpretation of IV estimates in such a situation is straightforward.    

 

Essential Heterogeneity 

When unobserved confounders moderate treatment effect in a systematic fashion, treatment 

effect heterogeneity depends on response heterogeneity, and becomes known as essential 

heterogeneity.  This is illustrated in Figure 1(c). Since the marginal patients identified by an IV 

are entirely dependent on the specific instrument being used and how this instrument affects 

treatment choices [15, 16], the use of different instruments by different analysts will produce 

different treatment effects because they represent the effects for different groups of marginal 

patients, and IV results become instrument dependent. This key insight, originally highlighted by 

Heckman [19], is that it is difficult to interpret and apply IV results to clinical practice, where 

patients are often believed to select treatment based on their idiosyncratic net gains or 

preferences.  In response to this insight, most traditional IV methods estimate a Local Average 

Treatment Effect (LATE) or arbitrarily weighted averages of LATEs.  This estimate is often 

substantially different from mean treatment effect concepts such as the Average Treatment 

Effect (ATE).  

A new genre of IV methods originally developed by Heckman and colleagues [20,21,22] directly 

addresses these limitations of traditional methods. Known as local instrumental variable (LIV) 

approaches, these methods can relax assumptions, allow unobserved characteristics of 

patients that influence treatment choices to also be moderators of treatment effects, and 

recover the full distribution of treatments effects across all possible margins of patients choices, 

not just the one directly influenced by an IV, by explicitly developing a choice model for 

treatment selection. This choice model tries to explain choices based on all observed risk 

factors and also all possible IVs that are identified in the data, so that for each predicted level of 

probability for treatment choice, we observe some patients who choose treatment and some 

who do not. One can then study how the difference in average outcomes, the marginal 
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treatment effect (MTE), between these two groups varies over levels of the probability of 

treatment choice (Figure 1(d)).  This approach, known as the local instrumental variable (LIV) 

approach, uses control function methods to identify the MTEs and subsequently combines them 

to form interpretable and decision-relevant parameters of interest such as the ATE or the Effect 

on the Treated (TT) or the Untreated (TUT). ATE estimates the average gain if everyone 

undergoes treatment as compared to an alternative treatment or no treatment at all. This has 

been one of the most popular parameters of interest for health economists and policy analysts 

when making inference about health care policies [23]. Treatment Effect on the Treated (TT) 

estimates the average gain to those who actually select into treatment and is one ingredient for 

determining whether a given treatment should be shut down or retained as a medical practice or 

in the formularies. It is informative on the question of whether the persons, choosing the 

treatment, benefit from it in gross terms. For CER, there is strong theoretical reasoning for why 

a treatment effect that is averaged over all patients in a population, i.e. the Average Treatment 

Effect (ATE), can mislead patient or physician decision making, ultimately affecting welfare in 

this population [24,25,26]. Therefore, more nuanced subgroup specific effects, represented by 

conditional MTEs, are often more useful.  

An LIV method can confirm if the assumption of non-essential heterogeneity is valid. It also 

provides a seamless approach to explore treatment effect heterogeneity across observed 

confounders. Recently, Basu et al. [27,28] applied these methods to estimate ATE, TT and 

MTEs of breast cancer treatments on costs and mortality. A detailed description of the theory 

and methods on LIV approaches as it relates to CER can also be found in these works. 

In this paper, we apply traditional IV and LIV approaches to estimates interpretable treatment 

effects and also to explore heterogeneity in effects of the use of prehospital intubation 

compared to emergency department intubation on inpatient mortality following traumatic injury.  

 

Clinical Context of Prehospital Intubation and Mortality 

Patients who sustain injuries are susceptible to aspiration and loss of airway due to decreased 

level of consciousness, whether due to direct head trauma or other severe injury resulting in 

shock.  Prevention of secondary brain injury by avoidance of hypoxia and hypotension is a 

primary goal in the initial treatment of head trauma, and early intubation has been advocated to 

facilitate improved oxygenation [29]. However, in 2007, an expert panel concluded that there 

was not sufficient data to promote the standard practice of PHI for patients with traumatic brain 
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injury [30]. These recommendations were based on the available data, including multiple single-

center retrospective analyses with opposing conclusions as to the harm or benefit of PHI.  For 

example, a review of severely head injured patients in a statewide trauma registry revealed a 4-

fold adjusted risk of death for PHI versus emergency department intubation [2]. Although the 

authors contend they had employed the best available risk-adjustment methods including 

propensity scoring, unobserved differences in the two groups may have influenced the decision 

to intubate as well as the observed outcomes. A single prospective observational study of 

prehospital rapid sequence intubation in 209 patients matched to historical non-intubated 

controls concluded PHI was associated with increased mortality, possibly due to inadvertent 

hyperventilation, transient hypoxia, or longer time at scene prior to transport [31]. Accordingly, 

the panel suggested that all of the studies considered failed to account for potentially important 

confounders, among the many methodological issues that hampered their ability to definitively 

recommend for or against PHI [30].  It concluded that a randomized control trial was one of the 

main goals for future investigation.  

While not impossible to accomplish, because of the time-critical factors and the subject’s 

inability to consent to randomized treatment, out-of-hospital clinical trials necessitate waiver of 

consent and are among the most highly regulated studies.  This level of scrutiny may be, at 

least in part, the reason it took four years to enroll only 312 patients, despite 1045 screened, in 

the only randomized controlled trial of prehospital intubation in adult patients with severe head 

injury reported to date [7]. It is widely recognized that RCTs may not allow for real-world 

conduct of treatments in these settings, and may significantly vary from what is possible or 

practical to perform in practice. In the study by Bernard et al [7], patients who did not receive 

rapid sequence intubation medications were excluded.  Even in employing the most-highly 

trained paramedics already certified to perform advanced airway management, the study 

required an additional 16 hours of airway management training for study participants to learn 

rapid sequence intubation techniques.  It has been previously reported that in addition to 

training and maintenance of skills, ongoing quality assurance is required for successful 

administration of a PHI program [32].  Whether prehospital trauma provider systems adopt such 

measures will undoubtedly be impacted by resource availability and the perceived potential 

benefit to the patients served. 

The effect of PHI may vary over numerous factors, many of which cannot be measured due to 

the current limitations of prehospital data collection and reporting.  Variability in the success of 

PHI may be influenced by patient factors (both pre-existing and injury-related conditions), 

provider skill level and/or experience in decision making, resource availability, and 
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environmental constraints at the scene of injury.  We set out to explore heterogeneity in 

comparative effects across both the observed and unobserved factors that also may have 

played a role in the choice of intubation in practice. We use data from the National Study on 

Costs and Outcomes in Trauma (NSCOT) for this purpose. The planned analyses of this data 

examined variation in care delivery between level I trauma centers and non-trauma centers, 

determined the extent to which differences in care correlate with patient outcome (including 

major functional outcomes at 3 and 12 months after injury), and estimated acute and 1-year 

costs, describing the relationship between costs and effectiveness for trauma and non-trauma 

centers [47,33,34,35,36,37,38,39]. As a rich source of prospectively collected observational 

injury-related data, the NSCOT has also been used for a number of secondary analyses, 

beyond the originally intended scope of the study [40,41]. In 2007, Bulger and colleagues used 

the NSCOT data to demonstrate significant variation in the conduct of out-of-hospital treatments 

[42]. The authors observed variation in the rates of endotracheal intubation across regions, 

ranging from 5% to 48% of all patients treated, and noted that the variation persisted after 

stratification by severity of injury, suggesting that this wide range in practice was not dependent 

upon patient injury heterogeneity observed across regions.  To date, an IV analysis has never 

been used on this data. Moreover, the comparative effects of PHI versus no PHI on inpatient 

mortality have rarely been studied in trauma patients, with most retrospective analyses focusing 

on the comparison between patients intubated in the field prior to arrival at the hospital to those 

intubated in the emergency department. 

 

Theory of Local Instrumental Variable (LIV) Approach 

The theory of local instrumental variable (LIV) approach starts with a formal model for choices. 

Let the net (latent) utility for treatment,2 , based on which choices are determined,3 is given as  

                                                            
2 Latent utility in this framework is an anticipated form of utility rather than an experienced form and implicitly 
accounts for decision maker's preferences which vary over all factors. A factor cannot affect treatment choice 
unless it affects this latent utility.      
An alternative formulation of the choice model that is used in Heckman et al. [22] is  

       ( , )            ( )=0        1( 0),Z X U E U D  

where the subtraction of the error term  U makes P(Z) enter as an upper limit of the CDF for  U . However, most 

traditional econometric software packages fit (1) and not the model with a negative error term. This leads to a 

slight differences in the way the values of  U are evaluated. We follow the model in (1) that is also implanted in 

Stata. 

 
3 Decision maker in the intubation context is likely the paramedic attending the trauma patient. 



10 
 

  ,    ( 1 ) 

where X represents a vector of observed confounders and Z represent a vector of instrumental 
variables.  = -  has expectation of zero while I(.) is an indicator function 

representing treatment choice D. Equation (1) expresses the typical random utility framework 

for discrete choices in econometrics [43,44]. Following this framework, one can write
, 

        1 1 1( ( ) ( ( , ))) ( ( ) ( , ))U U UF U F z x F U P z x  where  

P(z,x) = 
 ( ( , ))UF z x  and  by construction. The formulation in (1) 

decomposes factors that determine choice of treatment into the observed and unobserved 

components (again, by the analyst). The additive separability of (1) in terms of observables and 

unobservables plays a crucial role in the justification of instrumental variable methods [20,22]. 

Hereon, we denote S(z,x) = 1 – P(z,x).  At the indifference point, S(z,x) must balance off UD = 

uD. That is, in order to bring a decision making agent to indifference, the numerical values of 

S(z,x) and uD must be the same; therefore, a high ( , )P z x  is needed to compensate a low UD = 

uD. Since high ( , )P z x  indicates higher likelihood of getting treatment based on observed 

characteristics, a low uD must indicate a lower likelihood of getting treatment based on 

unobserved characteristics. 

Consider for simplicity the single instrument case, i.e. Z is a scalar rather than a vector of 
instruments. Given model (1) and the assumed independence of Z and , changing Z 

externally from , shifts all people in the same direction (towards or against D = 1).  This 

produces “monotonicity" in the sense of Imbens and Angrist [18]. 

If Y1 and Y0  represent the potential outcomes for a patient with treatment and control 
respectively, the treatment effect for that patient is denoted as . A Marginal 

Treatment Effect (MTE) [45,16,20] is the average gain to patients who are indifferent between 

receiving treatment 1 versus treatment 0 given X and Z. These are the patients at the margin as 

defined by X and Z. Formally, MTE can be defined as: 

   

       

    ,    ( 2 ) 

where the last equality follows from the fact that S(Z,X) is a monotonic transformation of the 
mean utility  while UD is a monotonic function of U. The mean conditional treatment 

effect at each level of UD is the value of the MTE at that level of UD. For example, a local 

X Z U U D I( , )         E( ) 0          ( 0)        

U  ( , )X Z

       ( 0) 1( ( , ))D I U z x

  ( ) ~ (0,1)U DF U U Uniform

U

U

  1 0Y Y

x zMTE( , ) ( | , , 0) ( | , ( , ))E X x Z z E X x U z x           

1 0 1 0( ) ( ) ( | ( , ))x x E U U U z x        

Dx x E U U U S z x1 0 1 0( ) ( ) ( | ( , ))     

 ( , )V Z X
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average treatment effect (LATE) [15] is a weighted sum of all MTE within the margin at which 
LATE is identified. In the limit, as , LATE converges to MTE under standard 

regularity conditions [20,22].  

An additional feature of MTE is that all mean treatment effects parameters, including the 

Average Treatment Effect (ATE), Effect on the Treated (TT), and the traditional IV effect, can be 

calculated from weighted averages of MTE. These weights can be obtained from the data at 

hand [22,27,46]. For example, the ATE is the sum of all MTE across all distinct values of UD, 

weighted equally (conditional on X).  

If MTEs do not vary over UD, it provides direct evidence on the absence of essential 

heterogeneity. In such a situation, the conditional MTEs converge to the conditional ATE or the 

TTs. One can then solely focus on exploring treatment effect heterogeneity across observed 

confounders.   

 

 Estimators for MTEs and other mean treatment effect parameters  

  The method of local instrumental variable can be used to identify and estimate the MTE 

over the support of the propensity score, estimated using IVs in the choice equation, for 

selecting treatment [20,22,46]. Specifically, the rate of change of the mean outcome with 

respect to P(Z), where the variable P(Z,X) is evaluated at particular values of  p(z ,x) gives 

1 0

( , ) ( , )

( | , ) (( ) | , 1 ( , ))
( , ) D

P Z X p z x

E Y Z z X x E Y Y X x U p z x
P z x 


      


 

( , ) ( , )

( ( , ))
{ | } MTE( , 1 )

( , ) D
P Z X p z x

K P z x
E X x U p

P z x 


     


    ( 3 ) 

where  is the average treatment effect conditional on X and  is a 

differentiable function of .  A formal derivation is given in the Appendix. Equation (3) 

shows that the key element for the estimation of MTE is the function K(P(z,x)). This function can 

be estimated using different econometric techniques, such as using flexible approximation to 

K(P(z,x)) based on a polynomial of the propensity score in a regression estimator or using fully 

non-parametric matching techniques.  Specifically, in a regression context, equation (3) is 

implemented by regressing the outcome Y on all covariates, the estimated propensity score 

, the interaction of the propensity score with all covariates, and a polynomial on the 

  ( , ) ( , )V Vz x z x

{ | }E X ( ( , ))K P z x

( , )P z x

ˆ( , )P z x
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propensity score, as needed, to fully capture the non-linearity of the outcome with respect to 

P(Z). One then computes the partial derivative of the regression estimand with respect to the 

propensity score to get an LIV estimand and evaluates the argument P in the LIV estimand at 
 P Z X p z x, ( , )  in order to produce an estimate for MTE(x,UD = 1-p(z,x) ). Thus, the support of 

UD that is identified in the data would be the same as the range of (1-p(x,z)).  Evaluation of the 

MTE parameter at low values of UD averages the outcome gain for those individuals whose 

unobservable characteristics make them less likely to undergo treatment, while evaluation of 

MTE parameter at high values of UD gives the gain for those patients with unobservable 

characteristics which make them more likely to undergo treatment.  

 

Methods 

Data 

The National Study on Costs and Outcomes in Trauma (NSCOT) was a prospective 

observational cohort study of trauma treatment at 27 Level 1 trauma centers and 124 non-

trauma hospitals in 15 US regions, including both urban and suburban centers [47,48].The 15 

regions were defined by one or more contiguous metropolitan statistical areas (MSA) in 14 

states.  Subjects enrolled were treated for moderate to severe injury at participating hospitals 

between July 2001 and November 2002.  Among the major exclusion criteria were patients who 

arrived at the hospital without vital signs and those pronounced dead within 30 minutes of 

arrival to the hospital.  Further details about the selection criteria and sampling methodology 

have been previously described [47,48].  

For the purpose of the analysis described herein, the NSCOT data were restricted to a subset of 

patients whose injury was severe enough that advanced airway management was a reasonable 

possibility during the acute out-of-hospital resuscitation phases (ISS≥16).  This was primarily 

based on the range of severity of illness in a review of the available evidence in a published 

clinical practice guideline from the time proximate to the study period [49]. Indeed, the rate of 

PHI in patients with ISS<16 was less than 2% in the NSCOT data. We did not use inclusion 

criteria according to ‘‘need’’ for endotracheal intubation because there are no validated 

definitions, scales, or prediction rules for this characteristic. Furthermore, while a Glasgow 

Coma Score (GCS) of <9 is generally used as an indication for intubation, it was not used as an 

inclusion criterion in the current study because the time of GCS measurement with respect to 

drug administration (including muscle relaxants associated with rapid sequence intubation 
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protocols) was not clear, suggesting that GCS might be a result of the treatment rather than an 

indication for it. We also restricted the study population to those patients transported directly 

from the scene of injury to the hospital by either air- or ground-based prehospital medical 

providers.  Failed PHI attempts (n=101, 19% of all PHI) were included in the PHI group, even if 

they were subsequently intubated in the emergency department (n=80).  

The available dataset allowed us to account for a variety of confounders, including patient 

demographics, pre-injury health insurance status, and clinical characteristics such as presence 

of prehospital shock, presence of severe head injury (as measured by Head Abbreviated Injury 

Scale score ≥3), admission to a trauma center, and injury severity score (ISS) categories. 

Among the potential unobserved confounders were skill level and experience of provider 

performing intubation [50,51], scene characteristics that might make intubation particularly 

difficult (such as intubating in awkward positions, dangerous situations or in a moving vehicle), 

ability of the provider to sense the need for intubation (e.g., medics have been previously been 

shown to be able to reliably predict whether someone has aspirated [52]), and unmeasured 

injury status.  

The instrumental variable used was the rate of PHI per metropolitan statistical area (MSA). We 

computed this variable from the same dataset as our analyses data. However, for each patient, 

the level of PHI use in that patient’s MSA was calculated after excluding that patient from both 

the numerator and the denominator. The IV was expected to be predictive of PHI intubation use  

for individual patients– higher use of this procedure in an MSA would be associated with higher 

likelihood of the index patient undergoing PHI if treated in that region.  The rates are also 

expected to be independent of the potential outcomes in the overall target population, as they 

are mostly driven by system-level resources and practice guidelines.  However, among patients 

receiving PHI, patients in high PHI use area may have different levels of unobserved 

confounders than those living in a low use area. This creates dependence between the 

instrumental variable and the unobserved confounders among those receiving PHI, even if they 

are independent in the overall population.  It treatment effects are heterogeneous over these 

unobserved confounders, the situation of essential heterogeneity arise, and the traditional IV 

effect estimates the effect for a marginal group of patients with a very specific level of the 

unobserved confounder.  
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Statistical Analysis 

First, a naïve logistic regression analysis, controlling for observed levels of confounders, was 

run to study the adjusted effects of PHI.  Various goodness of fit tests were used to ensure that 

the specification fit the data well.  

Next, a traditional two-stage residual inclusion (2SRI) approach was applied using instrumental 

variables [53]. In the first stage, a logistic regression was used to predict the propensity to 

undergo PHI as a function of both observed confounders and the instrumental variables. A 

residual was computed by subtracting that predicted propensity score (  ˆ ,P Z X ) from the 

treatment indicator. In the second stage, another logistic regression was used to model the 

death indicator as a function of the PHI, observed confounders and the residual computed in 

the first stage. The treatment effect was computed based on the difference in predicted 

probability of death between PHI and no-PHI.  

Finally, the local instrumental variables (LIV) approach was employed. In the LIV approach, the 

logistic outcome regression was run on all covariates (X), the estimated propensity score

 ˆ ,P Z X , the interaction of propensity score with all covariates, and a polynomial on the 

propensity score,  ˆ( ; )K P d : 

        1
0 1 2

ˆ ˆ( ) ( ( ; ))E Y Logit X X P K P d       ( 4 ) 

The degree of polynomial, d, was selected based on likelihood-ratio tests between nested 

models with different degrees of polynomials for  ˆ ,P Z X . The derivative  ˆ ˆ( ) / ,dE Y dP Z X ) of 

the final polynomial formulation was used as our LIV estimand to predict MTE(x,uD): 

ˆ

ˆ( )
( , )

ˆD
P p

dE Y
MTE x u

dP 

  

The predicted values of the one minus the propensity score allow us to define the values of UD 

over which MTE can be identified [54]. The larger the support of the propensity score, the 

bigger the set over which MTE can be recovered.  

In order to study heterogeneity of effects over both the observed and unobserved 

characteristics, the dimensionality of X was reduced by using deciles of the estimated 

propensity of treatment choice based on observed confounders only.4 These deciles are 

                                                            
4 We ran a separate logistic regression for the treatment indicator on observed confounders X only to 
produce estimates for Pr(D =1|X=x). This is distinct from Pr(D =1|X=x, Z=z) used in the IV analyses. 
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denoted as  hereon, where q = 1,2,…,10. Thus, using our coefficient estimates from the 

above regression (equation (4))  MTE( ,uD) were estimated. The empirical conditional ATE(

) was estimated by averaging over (uD| ) as (uD| )~ Uniform(Min{  ˆ ,P Z X | }, Max{  ˆ ,P Z X  

| }) by construction,  while the empirical unconditional ATE was estimated using the empirical 

density of ( ). Weights associated with TT and IV effect were computed and used to construct 

the respective treatment effect estimates. All analyses were weighted using probability weights 

and accounted for clustering of patients by hospitals. Standard errors for all the mean treatment 

effect parameters are estimated via 1000 clustered bootstrap replicates. 

 

Results 

There were 2169 patients in the NSCOT data who met all the inclusion criteria. Of them, 514 

(23.7%) were intubated prior to arriving in the emergency department of the hospital where they 

received definitive care (PHI). Table 1 illustrates the differences in observed levels of potential 

confounders. Compared to non-PHI patients, patients who underwent PHI were on average 8 

years younger, were less likely to be 65 years and older, were more commonly identified as 

racially White, and on Medicaid, but not Medicare.  A higher proportion of patients who 

underwent PHI had prehospital shock, severe brain injury, but no Charlson comorbidity.  PHI 

was also associated with the highest category of injury severity scores.  There was no 

difference in the rate of PHI vs. no-PHI by gender or by admission to trauma center. 

Based on the estimated propensity score for PHI receipts conditional on observed confounders 

and the instrumental variables, overlapping support across both treatment groups were found 

for 2069 patients (Figure 2). All of the following analyses were conducted on this sample.  

Table 2 reports the estimated mean treatment effects based on different estimators. The naïve 

logistic regression analysis, controlling for observed levels of confounders produced a treatment 

effect estimate of 0.188 (se = 0.04, p < 0.001). It indicates that after controlling for observed 

confounders, on average, PHI increases in-patient mortality by 18.8% compared to no-PHI. 

Next, the instrumental variable methods were evaluated. The instrumental variable was found to 

be a significant predictor (p < 0.0001) of PHI. In order to explore whether the observed 

confounders distributed uniformly over the levels of the instrumental variables (a necessary 

test), we predicted the propensity of PHI as a function of IV only and then compared the levels 

of observed confounders above and below the median of this predicted propensity.  Because a 

q

q q

q q q

q

q
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good instrument does not affect outcomes directly, it should considerably reduce the imbalance 

in levels of all confounders across the propensity median compared to the imbalances across 

treatment receipts.  Table 1 reports the p-values for these comparisons on observed 

confounders and shows that the imbalance across levels of observed confounders were 

drastically reduced. Though not sufficient, this necessary test supports our theoretical 

assumptions that the imbalances in the levels of unobserved confounders should also be 

reduced across predicted propensity scores and the instrument should not directly affect 

outcomes.  

The 2SRI approach estimated the treatment effects to be 0.029 (se = 0.08, p = 0.72) (Table 2). 

This estimate was lower than what was obtained via the naïve logistic regression. It says that 

the casual effect of PHI compared to no-PHI will increase in-patient mortality by 3%, which is 

not statistically significant from zero. This IV effect, however, may not correspond to any 

interpretable mean treatment effect parameter if essential heterogeneity is present. To explore 

this, the local instrumental variable approach was used.   

Figure 3 shows how the marginal treatment effects, estimated using the LIV approach, vary 
jointly over the levels of observed confounders ( q ) and the latent dimension of unobserved 

confounding (UD). Note that the joint support for ( q ,UD) is not identified for low q & UD and also 

for high q & UD. This is not entirely a limitation of the data or the instrumental variable and 

rather has a strong behavioral flavor. Assuming that medics make the decision to perform PHI 

in the trauma patient, then if both the observed and unobserved levels of confounders make 

individual patients less likely to receive PHI, the medics are less likely to respond to an 

exogenous stimulus (instrument) that push them towards using PHI on these patients. In a 

similar vein, if characteristics make individuals highly likely to receive PHI, the medics are less 

likely to respond to an exogenous stimulus to withhold PHI for these patients. In other words, in 

these settings, there are no marginal patients who are at the precipice of choice based on their 

observed and unobserved characteristics and a perturbation in an instrument can determine 

their treatment receipt. To most extent, unless new information or changes in system level 

incentives modifies the delivery of these treatments, available data cannot be used to estimate 

a casual treatment effect in these patients.5  We focus our attention to the patients where such 

comparisons can be made.  

                                                            
5 This concept of the absence of the marginal patients is somewhat similar, though not identical to the concepts of 
never takers and always takers in Angrist et al [15]. 
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First, treatment effects heterogeneity was explored based on observed confounders.  Figure 3 

reports the average treatment affects over levels of observed confounding. It shows that as the 

propensity to receive PHI based on observed characteristics increased, treatment effects 
became smaller and ultimately negative (e.g. ATE( 10 ) = -0.07 (0.02), p<0.001). This indicates 

positive self-selection based on these characteristics. In fact, the proportion receiving PHI was 
40% among those who belonged to 10 compared to 14.5% in the other deciles of observed 

confounders (p< 0.001).  Focusing only on subgroup analyses based on observed 
characteristics, it could be concluded that 89% of the patients belonged to deciles 1  to 9  and, 

on average, would experience significant increase in mortality had they undergone PHI versus 

no-PHI. These patients are said to constitute the extensive margin [26] of the comparison. 

However, focusing simultaneously on the heterogeneity dimension based on unobserved 

characteristics, it is found that the extensive margin may comprise of only 59% of the patients if 

only the point estimate at each margin is considered. That is, even if the conditional average 
effect is positive for patients in 1  to 9 , not all patients within that group would have a positive 

treatment effect.  

Next, effect heterogeneity over unobserved confounders was explored. Conditional on a level of 

observed confounders, the profile of MTEs over UD is analogous to the stylized situation 

depicted in Figures 1(c) and (d).  We found evidence of essential heterogeneity. Much like the 

observed confounders, unobserved confounders that made patients highly likely to undergo PHI 

are also associated with negative treatment effects or decreased mortality from PHI versus no-

PHI. Similarly, levels of unobserved confounders that made patients less likely to undergo PHI 

are associated with positive treatment effects or increased mortality from PHI versus no-PHI. 

This provides evidence on positive self-selection behavior based on unobserved confounders; 

therefore, in practice, the effect of PHI on patients who were undergoing PHI is determined by 

the combined positive self-selection based on different confounders. Consequently, the mean 

treatment effect parameters estimates were found to be substantially different that either the 

naïve or the traditional IV estimates (Table 2). The average treatment effect (ATE) was 

estimated to be 0.074 (se = 0.01, p <0.001), while the effect on the treated (TT) was estimated 

to be -0.079 (se = 0.09, p = 0.38). It indicates that had PHI been conducted on all trauma 

subjects, the average inpatient mortality rate would have increased by 7.4% points when 

compared to the situation where all trauma patients undergo no PHI.  However, this estimate 

may be misleading because such an all-or-none approach is hardly a pragmatic comparison. 

Perhaps, more relevant is the estimate for the effect on the treated (TT), which indicates that 

those who are undergoing PHI in practice would have increased their average mortality rate by 
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7.9% had they not been subjected to PHI, although this estimate does not reach statistical 

significance.  

In a more nuanced exploratory analysis, observed factors associated with the observed 

characteristics-based extensive margin were explored using univariate comparisons.6 Basically, 
the levels of individual Xs were compared between patients who belonged to 10 versus those 

who belonged to 1  to 9 . Table 3 presents these results. The most significant factors 

associated with harms versus benefits were found to be older age, non-Hispanic Black 

race/ethnicity, and Medicare insurance. As expected and evident from Table 1, many of these 

characteristics also predicted non-receipt of PHI proving strong evidence of positive self-

selection in practice based on these characteristics. Interestingly, patients with severe head 

injury and those with ISS scores>34 had the clearest benefit from PHI. Table 3 also reports 

characteristics associated with increased mortality with PHI among those who were undergoing 

PHI. Compared to all patients, among patients receiving PHI, pre-hospital shock, admission to 

trauma center and comorbidities were no longer significant predictors of harm, indicating that 

selection on these covariate dimensions were already taking place. On the other hand, age, 

severe head injury status and those with ISS scores>34 were some of the dimensions along 

which selection could be further enhanced.  

Finally, whether areas with higher PHI use were associated with less positive self-selection (i.e., 

more overuse) was studied. That is, we wanted to know whether subjects who received PHI in 

lower use regions were less likely to be harmed by PHI than those who received PHI is higher 

use regions. Regions where PHI use rates were lower than the median rate were compared to 

regions where they were higher. Table 4 reports the results, as well as the estimated risk of 
harm that is the probability of belonging to deciles 1  to 9 . Compared to the risk of harm by 

PHI among the entire population, the risk of harm by PHI among PHI recipients is significantly 

reduced in low use areas (p <0.001), but not in high use areas (p = 0.12). These results provide 

strong evidence of over-use of PHI in high-use regions.   

 

 

 

                                                            
6 Ideally, one can develop prediction algorithms using multivariate analysis on such information. However, our 
sample size was too small to develop and validate such algorithm. We, therefore, present some exploratory 
analyses leaving room for future work in this area. 
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Conclusions 

With the increased investment in developing large observational studies for comparative 

effectiveness studies, methods that produce valid and interpretable results are in great demand. 

Moreover, as the field of CER moves towards a patient-centered paradigm, understanding 

heterogeneity in comparative effects becomes crucial. In this paper, we have highlighted the 

recent development of instrumental variable methods to address such challenges.  We applied 

these methods towards a substantive problem of evaluating the comparative effectiveness of 

prehospital intubation versus no prehospital intubation on inpatient mortality in trauma patients.  

One critical step, in trying to align these analyses to decision making in practice, is to be able to 

measure variables/ confounders that are also readily available at the point of decision making, 

so that conditioning on them is pragmatic. We attempted to select variables that would be 

readily available for decision making from the start of care in the prehospital setting.  

Demographics are fairly easy to assess by observation.  Calculation of the ISS score is time 

consuming and requires information not available to formally assess the extent of injury during 

the initial evaluation of the patient, but broad categorization of injury severity (mild, moderate, 

severe, near fatal) would be possible in the moments prior to definitive prehospital treatment.  

Furthermore, severe head injury with decreased level of consciousness is estimable, and 

prehospital shock (as defined by systolic blood pressure<90 mmHg) is measureable.  It is less 

likely that sufficient history would be known to estimate the patient’s comorbidities or pre-injury 

insurance status. The admission to a trauma center is likely a result of the decision making 

made at the scene, but may have been directed by preliminary reports of the level of injury and 

facilitated specialized prehospital care from the outset.  As prehospital electronic data 

management improves, better capture of scene data may inform development of more specific 

mortality risk assessment.  With real-time decision support, the prehospital provider may be 

able to improve their patient selection for PHI. 

It is remarkable that for the most part, PHI is appropriately used, especially in low-use areas. 

Based on the prevailing concern for the safety of PHI due to difficulty with maintenance of 

intubation skills in low-PHI use prehospital systems, it is somewhat surprising to find that areas 

of limited PHI use actually confer less risk to trauma patients due to PHI. One potential 

explanation may be that in low-use regions, the number of prehospital providers trained to 

perform intubation is also low and hence these medics may accumulate intubating experience 

at a higher rate than those in high-use regions, making them more efficient with the intubation 

procedure [55].   
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Additionally, the difference in the level of PHI risk among PHI recipients between low and high-

PHI regions may be explained by patient selection for PHI. Our analysis also reveals that those 

patients without head injury, with lower injury severity and without prehospital shock had a 

higher likelihood of significant harm from PHI. Not surprisingly, areas with high rates of PHI use 

had a lower risk reduction due to positive self-selection, presumably because the indications for 

PHI were liberalized. Ultimately, the positive effects of PHI are more pronounced when it is 

reserved for only the most critically ill patients that survive to the emergency department – in 

particular those with severe head injury; when the indication for PHI is expanded beyond this, at 

best, PHI confers no survival advantage, and for the relatively uninjured, the risk of PHI may 

outweigh the risk of mortality without PHI.  

One limitation of our study is that the prehospital death rate is unknown; patients who were 

declared dead at the scene, en route, or within 30 minutes of arrival if they arrived at the 

hospital without signs of life were excluded from the NSCOT study.  If PHI has a differential 

effect on pre-hospital mortality than no PHI, then focusing analysis on patients who reach the 

hospital may provide biased assessment of PHI. It should also make the case mix of patients 

who reach the hospital alive in low-use regions different from that in high-use regions, thereby 

invalidating the IV. However, we did not find any evidence of such differential case-mix in our 

observed data. Moreover, we believe that even if there may be a differential effect of PHI on 

pre-hospital mortality, it is likely to be quite small as the overall rate of pre-hospital mortality in 

patients with severe trauma is small (~3% [56]).  

Overall, we believe that the methods highlighted in this paper can provide a rich set of tools for 

researchers to explore hypothesis on heterogeneity in treatment effects. Obviously, it is 

necessary to replicate these results before they are implemented in practice. However, such 

results can provide informative priors for designing confirmatory trials/studies in this setting, 

thereby making the link between information generation and decision making more efficient, 

and in line with accomplishing the goals of CER.   
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Appendix: 

 

   

   

 

, where the last equality follows as D = 

(UD>S(z,x)) and therefore,  . 

  

Let    1 0(( ) | , ) ( , )DE Y Y U u X x g u x , where ( , )g U X is some non-parametric function of X and U. Now, if 

we take the rate of change of the mean outcomeY with respect to the probability of receiving treatment, 
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Therefore, the LIV estimand comprises of the partial derivative of the control function for Y with respect 

to P, and evaluating this derivative by setting P  = p, where p is a specific estimated value of   

 ˆ ,P Z X in the data, to obtain an estimate of MTE(UD=1-p,x). 

The formal proof of consistency for this estimator can be found in Heckman et al. (2006). 
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Figure 1: A stylized illustration of non-essential (a & b) and essential heterogeneity (c) and estimation of marginal treatment effect 
(MTEs) using the local instrumental variable (LIV) approach (d). 
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Figure 2: Distribution of estimated propensity score to receive prehospital intubation for 
receivers and non-receivers of prehospital intubation, conditional on observed confounders and 
instrumental variables. 
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Figure 3: (a): Marginal treatment effect profile jointly across the deciles of propensity to receive 
prehospital intubation based on observed confounders (ηq; q = 1,..,10) and the propensity to 
receive prehospital intubation based on unobserved confounders (UD). (Black dots indicate the 
specific margins where treatment effects are significantly different that zero at 5% level; * 
significance at 5% level) 
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Table 1: Characteristics of observed confounders across treatment arms 

Characteristics No Prehospital 
Intubation 
N = 1655 

Prehospital 
Intubation 
N = 514 

 
 
p-value 

p-value 
across IV 
levels* 

 % or Mean (sd) % or Mean (sd)   
Age (in years) 47 (20) 39 (18) < 0.001 0.44 
   Age 18 – 24 22.9% 33.0%   
   Age 25 - 34 17.6% 24.1%   
   Age 35 – 44 18.9% 14.1%   
   Age 45 – 54 15.2% 13.1%   
   Age 55 – 64   9.9%   9.1%   
   Age > 64  26.1% 12.3% < 0.001 0.26 
     
Female 26.4% 29.1% 0.27 0.25 
     
Race/Ethnicity:            
   Hispanic 20.8% 14.7%   
   Non Hispanic White 49.3% 67.8%   
   Non Hispanic Black 29.9% 17.5% 0.07 0.09 
     
Pre-injury Insurance:     
   Uninsured 32.5% 29.9%   
   Medicare  17.7% 8.9%   
   Private only 38.3% 41.5%   
   Medicaid and Other 11.5% 19.7% 0.02 0.05 
     
Prehospital shock 13.1% 27.2% <0.001 0.70 
     
Severe head injury 49.3% 76.3% <0.001 0.10 
     
Admitted to a Trauma 
Center 

86% 88% 0.12 0.64 

     
Charlson comorbidity     
   No comorbidity 74.0% 86.1%   
   1 comorbidity 14.6%   5.7%   
   2 comorbidities   5.2%   4.5%   
   3+ comorbidities   6.3%   3.7% 0.002 0.05 
     
ISS Score quartiles:     
     16-24 57.1% 28.6%   
     25-34 33.9% 39.4%   
     >34   9.0% 32.0% < 0.001 0.81 
In-hospital death 9% 31% < 0.001 < 0.001 
* Comparison of covariate levels between above and below median values of the IV.  ISS=Injury 
Severity Score.
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Table 2: Treatment effect estimates of prehospital intubation compared to no prehospital 
intubation on inpatient mortality, across alternative methods. 

Estimator Mean effect (se)  [p-value] 
Unadjusted   0.220 (0.02) [<0.001] 
Regression (Logistic)   0.188 (0.03) [<0.001] 
IV (2stage residual inclusion)   0.029 (0.08)  [0.72] 
  
LIV-based estimates  
   IV-effect    0.011 (0.08) [0.89] 
   Average Treatment Effect (ATE)   0.074 (0.01) [<0.001]
   Effect on the Treated (TT) - 0.079 (0.09) [0.38] 
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Table 3: Differences in levels of observed confounders across groups with significant harm (Pr(

1  to 9 )) versus significant benefit (Pr( 1  to 9 )) on average.  

 ALL PATIENTS  PHI RECIPIENTS  
Characteristics Significant 

benefit 
from PHI 
N = 200 

Significant 
 harm  

from PHI 
N = 1869 

 
 
p-value 

Significant 
benefit 

from PHI 
N = 123 

Significant 
 harm  

from PHI 
N = 302 

 
 
p-value 

 % or Mean (sd)  % or Mean (sd)  
Age (in years) 29 (18) 41 (20) <0.001 29 (18) 37 (20) <0.001 
       
   Age 18 – 24 47.9% 24.1%  47.1% 34.1%  
   Age 25 – 34 29.8% 18.9%  29.6% 18.7%  
   Age 35 – 44 12.9% 20.4%  15.8% 15.6%  
   Age 45 – 54   6.3% 11.5%    4.1% 12.5%  
   Age 55 – 64   2.0%   9.4%    1.7%   9.8%  
   Age > 64   1.0% 16.0% <0.001    1.7%   9.3% 0.035 
       
Female 33.1% 28.7% 0.174 34.0% 29.5% 0.693 
       
Race/Ethnicity:              
   Hispanic 21.6% 23.3%  20.5% 17.1%  
   White 75.6% 51.0%  77.3% 58.9%  
   Black 2.8% 25.7% < 0.001 2.2% 24.0% 0.020 
       
Pre-injury Insurance:       
   Uninsured 31.3% 32.2%  32.1% 29.9%  
   Medicare    2.9% 17.2%    3.5% 11.0%  
   Private only 45.3% 41.5%  33.3% 44.8%  
   Medicaid and 
Other 

20.5% 9.1% <0.001 31.1% 14.3% 0.025 

       
Prehospital shock 34.8% 14.6% 0.004 28.9% 20.4% 0.257 
       
Severe head injury 90.6% 52.2% <0.001 94.2% 68.9% <0.001 
       
Admitted to a 
Trauma Center 

92.9% 87.1% 0.003 89.5% 85.7% 0.537 

       
Charlson 
comorbidity 

      

   No comorbidity 88.1% 79.8%  88.8% 85.1%  
   1 comorbidity   7.5%   7.3%    6.7%   5.7%  
   2 comorbidities   3.1%   5.3%    3.2%   4.9%  
   3+ comorbidities   1.3%   7.6% 0.017   1.3%   4.3% 0.473 
       
ISS Score quartiles:       
     16-24   2.5% 59.2%    0.4% 46.0%  
     25-34 35.6% 33.2%  34.8% 39.6%  
     >34 61.9%   7.6% <0.001 64.8%   14.4% <0.001 
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Table 4: Comparing low PHI use regions to high PHI use regions for degree of 
positive self-selection of PHI use. 

 
 
 

Proportion who belong to 
subgroups where PHI is estimated 
to produce significant harm on 
average  
[p-value] 

Low PHI use 
regions 

(< Median 
rate) 

High PHI-use 
regions 

(≥ Median 
rate) 

p-value for
Difference 

Among all patients* 85.1% 
[<0.001] 

87.9% 
[<0.001] 

0.34 

Among patient receiving PHI** 
62.5%  

[<0.001] 
80.0% 

[<0.001] 
0.08 

Risk reduction due to positive 
self-selection 

-26%  
[<0.001] 

-9% 
[0.12] 

0.13 

*Pr( 1  to 9 ); **Pr( 1  to 9 |D=1);   
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