HEDG

HEALTH, ECONOMETRICS AND DATA GROUP

THE UNIVERSITY@ZC/M

WP 11/25

Measuring overfitting and mispecification in nonlinear
models

Marcel Bilger
Willard G. Manning

August 2011

york.ac.uk/res/herc/hedgwp



Measuring overfitting and mispecification in nonlinear
models *

Marcel Bilger, Willard G. Manning

The Harris School of Public Policy Studies, University of Chicago, USA

Abstract

We start by proposing a new measure of overfitting expressed on the untransformed scale of the
dependent variable, which is generally the scale of interest to the analyst. We then show that with
nonlinear models shrinkage due to overfitting gets confounded by shrinkage—or expansion—
arising from model misspecification. Out-of-sample predictive calibration can in fact be expressed
as in-sample calibration times 1 minus this new measure of overfitting. We finally argue that
re-calibration should be performed on the scale of interest and provide both a simulation study
and a real-data illustration based on health care expenditure data.
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1. Introduction

When fitting a model, it is well-known that we pick up part of the idiosyncratic char-
acteristics of the data as well as the systematic relationship between a dependent and
explanatory variables. This phenomenon is known as overfitting and generally occurs
when a model is excessively complex relative to the amount of data available. Overfit-
ting is a major threat to regression analysis in terms of both inference and prediction.
When models greatly over-explain the data at hand they can even show relations which
reflect chance only. Consequently, overfitting casts doubt on the true statistical signif-
icance of the effects found by the analyst as well as the magnitude of the response. In
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addition, since the relations found in the estimation sample will in general not repli-
cate, the predictive performance of the models deteriorates when they are applied to new
data. An important distinction has thus to be made between retrospective prediction,
where a model predicts outcomes within the dataset used to estimate it, and prospective
prediction or forecast, where a previously estimated model forecasts new outcomes in
a different data set. We will employ here an alternative way of distinguishing between
these two types of prediction by referring to the former as being in-sample and the latter
out-of-sample.

When using parameter estimates from the estimation sample to make predictions in
a new sample from the same population, the plot of the actual outcomes against their
forecasts should lie on the 45 degree line in the absence of overfitting. This topic has been
studied for quite a long time and the deviation from the 45 degree line is referred to as
shrinkage. An early measure of shrinkage is the adjusted multiple correlation coefficient
which was proposed by Wherry (1931). Shrinkage is also often measured by means of
cross-validation techniques following the pioneering work by Larson (1931). Our work
is based on the seminal work by Copas (1983) who proposed to measure shrinkage by
1 minus the least squares slope of the regression of the observed outcomes on their
out-of-sample predictions. Later, Copas (1987) also suggested to estimate this slope by
cross-validation and his measure gained further popularity. Many applied researchers use
this measure, especially in health sciences (see for instance Harrell et al., 1996; Blough
et al., 1999; Harrell, 2001) where it is sometimes referred to as the Copas test of overfit-
ting. The Copas measure of shrinkage is often assessed for various competing models and
the results displayed in league tables. The resulting ranking is eventually part of model
selection along with other diagnostic tools (e.g. Basu et al., 2006). It should however be
stressed that predictive shrinkage is not only relevant in health economics, but in any
field of economics where well-calibrated predictions are of primary importance. Govern-
ment budgeting in public economics and risk adjustment in the economics of risk and
uncertainty are two such examples.

In this paper, we revisit the Copas measure of shrinkage in the case of nonlinear models.
With nonlinear models, estimation often takes place on a different scale from the one of
the dependent variable. The former is sometimes referred to as scale of estimation, and
the latter as the scale of interest, to the extent that the original scale is the scale of
scientific or policy interest. Shrinkage is usually measured on the scale of estimation (see
for instance Copas, 1983, 1997, in the specific case of the logistic regression). However,
a few authors (Veazie et al., 2003; Basu et al., 2006) found it more meaningful to assess
the Copas slope on the scale of interest as shrinkage is then measured in the same
unit as the dependent variable. We show here that this alternative Copas measure does
not constitute a measure of shrinkage arising from only overfitting. This measure also
generally picks up the effect of model misspecification on the scale of estimation. We
argue that the scale-of-interest Copas measure should instead be viewed as a measure of
shrinkage arising from both model misspecification and overfitting. It should be stressed
that we still consider this version of the Copas measure to be extremely valuable as it
provides a measure of calibration of the out-of-sample predictions. Calibration refers here
to the extent of bias in the predictions, which is an important component of predictive
accuracy (see van Houwelingen and Cessie, 1990, for a discussion). More importantly,
while the scale of estimation is often adopted for analytical reasons, the scale of interest,
or raw scale, is essential for assessing the implications of policies and behaviors.
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We propose to express calibration of the out-of-sample predictions as their in-sample
calibration multiplied by 1 minus a new measure of overfitting defined on the scale of
interest. This relation makes it possible to measure the respective contributions of model
misspecification and overfitting to the predictive bias when applying an estimated model
to new data. It notably illustrates the trade-off that the analyst faces when comparing—
and selecting—competing models. Should flexibility be increased in order to achieve
better in-sample performance? Or should nonlinearity be reduced and some secondary
covariates be left out in order to better contain overfitting? Our expression indicates on
what side of this trade-off a given model lies, thus providing the analyst with guidance
on optimal specification choice.

Given that out-of-sample predictive accuracy depends on both in-sample calibration
and overfitting is also crucial when correcting the predictions to account for shrinkage.
Copas (1983) proposed a pre-shrunk predictor which is obtained by multiplying the
predictions by the estimated Copas measure of shrinkage. However, the problem is that
since the Copas measure of shrinkage is defined on the estimation scale, the corresponding
pre-shrunk predictor re-calibrates for shrinkage arising from overfitting only. Predictive
bias caused by model misspecification will replicate in any new dataset and this is not
accounted for. That is why we argue that re-calibration should take place on the scale of
interest in order to correct for model misspecification bias as well.

We first illustrate our new measure of overfitting and its relation with in-sample and
out-of-sample calibration by means of a simulation study. We also present a model ex-
plaining data on individual healthcare expenditures which is a relevant case study as
such models are typically highly nonlinear given their strictly positive and right-skewed
dependent variable. Our simulations mimic real data and are in particular based on a
realistic set of covariates. We employ a baseline GLM model and misspecification is in-
troduced through either an incorrect link function or wrong distributional assumption.
This allows us to assess the effect of model misspecification on the various measures of
shrinkage presented in this paper. We finally present a real-data illustration by fitting
our baseline model on health care expenditure data from a well-known hospitatlist study
(Meltzer et al., 2002) in order to show that the distinctions made in this paper matter
in practice.

The rest of the paper is organized as follows. Section 2 presents our new measure of
overfitting, its relation with out-of-sample and in-sample calibration, and its estimation
method. Section 3 presents the simulation design and Section 4 the results from these
simulations. Section 5 show our illustration and Section 6 concludes.

2. Theoretical part
2.1. The Copas measure of shrinkage

For ease of exposition, we start by restricting the nonlinear models analyzed to the
members of the GLM family (Nelder and Wedderburn, 1972). This family is fairly general
as it includes many models widely applied in practice, such as the linear model for
untransformed continuous variables, Poisson regression for counts, logistic regression for
binary variables, and parametric proportional hazard models for durations. An important
exception is the Box-Cox models, which do not belong to the GLM family and notably
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include the linear regression of the log-transformed dependent variable.

In the GLM family, the distribution of the observed outcomes, y; i—1,...n, is assumed
to be a member of the exponential family where the expectation is related to the linear
predictor, n; = By + B,x;i = B'z;, via the link function gr: E(y:[xi) = g7 (i) = ;. In
addition, the variance of y; is supposed to be function of its expectation, i.e. V(y;|x;) =
vr(u;). Note that x; refers to a vector of p covariates, Bp to the vector of their corre-
sponding parameters, §p to a constant term, and subscript 7' to the true model followed
by y;. Note also that z{ = (1 x{) and 8’ = (8o ,81’)).

In his seminal paper, Copas (1983) proposed a very convenient measure of the shrink-
age caused by overfitting in the case of the linear regression with multivariate normal
covariates. This measure is based on the fact that the conditional expectation of a new
outcome, E(y}|§9""), can be expressed as a linear function of its out-of-sample predic-
tion, §9Ut. Because these two quantities should be equal in the absence of overfitting, 1
minus the least squares slope of this regression provides a measure thereof. Copas also
argues that this method can be generalized to the entire GLM family, and illustrates
this in the specific case of the logistic regression Copas (1983, 1997). In this paper, we
formally show that Copas’ intuition is correct by deriving a large sample approximation
of the Copas shrinkage factor in the GLM framework. To do so, let us first express the
conditional expectation of a new outcome on the scale of estimation, gr(E(y} |,3, Zi)), as

a linear function of its out-of-sample linear predictor, 3'z;:
gr (E(yﬂﬁ, Zi)) ~ fy+ A (B,Zi - Bo) ; (1)

where the covariates x; have been appropriately centered. Note that this centering does
not lead to any loss of generality as it merely redefines the constant term of the model,
Bo. Equation 1 can be viewed as being the best linear approximation of gT(E(yi*|,f3', Zi))
in the maximum likelihood sense. In the absence of overfitting, ,é" z; is a well-calibrated
predictor of gr(E(y?|3,2;)) and A equals 1. On the other hand, the further A is below
1, the greater is the shrinkage resulting from overfitting. The quantity 1-A can thus be
interpreted as a measure of the shrinkage caused by overfitting. We show in Appendix A
that, asymptotically, A can be expressed as follows:

p
- ~
316,
where [ is the Fisher information matrix. This confirms what Copas (1997) found for the
logistic regression, namely that shrinkage increases with the number of covariates p, and
decreases with the GLM deviance BI')I Bp. So, the better the in-sample fit, the smaller the
shrinkage, which completely disappears at the limit. On the other hand, poor in-sample
fit results in large out-of-sample shrinkage. Note that when the deviance is less than p,
A becomes negative. It may finally be stressed that A is defined on the transformed
scale of the expectation of the dependent variable. We will thus refer to 1 — A as the
estimation-scale Copas shrinkage throughout.

Although the vast majority of studies measure shrinkage on the estimation scale (see
for instance Blough et al., 1999), a few authors (Veazie et al., 2003; Basu et al., 2006)
have found it more meaningful to measure it on the untransformed scale or the scale
of interest. This was originally seen as a two degree of freedom measure, but for better
comparability with the estimation-scale version, and without any loss of generality, we

~ 1 —

(2)



here assume that the observations y; are centered. We formalize this measure as follows:

E(y; ™) ~ 655, (3)
where g9t = gfl(,é" z;) is the out-of-sample prediction of y;, and equation 3 the best
linear approximation of E(y;|y9"") in the least squares sense. Absence of overfitting
results in § = 1, whereas J is smaller than 1 when shrinkage occurs. Consequently,

quantity 1-0 constitutes an alternative to 1 — A for measuring the shrinkage in out-of-
sample predictions. The particularity of § is that it is expressed on the same scale as
the variable of interest y. For instance, if y represents individual healthcare expenditure,
d = 0.95 would mean that the deviations above (below) average healthcare expenditure
are underestimated (overestimated) by 5%. We refer to 1—4 as the scale-of-interest Copas
shrinkage throughout.

2.2. Owverfitting and model misspecification

In practice, models act as approximations of the data generating process of the data
at hand. There will always be some degree of departure from these models. To illustrate
the consequences of this, let us consider the situation where a wrong link function gy is
used for the model of y;. Note that subscript W refers to a misspecified—or wrong—model
throughout.

Remarkably, the estimation-scale Copas statistic is not affected by this wrong assump-
tion. This can be shown in equation 1 by replacing gr with gy, and rearranging:

A gw (E(yZ‘IB,Zi)) — Bo
- Bz — Bo

This means that, in the absence of overfitting, or in other words when the transformed

(4)

conditional expectation of ¥, gw (E (yr| B, Zi)>, equals its out-of-sample linear predictor

B' zi, the estimation-scale Copas statistic still equals 1 despite the misspecification of the
model. The reason is that the misspecification has been made twice. It has first been
made when computing the linear predictor, ,@' z; = gw (§9""), and then when assessing
the estimation-scale Copas statistic defined in equation 1.

On the other hand, the scale-of-interest Copas statistic is affected by model misspec-
ification. The reason is that, in the absence of overfitting and when the link function
is nonlinear, §¢"* is unlikely to equal E(y;|§?"") when the model is misspecified. In-
deed, E(y;|§9"") is the expectation of the outcome, u;, which will most often not equal
gﬁ,l (B’ z;) when using the wrong link function gy . So, in equation 3, the slope § gen-
erally does not equal 1 even in the absence of overfitting. The shrinkage (when 6 < 1)
or expansion (when ¢ > 1) results from model misspecification. In practice, some degree
of overfitting is always present and this gets confounded with this misspecification ef-
fect. The problem lies in the discrepancy between the misspecified model used to predict
the outcome and the scale-of-interest Copas statistic defined in equation 3 when this
misspecification is ignored.

Note that when a linear model with an untransformed dependent variable is estimated
in the first stage, this discrepancy does not exist and 1 — § can be used as a measure
of overfitting. However, in the case of nonlinear models, quantity 1 — J should not be
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viewed as a measure of overfitting alone, but as a measure of shrinkage resulting from
both overfitting and model misspecification. We argue that statistic § remains extremely
meaningful, as it can be interpreted as a broader measure of calibration of the out-of-
sample predictions, sensitive to both overfitting and model misspecification.

2.3. A scale-of-interest measure of overfitting

Our objective here is to propose a new measure of overfitting combining advantages
from both the scale-of-interest and estimation-scale Copas statistics. We want this new
statistic not only to be expressed on the scale of interest but also to be immune to model
misspecification. Let us start by defining statistic « which is the slope of the linear
regression of the conditional expectation of the outcome, E(y;|§i"), on its in-sample
prediction, g™

E(yili") ~ ag;", (5)
where, similarly to equation 3, This equation is the best approximation of E(y;|§i") in
the least squares sense, and the observations y; are assumed to be centered. When using
in-sample predictions, no overfitting can occur since the same vector of covariates is
used both when estimating the model and predicting the outcome. When the model is
well-specified, « equals 1, whereas we expect that o will most often not equal 1 when
the model is misspecified. Note that « can equal 1 even when the model is misspecified,
and should thus not be interpreted as a measure of misspecification per se. We merely
view here « as being a measure of calibration of the in-sample predictions, and quantity
1 — « as a measure of the shrinkage arising from model misspecification alone. It may be
stressed that, unlike 0, v can be greater than one in which case it indicates predictive
expansion. that is, over-prediction of large outcomes and under-prediction of small ones.

Interestingly, equations 3 and 5 implicitly define a new measure of overfitting. To see
this, it should be stressed that the expectation of y; is always assumed to be same, both
within and outside the sample: E(y}|9:"") = E(y;|9™) = u;. In other words, we assume
that the data does not change its probability distribution from one sample to the next.
Once p; is substituted for these two expectations in equations 3 and 5, it can easily be
shown that:

9 = g, (6)
where v = %. It is important to note that the same model, possibly misspecified, is used
to predict both §9u¢ and §i". Any deviation between these 2 quantities can thus only be
caused by overfitting. We thus interpret quantity 1 — v as a measure of the shrinkage
caused by overfitting alone. In the absence of overfitting, v equals 1 and no shrinkage
arises. When overfitting occurs, the out-of-sample predictions lose their relation with the
outcome, v diminishes and the measured shrinkage increases.

Table 1 sums up the main features of the four measures of shrinkage defined above.
The first column shows the symbol used to refer to the shrinkage statistic while the
second indicates whether the statistic is defined on the estimation scale or on the scale-
of-interest. The last two columns respectively indicate whether the statistic captures
misspecification, overfitting, or both.



Table 1
Shrinkage statistics

Effect captured
Symbol Scale

misspecification overfitting

1-A estimation v
1-9 interest v v
1—a interest v

1—v interest v

2.4. Decomposing the overall shrinkage

Expression 6 also provides a valuable relation between the 3 scale-of-interest statistics
defined above. It shows that out-of-sample calibration § equals in-sample calibration «
times the overfitting statistic «. Further insight can be gained by expressing this relation
in terms of shrinkage:

l-0~(1—-—a)+a(l—17). (7)
The overall shrinkage when predicting outcomes in a new sample, 1 — ¢, is thus the
sum of shrinkage due to misspecification, 1 — «, shrinkage caused by overfitting, 1 — ,
times the in-sample calibration factor, . Note the interaction between shrinkage due to
misspecification and overfitting. When the model is perfectly specified (i.e. @ = 1), our
measure of overfitting equals the out-of-sample attenuation 1 —§. On the other hand lies
the case where the model is so misspecified that o = 0, and where overfitting does not
play any role as this cannot further deteriorate the fit. It may also be noted that term 1—«
can be negative in which case it represents expansion caused by model misspecification.
Term 1 — § can also be negative when this expansion offsets shrinkage resulting from
overfitting.

Equation 7 could be very useful in practice. It illustrates the trade-off that analysts
face when comparing—and selecting—competing models, or when judging the adequacy
of the model that they have selected. It is well-known that the extent of model flexibility
has to balance in-sample quality of fit with containing the amount of overfitting. This is
the spirit of Mallows’ C}, and the Akaike information criterion which both measure the
goodness of fit of a given model while penalizing for the number of covariates involved.
However, model flexibility is not only function of the number of covariates but also of
the nonlinearity of its functional form. The more nonlinear it is, the better its in-sample
quality of fit, but the greater the potential overfitting as its greater flexibility is more
likely to capture non-systematic variability, or noise. Expression 7 measures the extent
of bias due to both misspecification and overfitting, thus indicating on what side of
this trade-off a given model lies, and providing the analyst with guidance on optimal
specification choice. It should be borne in mind, though, that unlike Mallows’ C, and
the Akaike information criterion, quality of fit is not derived from the comprehensive
mean square error, but assessed through the more restrictive predictive calibration. In
particular, our expression does not account for quality of the predictive discrimination
of the model (see for instance van Houwelingen and Cessie, 1990, for a useful discussion
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on predictive value assessment). So, expression 7 should not be used as an alternative
to—but complementary to—the standard goodness of fit in statistics. From an economics
perspective, predictive calibration is often of primary interest per se. This is the case in
any area on economics where getting the average prediction of a given population right is
of primary importance. Government budgeting in public economics and risk adjustment
in the economics of risk and uncertainty are two such examples.

Expression 7 also plays a crucial role when correcting the predictions to account for
shrinkage. Copas (1983) proposed a preshrunk predictor which is obtained by multiplying
the predictions by the estimated Copas measure of shrinkage. Since the Copas measure
of shrinkage is defined on the estimation scale, the corresponding preshrunk predictor
re-calibrates for shrinkage arising from overfitting only. However, expression 7 clearly
shows that out-of-sample predictive accuracy depends both on in-sample calibration and
overfitting. It follows that, when using the Copas preshrunk predictor, the bias caused by
model misspecification will replicate in any new dataset since it is not accounted for. That
is why we argue that re-calibration should take place on the scale of interest in order to
correct for model misspecification bias as well. To be more specific, instead of multiplying
the estimation-scale predictor z ,6’ by the corresponding (estimated) shrinkage factor A
we suggest multiplying the predictions g¢"* by the scale-of-interest Copas shrinkage factor
5. Doing so yields a well-calibrated predictor of the outcomes when applying an estimated
model to new data.

3. Simulation design

Our simulation framework aims at being close to real data. We illustrate the mea-
sures of overfitting presented in this paper with a model explaining individual healthcare
expenditures. Such models are typically highly nonlinear given their strictly positive
and right-skewed dependent variable. Our explanatory variables include an evenly split
dummy variable, which can be thought of as being a variable indicating gender. We also
include a 50%, 35%, and 15% split categorical variable, which approximately corresponds
to the adults, children, and elderly age classes found in many countries. In addition, we
include both a uniformly and a normally distributed variables to account for the vari-
ety of quantitative factors usually included in such models. We choose a sample size of
5,000, which falls in the range of most observational surveys available in practice. An
important difference between our simulation framework and real data is that real models
usually comprise many more explanatory factors, notably to account for socioeconomic
characteristics and of a few rare but important health conditions. Since overfitting tends
to increase with the number of covariates, this makes our simulation findings even more
relevant to real applications. Finally, another simplification is that all our factors are
uncorrelated, except for the indicators for the categorical variable with 50/35/15 split.

The first column of Table 2 shows the different models used to generate the dependent
variable, Y. The second and third columns give the value of the constant term of the
linear predictor, By, and of an ancillary parameter of the distribution considered. Note
that these parameters have been computed numerically to ensure that E(Y) = 1 and
V(Y) = 2.2 over all scenarios. Finally, the last two columns of Table 2 present the
skewness and kurtosis of Y, which have also been determined numerically.

The baseline case is a GLM model with Gamma distribution and logarithmic link,
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which is one of the most widely used models for healthcare expenditures (Blough et al.,
1999). A whole series of scenarios is then produced with the Extended Estimating Equa-
tions (EEE, Basu and Rathouz, 2005), which generalizes the GLM framework, notably
through a flexible Box-Cox link function whose parameter A will be estimated along with
the parameters of the linear predictor. The EEE model provides us with the opportunity
to progressively modify the link function while keeping the distribution of Y unchanged.
We explore values of A ranging from -0.75 to 1, where A = 0 corresponds to the logarith-
mic link of the baseline model, and A = 1 to the identity link. Another series of scenarios
that we explore is produced with the Generalized Gamma model (GENGAM), which was
applied by Manning et al. (2005) to account for deviations from the Gamma distribution
and improve efficiency of healthcare expenditure models. The GENGAM family makes
it possible to progressively modify the distribution of Y while keeping the logarithmic
link between the linear predictor and the expectation of Y. Note that the GENGAM
family does not generalize the GLM family in the sense that most of its models are not
member of the GLM family. These additional scenarios are produced by setting the shape
parameter £ at 0.5, 1, 2, and 3 (in the parametrization used by Manning et al., 2005).
Note that the baseline scenario corresponds to a value of approximately 1.5 for .

Each scenario presented in Table 2 is generated 400 times. For each repetition, the
explanatory variables are randomly generated first. In order to reduce the Monte Carlo
variation in the simulation results, the same explanatory variables are used over all
scenarios. At each iteration, we draw the binary and categorical variables so that to ensure
exact 50-50 and 50-35-15 splits, which also contributes to containing the Monte Carlo
variation. As for the quantitative variables, they are simply drawn from the standard
uniform and normal distributions. The covariate matrix is then duplicated 10 times, and
the dependent variable Y is randomly drawn from one of the distributions presented in
Table 2. Finally, the shrinkage factors are estimated using 10-fold cross-validation (CV,
Geisser, 1975) where all groups have the same covariate matrix and only differ with
respect to Y.

4. Simulation results

Table 3 shows the simulation results relative to the specification of the link function.
The first column shows the data generating process sorted by increasing value of the
Box-Cox parameter A. The table is then subdivided into two parts according to which
model is estimated: either the GLM with Gamma distribution and logarithmic link or
the EEE constrained to the Gamma distribution but with unconstrained A. For each
estimated model, Table 3 presents the scale-of-interest Copas shrinkage, 1 — 4, in-sample
shrinkage, 1 — &, and shrinkage due to overfitting alone, 1 — 4. Note that in this context,
the EEE model, because of its ability to estimate the parameter A\, will thus be unbiased.
On the other hand, the GLM model, which is restricted to the special case A = 0, will
be biased for any other value of A.

It can first be seen that the scale-of-interest Copas shrinkage (1 — ) obtained with the
GLM and EEE models can be substantially different. For instance, for A = —0.75, this
measure shows 2.99% expansion for the GLM and 10.04% shrinkage for the EEE model.
Because overfitting alone cannot lead to expansion, this clearly indicates that another
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Table 2
Data generating processes

) Parameters® Higher Moments
Data Generating Process

Bo v/ o"skewness  kurtosis

Generalized Linear Model

Gamma distribution, log. link -0.312 0.5 3.26 20.4

Extended Estimating Equations
(Gamma distribution)

A = -0.75 -0.339 0.515  3.50 29.5
A = -05 -0.329 0.509 3.35 22.3
A = -0.25 -0.320 0.505  3.29 21.0
A = 0.25 -0.306 0.494  3.25 20.0
A =05 -0.297 0.494 3.22 19.6
A = 075 -0.291 0.494 3.21 19.4
A =1 -0.283 0.494  3.20 19.2

Generalized Gamma

Kk = 0.5 -0.723 126  4.86 53.6
k=1 -0.516 1.38 3.78 28.6
K = 2 -0.020 1.38 2.79 14.6
K =3 0.398 1.21 2.32 9.9

# Parameters computed numerically so that E(Y) =1 and V(Y) = 2.2.
b Either parameter v for the Extended Estimating Equations or o for the Generalized Gamma.

factor is in play. This is confirmed by the measure of in-sample shrinkage which shows
near-perfect calibration in the case of the EEE model (i.e. 1 — & &~ 0) and substantial
deviations for the GLM that span from 7.70% expansion for A = —0.75 to 6.76% shrinkage
for A = 1. The simulation results thus clearly illustrate that the Copas measure of
shrinkage, when applied to scale-of-interest predictions, cannot be considered to be a
measure of overfitting. As discussed in Section 2, we propose measuring shrinkage due
to overfitting alone by 1 — 4. As expected, the simpler GLM exhibits lower overfitting
than the EEE model which requires the estimation of nonlinear parameter A. For the
highly nonlinear data where A = —0.75, shrinkage due to overfitting in the EEE (9.75%)
is more than twice as large as what is observed for the GLM (4.37%). When nonlinearity
decreases, so does the difference in overfitting between the GLM and EEE models.

The simulation results illustrate well our decomposition of the out-of-sample shrinkage
given by Equation 7. For the EEE model, or when the link function is well-specified, out-
of-sample shrinkage equals shrinkage due to overfitting. On the other hand, for the mis-
specified GLM model, in-sample shrinkage can add up to the shrinkage due to overfitting
and further deteriorate out-of-sample calibration, which can be seen in our simulations
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Table 3
Measure of shrinkage (percentage) and specification of the link function®

GLMP EEE°
Data Generating Process R R
1-6 1-& 1-4 1-6 1-& 1-4
EEE, A = —0.75 -299 770 4.37 10.04 035  9.75
(0.26) (0.26) (0.06) (0.67) (0.13) (0.66)
EEE, A = —0.5 0.35 -4.57 4.71 9.22  0.28 899
(0.26) (0.26) (0.07) (0.49) (0.12) (0.48)
EEE, A = —0.25 331 -1.78 5.01 762 022 741
(0.23) (0.22) (0.07) (0.33) (0.10) (0.32)
GLM, log. Link 570 036 537 707 026 6.83
(0.21) (0.21) (0.07) (0.15) (0.08) (0.13)
EEE, A = 0.25 7.31 1.79  5.63 7.57 0.05 7.3
(0.24) (0.23) (0.08) (0.37) (0.09) (0.36)
EEE, A\ = 0.5 8.84 335  5.69 6.82 -0.07 6.89
(0.23) (0.22) (0.08) (0.21) (0.10) (0.19)
EEE, A = 0.75 10.52 486  5.96 6.74 -0.09 6.83
(0.23) (0.22) (0.08) (0.21) (0.10) (0.19)
EEE, A =1 12.86 6.77  6.54 6.98 0.20 6.80
(0.30) (0.27) (0.13) (0.27) (0.18) (0.20)

# Average Monte Carlo shrinkage with standard error in parentheses.
b Generalized Linear Model with a Gamma distribution and a logarithmic link function.
¢ Extended Estimating Equations constrained to the Gamma distribution, whereas X is estimated.

when A > 0. However, it can also be the case that model misspecification and overfitting
work in the opposite direction, as shown in our simulations when A < 0. That is why we
argue that the scale-of-interest Copas shrinkage, 1 — ) , even though it does not measure
overfitting per se, remains a valuable measure when assessing out-of-sample predictive
performance. For instance, for A = —0.5, the out-of-sample predictions obtained with
the GLM are well-calibrated (1 — 6= 0.35) as in-sample expansion and overfitting cancel
each other. On the other hand, the well-specified EEE model shows considerable out-of-
sample shrinkage (1 — 6= 9.22), which is driven by overfitting alone. The analysts who
are primarily interested in forecasting are likely to prefer the latter model.

Efficiency has been shown to be an important concern in healthcare expenditure mod-
els (see for instance Manning and Mullahy, 2001). We take advantage of the fact that,
with GLM models, efficiency is conditioned by the choice of the distribution. The simu-
lation results presented in Table 4 illustrate the relationship between overfitting and the
specification of the distribution. The first column shows the GENGAM models used to
generate the data sorted by increasing value of the shape parameter x. Similarly to Table
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3, this table is then subdivided into two parts according to which model is estimated:
either the GLM with Gamma distribution and logarithmic link or the GENGAM. For
each estimated model, the table presents the scale-of-interest Copas shrinkage, 1 — 5, in-
sample shrinkage, 1 — &, and shrinkage due to overfitting alone, 1 — 4. Note that in this
context, the GLM model, which is restricted to the special case K ~ 1.5 corresponding
to the Gamma distribution in our example, will thus be misspecified for any other value
of the shape parameter.

Table 4
Measure of shrinkage (percentage) with misspecified distribution®

. GLMP GENGAM*®

Data Generating Process . R
1-§ 1-& 1-4 1-6 1-& 1-4
GENGAM, k = 0.5 5.50 0.28  5.23 4.60 020 441
(0.23) (0.23) (0.08) (0.30) (0.31) (0.06)
GENGAM, k = 1 5,56  0.28  5.29 536 024  5.13
(0.23) (0.23) (0.08) (0.24) (0.25) (0.08)
GLM, Gamma distribution 5.70 0.36 5.37 5.70 0.36 5.37
(0.21) (0.21) (0.07) (0.21) (0.21) (0.07)
GENGAM, k = 2 5.66 0.29  5.39 5,50 038  5.15
(0.23) (0.23) (0.08) (0.26) (0.25) (0.08)
GENGAM, x = 3 5.67 030  5.39 4.64  0.51 4.16
(0.23) (0.23) (0.08) (0.34) (0.34) (0.06)

2 Average Monte Carlo shrinkage factor with standard error in parentheses.
b Generalized Gamma model, unconstrained.
¢ Generalized Linear Model with a Gamma distribution and a logarithmic link function.

As expected, the misspecification of the GLM model does not lead to in-sample bias
as the measured in-sample shrinkage, 1 — &, is never significantly different from zero.
Consequently, in the absence of in-sample misspecification bias, 1 — ) equals 1 — 4. The
scale-of-interest Copas shrinkage, 1 — 5, is thus an adequate measure of the overfitting
that occurs on that scale. This measure shows that the efficiency loss of the misspecified
GLM model, even though it does not adversely affect in-sample calibration, leads to
greater out-of-sample overfitting. For instance, for k = 3, the misspecification of the
distribution results in an increase of out-of-sample shrinkage by 1.23% compared to the
GENGAM model. This is due to the double burden of inefficiency. Not only inefficient
models will be less precise in-sample, but they will also have reduced out-of-sample
predictive performance as this precision loss leads to greater overfitting. Again, measuring
overfitting is very useful as this reveals here the out-of-sample shortcomings of the simpler
GLM specification which appears to be unbiased when judged on in-sample grounds only.
Conversely, this also shows that the efficiency gain of the GENGAM more than cancels
out the greater overfitting induced by its greater complexity.
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5. Illustration

To illustrate our measures of shrinkage in a real context, we use data from an hospi-
talist study which took place at the University of Chicago hospital (Meltzer et al., 2002)
and which provides us with a fairly large data set of 6,500 observations. The outcome
variable is patient-level health care expenditure excluding physician fees, and the key
covariates relate to physician characteristics: whether the physician is an hospitalist or
not, as well as disease-specific experience. Many control variables are also present such as
patient commorbidities, relative utilization weight of diagnosis, admission month dummy
variables, and an indicator for transfer from another institution. Note that in addition to
being used to explain the lower cost of hospitalist care, this data set has also been used
to illustrate the EEE (Basu and Rathouz, 2005) and GENGAM (Manning et al., 2005)
models. Indeed, the marked right skewness of patient-level health expenditure makes a
fruitful ground to illustrate the use of nonlinear models. In our example, we fit a log-
Gamma GLM which has been widely applied in practice.

Table 5 shows our measures of shrinkage for this model. The first 4 columns show the
shrinkage estimates obtained by repeated 10-fold CV, while the estimates presented in
the last 4 columns have been obtained by repeated 2-fold CV (also known as the 2-way
Copas test). The first two lines of the table present the estimates and standard errors
for the full sample (n = 6,500). Because issues of overfitting and misspecification may
depend on sample size, the last two lines display the same information for a quarter of
the sample (n = 1,625). To obtain a representative subsample, we have first randomly
drawn 101 subsamples, then computed the scale-of-interest Copas shrinkage for each one
of them, and finally picked the subsample with median value.? In what follows, we refer
to the full and reduced samples as the large and small hospital ones respectively.

Let us start by interpreting the large hospital results obtained by repeated 10-fold
CV. There is a striking difference between the raw scale Copas shrinkage, 1 — ) , and our
new measure of shrinkage arising from overfitting alone, 1 — 4: while the former shows
significant shrinkage (16.11%), the latter reveals that overfitting plays a secondary role
only (2.10%). The most important problem, by far, is the lack of fit within the sample,
as shown by the in-sample measure of shrinkage (1 — & = 14.32%). In the small hospital
sample, shrinkage caused by overfitting considerably increases to 6.19%, but in-sample
misspecficiation still remains the main issue. Note also that our raw scale measure of
shrinkage is roughly fifty percent larger than with the estimation scale Copas, 1 — A,
for both hospital sizes. This clearly illustrates that the scale of analysis matters when
assessing overfitting.

Table 5 also shows the relative gain from using 10-fold CV over 2-fold CV which is
widely used in practice when measuring shrinkage. Since CV methods consist in holding
out part of the data for validation when estimating the model, they yield an overly
pessimistic estimate of its predictive accuracy. By holding out 50 percent of the sample,

1 An unbiased measure of the standard error of CV estimates has yet to be found (Arlot and Celisse,
2009). What we report is the standard deviation of 400 repetitions of the k-fold CV estimates. It can
easily be shown that this measure is an upper bound for the estimate averaged over all 400 repetitions
that we report.

2 We have performed our selection on the basis of the raw scale Copas measure of shrinkage in order to
balance in- and out-of sample predictive performance.
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Table 5
Shrinkage (percentage) in the log-Gamma GLM when applied to the Hospitalist data

10-fold CV 2-fold CVT
) raw scale est. scale raw scale est. scale
sample sizen 15 14 14 1A 14 14 14 1A
6500 16.11 14.32 2.10 1.33 17.32 14.18 3.62 2.37
(0.65) (0.05) (0.79) (0.14) (2.77) (1.30) (4.00)  (0.69)
19. 14.4 .1 4. 23.72 13. 11.1 .34
1625t 9.79 9 6.19 89 3.7 3.96 5 8.3

(1.92) (0.14) (2.34) (0.51) (7.39) (3.34) (9.76)  (2.21)

Standard errors are displayed in brackets.
TBoth 10- and 2-fold CV estimates have been averaged over 400 repetitions.
j:Subsample with median raw scale Copas shrinkage (among 101 random draws from the full sample).

2-fold CV is more prone to this bias than 10-fold CV which makes use of 90% of the data
when estimating the model. What Table 5 clearly shows is that this bias also depends on
sample size. In the large hospital sample, our measure of shrinkage caused by overfitting
alone is inflated from 2.10% to 3.62%, whereas this quantity jumps from 6.19% to 11.15%
in the small hospital case. Not only does the bias of the k-fold CV increase with k, but
also does its efficiency. We can see that the standard errors reported for the out-of-sample
shrinkage estimates are approximatively 4 times greater when using the 2-fold CV. The
accuracy of the in-sample measures of shrinkage gets hit even harder with standard errors
more that 25 times larger. 2-fold CV should thus be avoided, unless computational cost
is an issue and sample size is large enough in the sense that holding out half the data
does not excessively impact the estimation of the model.

6. Conclusion

In this paper, we propose a new measure of overfitting for nonlinear models, which
is expressed on the untransformed scale of the dependent variable. This is typically
the scale of interest in terms of assessing behaviours or policy analysis. We then show
that, in the case of nonlinear models, shrinkage due to overfitting gets confounded by
shrinkage—or expansion—arising from model misspecification. We also show that out-
of-sample predictive calibration can be expressed as in-sample calibration times 1 minus
this new measure of overfitting. We then illustrate our new measure of overfitting and its
relation with out-of-sample and in-sample calibration by means of a simulation study. Our
simulations are based on a model intended to emulate individual healthcare expenditures
as such models are typically highly nonlinear given their strictly positive and right-
skewed dependent variable. The baseline model is a GLM model and misspecification is
introduced either through an incorrect link function or wrong distributional assumption,
making it possible to assess the effect of model misspecification on the various measures
of shrinkage presented in this paper. We finally present a real-data illustration by fitting
our baseline model on health care expenditure data from a well-known hospitatlist study
(Meltzer et al., 2002) in order to show that the distinctions we make matter in practice.
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An important result from our simulations is that in-sample model misspecification
easily outweighs overfitting in the narrow sense. Thus, when evaluating the out-of-sample
predictive accuracy of their model, the analysts should take into account both overfitting
and in-sample model specification. This is especially relevant for model selection. Large
in-sample misspecification bias calls for actions such as changing the functional form and
adding complexity to the model in order to more accurately capture the variations of the
dependent variable. On the other hand, large overfitting calls for actions such as reducing
model complexity and increasing the efficiency of the estimation method. That last point
is well-illustrated by our simulations where we show that an inefficient GLM can lead
to considerable out-of-sample bias, and this despite of its in-sample robustness to model
misspecification within the exponential family. More generally, our results highlight the
fact that indiscriminately preferring an unbiased estimator over an efficient one is by no
means a safe strategy, as the inefficiency of the former does not only weakens inference,
but also ultimately results in biased out-of-sample predictions.

Our real-data illustration shows that the scale on which overfitting is measured mat-
ters a lot, as the estimated shrinkage can substantially differ between the original and
estimation scales of the dependent variable. The scale-of-interest measure of overfitting
we propose might thus be relevant to those primarily interested in the original scale,
which might have relevant scientific or policy interpretations to them. The illustration
also confirms that in-sample misspecification matters a lot as the resulting shrinkage
dominates the one due to overfitting in all our examples. Finally, the illustration shows
that the role played by sample size can be considerable by comparing the results obtained
with the full sample to those obtained with only part of the data.

As for further directions of research, the small sample properties of our shrinkage
statistics deserve some attention given the numerous types or research based on limited
datasets, especially those from randomized medical trials. A related point would be to
improve the efficiency of our measures of shrinkage as efficiency is critical in resampling
estimation procedures. A solution could be to use the variance function estimated in the
first stage of the estimation procedure as weights in the second stage of the procedure. It is
also important to stress that we have used the GLM family because it is a very convenient
way to introduce in-sample biases by means of inadequate link functions and inefficiency
through wrong distributional assumptions. However, when measuring shrinkage on the
scale of interest, the GLM framework is no longer needed.

A related point is that when using a log-GLM as a baseline scenario, the shape of
the distribution needs to be monotonically decreasing in order to get the type of over-
dispersed data that we used, which is a common feature of health care expenditures. We
are currently working on the issue that more often than not the distribution is a skewed
bell-shaped. Thus, the updated simulations will have more relevance to health data that
have the other shape to the pdf. The hospitalist data application clearly indicate that
the qualitative story should be similar and that the magnitudes are of interesting size.

Finally, as noted by Blough et al. (1999), a practical advantage of the Copas (1983)
preshrunk estimator is that the shrinkage parameter can be nonparametrically estimated
from the data, for instance by cross-validation. Thus, our suggestion to correct the Co-
pas (1983) preshrunk predictor by calibrating on the scale of interest instead of the
scale of estimation might be very helpful in practice. Indeed, in addition to correcting
for in-sample miss-calibration, our suggested pre-shrunk predictor also would have the
valuable advantage to dissociate the estimation method from recalibration. Given the
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numerous challenges raised by most data, the analysts might appreciate to address these
challenges with what they consider to be the most appropriate estimation method, and
later recalibrate their predictions by using our scale-of-interest pre-shrunk predictor.

Appendix A. Large sample approximation of the estimation scale Copas
measure of shrinkage

In this Appendix, we generalize the demonstration by Copas (1997) for the logistic
regression in the wider framework of the GLM family. Note that we do not make use
of the more general setting presented in Copas (1997) as, unlike with the least squares
slope, there is no closed form solution for the shrinkage factor in the GLM case. Let us
start with the first order condition corresponding to the shrinkage factor A in equation

1: ;yl - ( (//jz)>_1[3p =0, (A1)

where [i; = g*1(30 + Aﬁpxi). The problem is that the new outcomes y;,_; , are not
observed but, under the assumption the that these follow the same distribution as the
observed ones, ¥; =1, .n, we do know that E(y;) = p;. We also know that shrinkage
vanishes asymptotically: plim A = 1, which also implies that plim f; = fi;. In large

samples, we can also replace ji; by its first order Taylor approximation around A = 1:
(99
i ~ [ + < o ﬁpXi(A — 1) (A2)

So, by taking the expectation of equation A.1, replacing fi; by its approximation, and
the functions of ji; by their limits in probability, the first order condition corresponding
to A can be rewritten as follows:

(Ni) - A,X'— . 51 T A
S (M) b= -8, (A5)

where I = Z?:l( 9t )) 2:(:‘ is the Fisher information matrix corresponding to Bp.
We can now replace ,uz, which is a function of parameters 3y and Bp, by its first order

Taylor approximation around the estimated parameters /3’0 and Bp, to obtain:

s (09N T X A s (090 T XX A avarra
ﬂo)ﬂp;( o ) AR ﬁp)Z< 9 ) oGy e = (1208, 1By

i=1

Since the x; are assumed to be centered, the first sum equals 0. It follows: .
B'1(Bp — Bp) = (1 — A)B,, 1By, (A.5)

Finally, we obtain equation 2 by taking the expectation of the LHS:
E(B'I(Bp — Bp)) = trace(II"") = p. (A.6)
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