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Abstract

This study develops a discrete multiple state duration model that al-

lows for duration dependence, unmeasured heterogeneity, partial observ-

ability of the state and endogenous time-varying treatment. Our econo-

metric strategy has numerous potential empirical applications. We apply

our duration model to the progression of diabetic neuropathy, a compli-

cation of diabetes with four levels of progression, which if left untreated

may lead to amputation. Our results show that the longer a person has

diabetes without having being diagnosed (and treated) increases the prob-

abilities of transitioning to a worse stage, death or amputation.
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1 Introduction

For many outcomes, the timing and length of the treatment or intervention

cannot be ignored. An educational program such as Head Start, for example

may have a di¤erent e¤ect if applied to young children, than if in somewhat

altered form, it is applied to teenagers (Garces et al., 2002 and Cunha and

Heckman, 2007). Or the e¤ects of a change in unemployment bene�ts will have

a di¤erent e¤ect if the individual is unemployed for one week rather than four

months and will depend on the phase of business cycle (Lechner and Wunsch,

2009). Similarly, in a medical context, treatment for a chronic condition, such as

chemotherapy for cancer, has a di¤erent impact if applied after the cancer has

di¤used rather than when the cancer is limited to a single organ (Llobera et al.,

2000). Further, there may be duration dependence in which the probability of

an individual transitioning out of a particular state depends on the time spent

in that state, e.g., the probability of an individual accepting a job o¤er depends

on how long s/he has been unemployed. Duration models have long been used

in these situations (Kiefer 1988, Lancaster 1990 and van den Berg 2001).

There is a growing econometric literature on endogenous treatment e¤ects

in duration models: Robins (1989, 1997), Gill and Robins (2001), Abbring and

van den Berg (2003), Mroz and Savage (2006), Heckman and Navarro (2007),

Abbring and Heckman (2008), and Liu et al (2009) among others. This litera-

ture has established conditions under which the treatment e¤ects are identi�ed

and how they can be estimated using minimal assumptions. For more compli-

cated models such as multiple duration models, accounting for endogeneity of an

explanatory variable remains a daunting computational challenge.1 This paper

contributes to this literature by developing a discrete multiple state duration

model that allows for duration dependence, unmeasured heterogeneity, partial

1See Richardson and van den Berg (2008) for a recent study of vocational Swedish labor
market training on unemployment spells.
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observability of states and endogenous time-varying treatment.

We apply our dynamic multi-stage discrete duration model to study whether

early detection of diabetes mellitus is e¤ective in delaying progression to dia-

betic neuropathy, which are complications of the lower extremities (legs and

feet). If untreated, diabetic neuropathy may lead to amputation. We also

study whether early diagnosis of more advanced stages slows disease progres-

sion. Treatment is de�ned in terms of timing of visits to doctors. Our model

allows for unmeasured heterogeneity using discrete factor models (Heckman and

Singer, 1984), duration dependence, partial observation on one�s current disease

state, and right-censoring. For each time period, we model: the probability

of the disease progressing to a more severe stage; the probability of receiving

treatment (visits); and the probability of experiencing various health shocks.

Following Mroz (1999), we control for endogeneity of treatment by allowing

unobserved discrete factors, aspects of health unobserved by the researcher, to

a¤ect probabilities of disease progression, receipt of treatment, and occurrence

of health shocks. This strategy has been used by Glewwe and Jacoby (2004),

Bhattacharya (2005), Mroz and Savage (2006), and Liu et al. (2010) among oth-

ers. However, the likelihood function estimated here is more computationally

complex than in previous studies since we simultaneously account for multi-

ple disease stages, partial observability of disease progression, endogeneity of

treatments, and health outcomes.

Our duration model is well suited for analysis of e¤ects of treatment (early

diagnosis in our study) on progression of diabetes mellitus; our method has

several advantages over previous studies that attempt to control for the endo-

geneity of treatment using standard models in which the dependent variable is

continuous and it is controlled by a single index (see e.g., Picone et al., 2004).

First, disease progression often occurs over a long time period. Even if a partic-
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ular treatment is productive, it may only a¤ect a temporally distant outcome,

which is also subject to future treatment. Our duration model allows us to make

more precise inferences about these distant outcomes than is possible using a

standard speci�cation in which outcomes are measured at �xed intervals with

no allowance for possible e¤ects of future treatment. Second, we can directly

model the e¤ect of early diagnosis on the disease progression and outcomes. A

timely diagnosis and treatment is usually the main reason behind many doctor

visits and screening tests like mammography. Standard methods infer bene�ts

of early diagnosis of cancer, for example, by analyzing e¤ects of shorter screen-

ing intervals on the number of malignancies detected and the time individuals

live with cancer. However, this approach su¤ers from lead bias. Just because

people live longer with cancer does not necessarily imply that treatment is ef-

fective (Cole and Morrison, 1980). By modeling the time with the undiagnosed

disease directly, our approach controls for the lead bias problem. Third, our

approach allows for right or left censoring as well as partial observability of the

disease stage. Fourth, we allow marginal productivity of treatment to be time

varying and to depend on the disease stage. Fifth, our approach allows analysis

of duration dependence separately from earlier diagnosis.

We �nd that earlier diagnosis of diabetes, and presumably treatment that

follows diagnosis, delays onset of lower extremity complications including am-

putation. At the same time there is positive duration dependence, regardless

of whether diabetes was diagnosed or not; the probability of contracting neu-

ropathy and all subsequent stages including mortality and amputation increases

with the length of time since the onset of diabetes and other subsequent stages.

We also �nd that visits to a podiatrist are more e¤ective in slowing onset of

complications of diabetes neuropathy than are visits to other health profession-

als.
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The rest of the paper is organized as follows: Section II provides background

information on diabetes. Section III describes the econometric model and Sec-

tion IV the data. Section V presents our empirical speci�cation, including the

method for accounting for endogeneity of treatments, which is followed by re-

sults in Section VI. Finally, Section VII presents conclusions and implications.

2 Background

Diabetes mellitus is a complex disease, potentially a¤ecting several organ sys-

tems, including the eyes, the cardiovascular system, and the kidneys as well as

legs and feet; it reduces life expectancy. Because some individuals with diabetes

experience loss of sensation in their legs and feet, they are more subject to in-

jury. Diabetic complications of the lower extremities are classi�ed as diabetic

neuropathy. Individuals can reduce disease progression by keeping a healthy

diet, exercising, regularly monitoring their blood glucose levels and blood pres-

sure, obtaining medical care and following their physicians� recommendations

(e.g., taking drugs as prescribe). If diabetic neuropathy is untreated, it may

lead to an amputation of a toe, a foot, part of a leg or even death.

Medical care of persons with diabetes involves diagnosis of disease progres-

sion and complications, direct provision of treatments, referrals to specialists for

other treatments of the underlying disease, prescribing drugs, and instructing

patients on self-care.

Important randomized controlled trials (RCT) have documented the pro-

ductivity of various regimens, such as blood glucose control, in slowing the

progression of the disease (Montori et al., 2006). However, RCTs tend to have

short follow-up periods, and patients enrolled in RCTs are subject to being on

strict medical protocols, which neither health professionals nor patients may

follow when not subject to those protocols. Monitoring longer term e¤ects of
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treatment and how patients and doctors behave in the community when they

are not subject to RCT protocols requires analysis with observational data.

Table 1 presents a description of the stages of diabetic neuropathy and the

associated ICD-9 codes used to identi�ed them. We classify diabetes melli-

tus and diabetic neuropathy into 5 mutually exclusive progressive stages: (1)

healthy (no DM); (2) diabetes mellitus only (DM); (3) diabetic neuropathy

stage 0 (DNU0); (4) diabetic neuropathy stage 1 (DNU1), and (5) diabetic

neuropathy stage 2 (DNU2). Once an individual turns 65, stages were assigned

on a quarter by quarter basis. Individuals were classi�ed as continuing to be

healthy (no DM) if, over the course of three months, they have had one or more

visits to a doctor who could have made a diagnosis of diabetes, but a positive

diagnosis did not occur. An individual was classi�ed as having diabetes only

(DM), if the individual had at least one Medicare claim that included an ICD-

9 DM diagnosis code in that quarter or earlier, but none included a diabetes

neuropathy diagnosis code. Once an individual is diagnosed with DM s/he was

categorized to have DM or worse for the remainder of his/her life. A similar

process was used to follow an individual�s progression through the higher stages

of the disease. Also, if an individual was diagnosed with a later stage of diabetes

like DNU1, we categorize him/her with that stage of diabetes and as having

transited through all of the less severe stages. This approach allows us to model

individuals who were not observed in a less severe stage in the course of their

progression, perhaps due to long intervals between doctor visits, non-compliance

with the treatment regiment or other reasons.

Physician visits may involve establishing a diagnosis, making referrals to

other health professionals, provision of patient education and advice, and pro-

vision of speci�c therapies. The marginal product of a particular treatment

modality is likely to di¤er by disease stage. For example, the marginal prod-
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uct of therapeutic shoes, which provide protection from bumping into objects

is plausibly much higher at Stage 3 than at Stage 5 when much damage to

lower extremities has already occurred. Our dynamic approach allows for the

marginal product of visits to di¤er by disease stage.

Our classi�cation of disease stages is imperfect. Patients may report signs

and symptoms of DM to physicians which are not recorded as ICD-9 and CPT

codes on claims. Also, ICD-9 and CPT codes do not typically convey clinical

�ndings which may in turn guide clinical decisions. This is an additional source

of omitted heterogeneity but it is not clear whether it will bias the estimates.

However, it will certainly lead to higher standard errors. We assume an indi-

vidual speci�c heterogeneity whose impact on outcomes, visits, and transitions

varies with the disease stage.

3 Modelling a Chronic Disease

We develop a discrete multi-stage hazard model to study the e¤ect of visits to

health professionals on outcomes associated with a chronic disease. For each

period, we jointly model disease progression, the probability of a doctor visit,

and the probability of a health shock. Health shocks take the form of either

amputation or death.

Without loss of generality, we assume an individual is in one of 5 possible

states: no DM , DM , DNU0, DNU1, and DNU2 at each point in time. Once

a person enters a more severe disease stage, it is impossible to recover and

return to a less severe stage. The physical damage to diabetic progression is

cumulative. To simplify notation, we suppress the subscript i. We select the

sample conditional on the individual being alive at age 65. The �rst 3 periods

are included to model the probability of entering DM and/or DNU0 before

7



the person became Medicare eligible at age 65.2 We use 3 periods to model the

probability of being healthy by 65, entering DM only by age 65, and progressing

to DNU0 or a worse diabetic neuropathy stage by age 65. Right censoring can

occur due to mortality (modeled as an outcome), leaving the sample, enrolling

in an HMO, or any other reason at any time. Period 4 starts when the person

becomes 65.

Let T be the last period that the individual is in our sample. The hazard

function for the progression to DM at time t > 3 is

hDMt
�

DMt = 1jX
DM
t ; ek; DMt�1 = 0

�

= �
�

XDM
t �DM + �DM (ek)

�

(1)

where � (z) = ez= (1 + ez), XDM
t is a vector of potentially time varying explana-

tory variables and ek is the unmeasured heterogeneity assumed to be discrete

with K heterogeneity points.3 Unmeasured heterogeneity a¤ects the hazard of

progression to a higher stage, probabilities of having a visit, and health shocks.

For t � 3, the hazard function has a form that is identical to (1), but we allow

for di¤erent explanatory variables and coe¢cients on these variables.

Let tDM be the time at which the individual acquires DM ; t0 measures the

time at which the individual progress to DNU0. t1 and t2 are the correspond-

ing times for entering DNU1 and DNU2, respectively. Once the individual

acquires DM s/he is at risk for progressing to DNU0 and subsequent stages of

neuropathy. The hazard function for the progression to DNU0 at time t � tDM

is

hDNU0t

�

DNU0t = 1jt
DM ; XDNU0

t ; ek; DNU0t�1 = 0
�

=

�
�

XDNU0
t �DNU0 + �0

�

tDM
�

+ �DNU0 (ek)
�

(2)

2We use three pre-age 65 time periods to allow for location speci�c and possibly time
varying factors to a¤ect the diseases progression.

3See Mroz (1999) and the appendix.
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where tDM = t � tDM is the duration of time since the DM onset and �0 (:)

is a quadratic function. Similarly, the hazard rates for DNUj at time t � tj�1

(j = 1; 2) is given by

h
DNUj
t

�

DNUjt = 1jt
DM ; :::; tDNUj ; X

DNUj
t ; ek; DNUjt�1 = 0

�

=

�(X
DNUj
t �DNUj + �DM;j

�

tDM
�

+

j
X

l=1

�l�1;l
�

tDNUl�1
�

+ �DNUj (ek)) (3)

where tDNUj = t� tj is time with DNUj and �DM;j (:) is a quadratic function.

These hazard functions depend on how long the individual has spent in each

of the previous stages (tDM , tDNUj�1) and allow for di¤erent sets of regressors

depending on the disease stage.

In each period, the individual decides whether or not to visit a health pro-

fessional. During that visit, the doctor determines a diagnosis based on the

person�s diabetes state at that time (noDM;DM;DNU0; DNU1; DNU2) and

may perform a procedure to prevent or forestall disease progression. The prob-

ability of having a visit in period t depends on the disease stage. For a healthy

individual (noDM), this probability is

Pr (DVt = 1jZt; ek) = � (Zt�DV + �DV (ek)) if t < tDM . (4)

For an individual at stage j (j = DM;DNU0; DNU1; DNU2), the probability

of a visit during the period is

Pr
�

DVt = 1jt
DM ; :::; tDNUj ; Zt; ek

�

= �

 

Zt�DV +

j
X

l=1

�

�0;l + �1;lt
l
�

+ �DV (ek)

!

. (5)
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Among the regressors are variables that do not directly a¤ect disease pro-

gression, e.g., distance to the health professionals. The variables help identify

the e¤ect of visits on disease progression.

Finally, let d be an observable health shock. We model both amputation and

death. As the disease progresses, the probability of a health shock occurring is

likely to change. For individuals without DM , the probability of a shock is

Pr (dt = 1jWt; ek) = � (Wt�d + �d (ek)) if t < tDM : (6)

For an individual at stage j (j = DM;DNU0; DNU1; DNU2), the probability

of a health shock during each time period is

Pr
�

dt = 1jt
DM ; :::; tDNUj ;Wt; ek

�

=

�

 

Wt�d +

j
X

l=1

�


0;l + 
1;lt
l
�

+ �d (ek)

!

(7)

We assume all events are independent after accounting for the unobservable

heterogeneity ek. Based on the hazards and probabilities of equations 1-7, the

likelihood function for an individual with any possible transition combination

conditional on the unmeasured heterogeneity ek and the matrix of all possible
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explanatory variables M =
��!
X
DM ;

�!
X
DNU0 ; :::;

�!
X
DNU2 ;

�!
Z ;
�!
W

�

4 is

L
�

tDM ; t0; t1; t2; T;
��!
DV ;

�!
d jek;M

�

= LnDM

�

T;
��!
DV ;

�!
d jek;M

�1(tDM�T )

�LDM

�

tDM ; T;
��!
DV ;

�!
d jek;M

�1(t0�T>tDM )

�LDNU0

�

tDM ; t0; T;
��!
DV ;

�!
d jek;M

�1(t1�T>t0)

�LDNU1

�

tDM ; t0; t1; T;
��!
DV ;

�!
d jek;M

�1(t2�T>t1)

�LDNU2

�

tDM ; t0; t1; t2; T;
��!
DV ;

�!
d jek;M

�1(T>t2)

(8)

LnDM

�

T;
��!
DV ;

�!
d jek;M

�1(tDM�T )

is the likelihood function for an individual

who did not progress to DM by period T with a sequence of visits
��!
DV =

(DV1; :::; DVT ) and health shocks
�!
d = (d1; :::; dT ). LDM (:) is the likelihood

function for an individual who contracted DM at tDM , but did not progressed

toDNU0 by terminal period T . We de�ne LDNU0 (:), LDNU1 (:), and LDNU2 (:),

similarly. See Appendix A for more details on the construction of the likelihood

function.

Without the unrealistic assumption that individuals continuously monitor,

observe, and report their actual diabetes stage at each point in time, it is crucial

to incorporate the partial observability of the one�s diabetic stages into the

construction of the likelihood function. We do this by integrating over the

possible time periods during which an individual is known to have progressed

to a more serious disease stage. This is similar to the strategy used by Mroz

and Weir(1990) to address the partial observability of lactational amenorrhea in

their life-cycle model of fertility control. As discussed above, the information to

construct these bracketed time periods comes from the timing of doctor visits

and the Medicare claims data. Using information on the date of the last doctor

4�!
X
DM is the sequence of all possible values of XDM

�

XDM

1
; :::; XDM

T

�

. We also de�ne
�!

X
DNU0 ,

�!

X
DNU1 ,

�!

X
DNU2 ,

�!

Z , and
�!

W the same way.
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visit without the condition having been present and the �rst doctor visit with

the condition, we know the earliest (tmin;j) and latest (tmax;j) time periods in

which tDM , t0, t1, and t2 may have occurred

tmin;j � tj � tmax;j

for j = DM; 0; 1; 2. Conditional on ek, the individual likelihood function for the

observed series (tmin;DM ; tmax;DM ; :::; tmin;2; tmax;2; T ) is obtained by integrating

over all possible starting and ending values of tDM , t0, t1, and t2 :

L
�

tmin;DM ; :::; tmax;2; T;
��!
DV ;

�!
d jek;M

�

=

minftmax;DM ;Tg
X

tDM=tmin;DM

[

minftmax;0;Tg
X

t0=maxftDM ;tmin;0g
t0�tDM

[

minftmax;1;Tg
X

t1=maxft0;tmin;1g
t1�t0

[

minftmax;2;Tg
X

t2=maxft1;tmin;2g
t2�t1

L
�

tDM ; t0; t1; t2; T;
��!
DV ;

�!
d jek;M

�

]]]: (9)

These periods of time where we are uncertain about precisely when the

individual progressed to the next disease stage constitute a key feature of this

analysis. Not only is this an econometric issue that needs to be addressed; it

is a real, substantive issue for analyzing disease progression and treatments.

Numerous individuals will not recognize that they have progressed to DM or

more advanced stages if they do not see a health care professional who can

diagnose their condition. If the period of time where the disease is present

but unobserved and untreated is long, then the individual may progress much

more rapidly to more severe disease stages, possibly resulting in amputation

or death. In our speci�cation of the hazard functions we explicitly allow the

duration of time a person spends with the disease without having been diagnosed

to a¤ect transitions to more advanced disease stages. This allows us to separate

out whether or not more frequent diagnostic visits and the resulting earlier
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treatments could actually slow down the disease progression from the aliasing

that can occur only because more frequent diagnostic visits tend to lead to

diagnoses at shorter durations of the disease stage. Diabetes is but one of many

diseases where it is crucial to be able to separate the true e¤ects of earlier

treatments of a disease on outcomes from the spurious relationship between

treatments and disease outcomes due to shorter intervals between diagnoses

merely representing diagnoses at likely earlier (and unobserved) durations of

the disease.

Finally, the unconditional log-likelihood function of the observed sample is:

L (�) =
N
X

i=1

ln(
K
X

k=1

Pr (ek)L
�

tmin;DMi
; :::; tmax;2i ; Ti;

��!
DV i;

�!
d ijek;Mi

�

); (10)

where � is the vector of parameters to be estimated, and Pr (ek) is the probability

of the discrete heterogeneity point ek (Appendix A describes ek, � (ek), and

Pr (ek) in more detail). To select the number of heterogeneity points (K),

we use a likelihood ratio test as suggested in Mroz (1999). We add points of

support with the corresponding additional parameters until the likelihood ratio

test statistic fails to indicate improvement using a chi-squared distribution.

4 Data

We use data from the National Long-Term Care Survey (NLTCS) a longitudinal

study of the elderly or persons aged 65 and older. The screening process began

with a random sample of persons aged 65 and older in 1982. The respondents

were tracked over time and more respondents were added to the sample in later

waves (1989, 1994, 1999, and 2004).

Over the �ve cohorts of NLTCS, more than 40,000 individuals were fol-

lowed, and screened interviews were drawn from this sampling frame. Medicare
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claims data (Parts A & B), were merged with NLTCS data for all of these in-

dividuals by date and type of service. Diagnostic data were �rst added to Part

B claims data in 1991. Furthermore, NLTCS respondents were merged with

National Death Index data, providing the respondents death dates up to 2005.

Using the NLTCS and Medicare claims data from 1991 to 2004, we create a

panel of individuals. We select individuals born between 1926 and 1939. This

restriction ensures that all individuals are no older than 65 years of age when

they enter the sample. We also drop individuals with less than two years (eight

quarters) of data. Our �nal sample size consists of 10,059 individuals observed

over a total of 221,962 quarters.

We divide the data into quarters of a year which correspond to time periods

(t). In this analysis the longest period over which we observe an individual is

56 time periods. The �rst quarter of the year after the individual turns 65 is

measured as time period 4 and thereafter every successive quarter is the next

time period ( t+1 ). For example, for a person who turns 65 in the �rst quarter

of 1994, this period is t = 4 and the �rst quarter of 1996 is t = 12; for someone

who turns 65 in the �rst quarter of 1996, this quarter is t = 4. The last period,

which is the right censoring t, is the time period in which the individual either

dies, has an amputation, or leaves the sample for some reason. We assume

censoring not due to death or amputation is ignorable.

The �rst three time periods are reserved for calculating the probability of

not acquiring DM prior to entering the sample. The time interval for these

periods is arbitrary, but in our discussion we suppose that the �rst 3 time

periods measure the previous 15 years before the age of 65 (5 year intervals as

opposed to quarters).
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5 Empirical Speci�cation

There are 12 di¤erent equations in the likelihood function: two pre-age 65 haz-

ards (DM and DNU0), two post-age 65-before �rst visit hazards (DM and

DNU0), four post-age 65 and �rst visit hazards (DM , DNU0, DNU1, DNU2),

three visit equations (�rst general visit after turning age 65, subsequent general

visits and podiatrist visits) and two health outcomes equations (amputation and

death).

5.1 Dependent Variables

Stages: A person is in one of �ve mutually exclusive stages during a quarter.

When a person transitions to a higher stage within a period, we consider the

person to have been in the higher stage throughout the period.

Diabetes mellitus and all subsequent states are treated as absorbing states.

Thus, if an individual entered the DM stage in time period t; s/he remains in that

stage for the remainder of his or her life unless the person transitions to a more

advanced state. Furthermore, an advanced stage of the disease automatically

implies that all previous stages occurred. So if the same individual is diagnosed

with a condition that would place her into stage 4 the �rst time she is observed

in the data, she automatically acquires the three prior stages, albeit at times

unknown to us.

Visits: We consider two types of visits: general and podiatrist. A podiatrist

is a non-physician who specializes in diseases of the lower extremities. General

visits include physician and podiatrist visits.

General Visits: A person was classi�ed as having had a general visit during

period t if s/he has a claim from any of the following: general practitioner

(01), cardiologist (06), family practitioner (08), internal medicine specialist (11),
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endocrinologist (46), clinical laboratory (69), or podiatrist (48).5

Podiatrist Visits : A person is classi�ed as having a podiatrist visit in period

t, if s/he had general visit in the period and had a claim from a podiatrist (48).

Because a podiatrist claim also implies a general visit, a podiatrist visit must be

interpreted as the additional e¤ect of consulting a podiatrist over other health

care visits included in general visits.

The main role of a health care visit in this analysis is to indicate the pres-

ence of DM , DNU0, DNU1, and DNU2. Ideally any physician could provide

this information; however, many visits are for other purposes, e.g., visits to a

dermatologist or an oncologist (cancer specialist), and hence are not likely to

include assessment of whether or not the patient has DM or its complications.

General and podiatrist visits capture the vast majority of visits devoted to

the diagnosis and treatment of DM and its complications. The role of podia-

trists in treating and making diagnoses increases with successively higher DNU

stages. In our Medicare claims data, 81% of Medicare bene�ciaries �rst received

a diagnosis of DM from one of the general visit types listed above (excluding

podiatrist); an additional 2.5% �rst received a diabetes diagnosis from a a po-

diatrist. The remainder (16.5%) of the diagnosis are made by other types of

visits. For DNU0 the corresponding percentages are 60.5% from general visits

(excluding podiatrist) and 25.4% from podiatrist visits, while for DNU1 the

percentages are 34.5% from general visits and 48.3% from podiatrist visits. For

DNU2 the percentages are 22.9% from general visits and 58.4% from a podia-

trist.

The dependent variable ��rst visit� is a binary variable which equals one if

the person has a general visit in a given time period after age 65. Once the

individual has had a �rst visit after starting Medicare, we include a binary

outcome variable visit in each period indicating whether or not there was a

5CPR codes are in parenthesis.
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subsequent general visit. When the person had a general visit in a given period,

we also include a binary variable for whether or not the person had a podiatrist

claim in that period.

Health Shocks: In each period, the individual may experience two types

of health shocks: a person�s toe, foot, or leg is amputated and death. These are

treated as censoring events.

Other health shocks associated with diabetes mellitus such as heart attacks

and strokes were not included in order to reduce the number of estimable equa-

tions and because they do not a¤ect higher transitions except for mortality

which we model.

5.2 Explanatory Variables

Explanatory variables fall into four categories: (1) early diagnosis (our main

explanatory variable); (2) demographic variables; (3) duration dependence; and

(4) exclusion restrictions.

Early Diagnosis: The e¤ects of early diagnosis are measured using two

di¤erent type of controls. First, we include the time with undiagnosed DM ,

DNU0, DNU1, and DNU2. These variables are de�ned as the di¤erence in

quarters between the time of the �rst visit with a diagnoses of the stage and

the time when the stage began. For example, for a person who acquires DM in

period 6 but only had a visit in period 10, time with undiagnosed DM equals

4. These variables are di¤erent from the duration of DM , DNU0, DNU1, and

DNU2 that we also control through duration dependence. If early diagnosis is

bene�cial, we expect to observe undiagnosed duration to have a positive e¤ect

on the probability of progression to the next stage and possibly a positive e¤ect

on mortality and amputation probabilities. Given the partial observability of

the diabetes stage, the e¤ect of these times with undiagnosed disease depend

17



critically on the integration implicit on equation (9).6

Second, we include binary variables for whether the person visited a general

physician and a podiatrist during the last year lagged by six months. We distin-

guish between general and podiatrist visits because the marginal productivity

may be di¤erent depending on the type of health professional that the person

visited (Sloan et al., 2010). We expect these variables to have a negative e¤ect

on the probability of progression to a more severe stage, mortality and ampu-

tation. Because general visit includes a podiatrist visit, the podiatrist binary

measures the additional e¤ect of visiting a podiatrist on outcomes compare to

a general visit.

Demographic Variables: We include binary variables for gender, educa-

tional attainment, marital status, arthritis, and race.7 We also include a year

trend and its square, and the year in which the individual become 65. These

variables are used in all equations. We expect more highly educated and married

persons to have better health outcomes. The year trend controls for the e¤ects

of age; older persons should experience increased probabilities of progression

to higher stages, mortality, and amputation. The year in which the individ-

ual turns 65 controls for technological change and cohort e¤ects. Generational

changes in diets, for example, might a¤ect diabetes outcomes.

Duration Dependence: Duration dependence is measured by a quadratic

function of the time in quarters from the period the individual enters each of

the stages (DM , DNU0, DNU1, and DNU2). Duration dependence a¤ects the

probability of visits and health outcomes by shifting the intercept and by adding

the e¤ects of time with the condition. For example, an individual in stage 1

will have a given probability of visits. After acquiring DM , i.e., entering stage

6Mroz and Weir (1990) discuss identi�cation of the distribution governing a partially ob-
served process for a simpler model than that analyzed here.

7These variables were obtained from the NLTCS screener �le using the latest available
year.
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2, we allow the intercept to shift and add time with DM as a regressor. We

repeat these same steps for DNU0, DNU1, and DNU2. Again, given the partial

observability of the diabetes stage, the e¤ect of duration dependence depends

critically on the integration implicit on equation (9).

Exclusion Restrictions: We use distance to the nearest health professional

as exclusion restrictions a¤ecting doctor visits but not disease progression or

health shocks. Distance is computed as the distance for each sample person

from the center of the person�s zip code of residence to the center of the zip code

of each health care provider. For each individual we select the shortest distance

to such providers. The NLTCS only provides area of residence information at

the level of the primary sampling unit (PSU), which is a Standard Metropolitan

Area for persons living in such areas and a rural area of a state for others.

For each PSU, we compute the mean minimum distance to a provider for each

Medicare bene�ciary in the Medicare claims data. Thus, even for a large city,

the mean minimum distance exceeds zero. Among PSUs, the mean minimum

distance in miles to the nearest provider ranges from 0.02 to 12.03 for general

visits and 0.17 to 80.88 for podiatrists. We expect an increase in the minimum

distance to be negatively related to visits but not to a¤ect disease progression

or health shocks after controlling for visits.

6 Results

In our analysis sample, 3,488 of 10,059 individuals (34.6%) were diagnosed with

DM (Table 2). Lower percentages, 10.2%, 5.3% and 3.5% transitioned to stages

DNU0, DNU1 andDNU2, respectively. The mean duration in the healthy stage

(no DM) is 5.15 years with a mean total duration of 6.71 years in our data. For

the 3,488 individuals who ever had DM , the mean duration with DM is 3.54

years and mean total duration in the sample is 7.29 years. For DNU0, mean
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durations are 1.53 and 7.73 years; for DNU1, mean durations are 1.17 and 8.06

years; and for DNU2, mean durations are 2.98 and 8.12 years.

The probabilities of observing death and amputation increase with diabetes

disease progression. For a healthy individual, the lifetime probabilities of ob-

serving death and amputation are 0.05 and 0.005 while for an individual who

progresses to DNU2, the corresponding probabilities are 0.21 and 0.15. As the

disease progresses the probabilities of general and podiatrist visits increase. On

average, for each quarter the probability of a healthy individual visiting a gen-

eral doctor is 0.47 and for a podiatrist is 0.03. For a person with DM , the

probabilities are 0.59 and 0.06, while for a person with DNU2, the probabilities

are 0.66 and 0.32. Other health and treatment variables follow the expected

pattern with respect to disease progression. However, it is di¢cult to place a

causal interpretation on these simple summary statistics.

Tables 3 contains select coe¢cient estimates for our duration model with 8

points of support. We only report transition to diabetes and further compli-

cations after the �rst healthcare professional visit, outcomes (death and am-

putation), and general and podiatrist visits. The other transitions (pre age 65

outcomes and the �rst post age 65 doctor visit) were estimated but are not

reported. We censor individuals who progressed to Stage 3 (DNU0) by the

time of their �rst post-age 65 doctor visit at the date of that visit. The model

estimates the transition to DM , amputation, and death more precisely than

transitions to DNU0, DNU1 and DNU2. Appendix B reports estimates with

no heterogeneity controls.

The time with undiagnosed DM has a positive and signi�cant impact on

the transitions to the onset of DNU0, amputation, and death. This implies

that early diagnosis of DM can delay complications associated with DM . The

e¤ects of unobserved DM duration on the hazards for DNU1 and DNU2, how-
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ever, are not signi�cant and have the opposite sign. These insigni�cant e¤ects

are consistent with the hypothesis that once one progress beyond DM that the

harmful e¤ects from uncontrolled DM are captured completely by the event

of having progressed to a more severe stage. Also once the individual makes

the transition to DM , time with undiagnosed DNU0 and DNU1 have negative

e¤ects on the onset of further lower extremity complications (opposite signs to

our expectations). However, as discussed below, duration dependence forDNU0

and DNU1 is very large and positive for these transitions to further complica-

tions, implying that once an individual contracts DNU0, s/he will transition

very rapidly to DNU1 and DNU2. It is hard to identify the e¤ects of time with

undiagnosed DNU0 and DNU1 because people spent little time in these more

severe stages and visited the doctor more often (see Table 2).

General visits (estimated with a six months lag) are not e¤ective in delaying

the onset of DNU0, DNU1 and DNU2; nor do they delay amputation or death.

On the other hand, podiatrist visits are productive in delaying amputation and

the coe¢cients always have the expected sign. This result is consistent with the

reduced form �ndings of Sloan et al. (2010).

Across all transition probabilities, the estimates of the quadratic duration

dependence function imply a U-shape between the probability of transitioning

to the next stage or outcome and time with DM , DNU0, DNU1 and DNU2.

However, the bottom of the U is reached very quickly for most outcomes, im-

plying positive duration dependence thereafter. Once an individual transitions

to DNU0 the probability of progressing to DNU1 increases substantially with

time. The e¤ect is even larger when analyzing the DNU1 duration dependence

on the transition to DNU2. These e¤ects are consistent with the fact that in-

dividuals spend a short time in DNU0 or DNU1 stages. As expected, having

DM and/or DNU0 have large positive e¤ects on the probability of death and
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having DNU1 and/or DNU2 has a large positive e¤ect on the probability of

amputation.

Other variables, in general, have the expected e¤ects. Non-whites and males

have higher probabilities of transition toDM andDNU1. These imply that non-

whites and males are more likely to acquire diabetes at an earlier age. Males are

also more likely to die and have an amputation. Individuals with high school or

better education are associated with a lower probability of progressing to DM

and have lower mortality probabilities. Married persons have lower transitions

to DM and lower amputation probabilities. Older individuals (time and time

squared) have higher transitions to DM and DNU2 after the ages of 71 and 72.

Individuals who turned 65 in later years have higher transition probabilities

to DM and DNU0, but lower transition probabilities to DNU1 and lower mor-

tality. This result is consistent with �nding of increasing rates of diabetes in

younger cohorts but at the same time improvements in mortality. A plausible

explanation is the increased rate of diabetes are due to changes in diets and

improvement in mortality are due to health care technological improvements.

The main determinants of the probability of having a general visit are male

(-), better education (-), marriage (+), age (+), arthritis (+), year the per-

son become 65 (+), having DM (+), having DNU0 (+), and having DNU2

(+). Both exclusion restrictions (distance to general health professional and

podiatrist) are signi�cant, but have a positive e¤ect of visits, which was un-

expected. The main determinants of podiatrist visits are white (+), male (-),

better education (+), age (+), arthritis (+), having DM (-), having DNU0 (+),

and having DNU1 (+). Podiatrist distance (our main instrument) has the ex-

pected sign and the coe¢cient is highly signi�cant. When we did not control for

heterogeneity (Appendix B) both distance to general health professionals and

podiatrists have the expected sign (negative) and they are highly signi�cant in
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both equations.

Tables 4 shows the heterogeneity points of support for the di¤erent transi-

tions and the implied probabilities for each of the eight points of support. Using

a likelihood ratio, we rejected models with fewer points of support including the

model with no heterogeneity. The probabilities associated with the mass points

range from 0.0219 to 0.2391 which indicates that there is no point with a very

small or very large weight. Also, there are no extreme mass points for any of

the speci�cations.

The implied correlation between the heterogeneities points of the di¤erent

equations seem plausible (Table 5) and often they are quite substantial. The

unobserved factors are mostly positively related across outcomes. The exception

is that the unobserved factors a¤ecting DNU2 are negatively correlated with

those for all of the other outcomes.

Early diagnosis and presumably treatment of DM a¤ects progressing to

worse stages, death, and amputation through several channels and in a complex

manner. Calculating marginal e¤ects of early diagnosis is not straightforward.

To better gauge the e¤ects of early diagnosis on progression to worse stages we

simulated our model based on our estimates of the parameters for an �average

individual� of the exogenous variables: white, male, education, marriage, year

the person become 65, arthritis, the average distance to the nearest doctor, and

the average distance to the nearest podiatrist. The individual was assumed to

be healthy at the time of his �rst visit at time period 4 (thus we did not use the

pre 65 and pre �rst visit equations). Using our hazard functions we simulated

the probability of contracting diabetes, dying, or having an amputation for each

period after period 4 for two di¤erent individuals. One who visits the doctor

every six month and another who visits the doctor once a year until they are

diagnosed with diabetes. Once they contract diabetes we simulate subsequent
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visits, worse stages, and outcomes using the appropriate hazard functions. We

found that a person who visited the doctor at a six month intervals during those

early years was able delay the onset of diabetic neuropathy by 0.14 quarters,

mortality by 0.15 quarters, and amputation by 0.12 quarters, roughly two weeks

each.8 From a policy point of view, the value of delaying death by two weeks

could easily exceed the cost of having just one more doctor visit each year.

7 Conclusion and Extensions

This study develops and estimates a discrete multiple state duration model that

allows for duration dependence, unmeasured heterogeneity, partially observed

states, and endogenous treatment. The model is well suited for obtaining causal

e¤ects of time-varying explanatory variables on the duration of a given state,

future states, and exit from the condition under the presence of omitted variable

bias. To our knowledge, our study is the �rst to allow for endogenous time-

varying explanatory variables in the context of multiple state duration models.

We apply this model to the study of the progression of diabetic neuropa-

thy, which are serious complications of the lower extremities associated with

diabetes. Diabetic neuropathy can progress through several stages of increas-

ing severity. If untreated, it may lead to an amputation of a toe, a foot, or

part of a leg or even death. Given limitations of randomized controlled trials,

including the high cost of following-up individuals over a lengthy time span,

since complications of diabetes often develop slowly, econometric models that

allow measurement of the e¤ectiveness of these treatments are crucial to better

treating the disease.

An important feature of our model is that it allows us to distinguish true

e¤ects of earlier treatment of a disease on outcomes from the spurious relation-

8These marginal e¤ects are based on 10,000 simulations.
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ship between treatments and disease outcomes by merely diagnosing the disease

earlier. Diabetes is not the only disease where it is crucial to separate these

e¤ects. This problem is called �lead bias� in the medical literature and it is

widely recognized as clouding the true e¤ects of screening tests on delaying the

progression of di¤erent cancers.

Our results show that duration dependence is positive for every stage of

diabetes. The longer an individual has the disease the more likely s/he is to

transition to a more severe stage or leave the sample because of death or am-

putation. However, our results also show that the longer a person has diabetes

without having being diagnosed (and treated) further increases the probabilities

of transitioning to a worse stage, death or amputation. Thus, our results are

consistent with the hypothesis that earlier treatment of diabetes is e¤ective in

delaying complications after controlling for the length of time the individual

have diabetes. We found that a person who visited the doctor at six month

intervals instead of once a year during her/his early years was able to delay the

onset of diabetic neuropathy, mortality, and amputation roughly by two weeks.

From a policy point of view, the value of delaying death by two weeks could

easily exceed the cost of having just one more doctor visit each year.

We acknowledge several limitations. First, we de�ne treatment as visiting

the doctor (either general visit or podiatrist visit) but we do not know the exact

content of the visit. Thus, for example, since the claims data do not contain

information on prescribed drugs, we cannot assess whether a particular prescrip-

tion drug is e¤ective. Nor do we know if the doctor advised the patient to stop

smoking or increase physical activity. Second, we do not measure individual

behaviors of individuals with diabetes, such as better control of blood glucose

through diet and exercise, which also may a¤ect the progression of diabetes.

However, because we allow for unmeasured heterogeneity, not controlling for
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individual behaviors will not a¤ect the consistency of our treatment variables.

These two caveats are limitations of our data since our model can be extended

to control for individual behaviors and di¤erent treatments. Third, our unmea-

sured heterogeneity is time invariant within each equation in the econometric

model. A potential extension is to interact the unmeasured heterogeneity term

with age to allow changing as the individual becomes older.

Overall, the approach is promising for evaluating causal e¤ects with admin-

istrative data from a variety of contexts, ranging from medical to educational

to job training programs.
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8 Appendix

8.1 Likelihood Function

Conditional on ek; the likelihood function for an individual that did not progress

to DM by the last observation T is given by

LnDM (T jM; ek) = Sur (DM = T )� Pr (DVT )� Pr (dT )

where

Sur (DM = T ) =
T
Y

t=1

�

1� hDMt
�

XDM
t ; ek

��

Pr
�

DV nDMT

�

=
T
Y

t=4

Pr (DVt (Zt; ek))

Pr
�

dnDMT

�

=
T
Y

t=4

Pr (dt (Wt; ek))

where Sur (DM = T ) is the probability of an individual surviving to T without

DM , Pr
�

DV nDMT

�

is the probability of a sequence of doctor visits for an indi-

vidual who never have DM , and Pr
�

dnDMT

�

is the probability of a sequence of

discrete outcomes for an individual who never have DM .

The likelihood function for an individual that progressed to DM at tDM and

did not progressed to DNU0 by T is given by

LDM (tDM ; T jM; ek) = Pr (DM = tDM )�Sur (DNU0 = T )�Pr (DVT )�Pr (dT )

30



where

Pr (DMt = tDM ) = hDMtDM

�

XDM
t ; ek

�

tDM�1
Y

t=1

�

1� hDMt
�

XDM
t ; ek

��

Sur (DNU0 = T ) =

T
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t=tDM

�

1� hDNU0t

�

tDM ; XDNU0
t ; ek

��

Pr
�

DV DMT

�

=

tDM
Y

t=4

Pr (DVt (Zt; ek))

T
Y

t=tDM+1

Pr
�

DVt
�

tDM ; Zt; ek
��

Pr
�

dDMT
�

=

tDM
Y

t=4

Pr (dt (Wt; ek))
T
Y

t=tDM+1

Pr
�

dt
�

tDM ;Wt; ek
��

where Pr (DMt = tDM ) is the probability of an individual contracting DM at

period tDM , Sur (DNU0 = T ) is the probability of an individual surviving to

T without DNU0, Pr
�

DV DMT

�

is the probability of a sequence of doctor visits

for an individual who contracted DM at time tDM and never have DNU0, and

Pr
�

dDMT
�

is the probability of a sequence of discrete outcomes for an individual

who contracted DM at time tDM and never had DNU0.

The likelihood function that progressed to DM at tDM , progressed to DNU0

at t0, and did not progressed to DNU1 by T is given by

LDNU0 (tDM ; t0; T jM; ek) = Pr (DM = tDM )� Pr (DNU0 = t0)

�Sur (DNU1 = T )� Pr (DVT )� Pr (dT )
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where

Pr (DNU0 = t0) = hDNU0t

�

tDM ; XDNU0
t ; ek

�

t0�1
Y

t=tDM

�
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�

tDM ; XDNU0
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��
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T
Y
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Pr
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dt
�

t0; tDM ; Zt; ek
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where Pr (DNU0 = t0) is the probability of an individual contracting DNU0 at

period t0, Sur (DNU1 = T ) is the probability of an individual surviving to T

without DNU1, Pr
�

DV DNU0T

�

is the probability of a sequence of doctor visits

for an individual who contracted DM at time tDM , DNU0 at time t0, and

never have DNU1, and Pr
�

dDNU0T

�

is the probability of a sequence of discrete

outcomes for an individual who contracted DM at time tDM , DNU0 at time

t0, and never have DNU1.

The likelihood function for an individual that progressed to DM at tDM ,

progressed to DNU0 at t0, progressed to DNU1 at t1, and did not progressed

to DNU2 by T is given by

LDNU1 (tDM ; t0; t1; T jM; ek) = Pr (DM = tDM )� Pr (DNU0 = t0)� Pr (DNU1 = t1)

�Sur (DNU2 = T )� Pr (DVT )� Pr (dT )
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where

Pr (DNU1 = t1) = hDNU1t
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where Pr (DNU1 = t1) is the probability of an individual contracting DNU1 at

period t1, Sur (DNU2 = T ) is the probability of an individual surviving to T

without DNU2, Pr
�

DV DNU1T

�

is the probability of a sequence of doctor visits

for an individual who contracted DM at time tDM , DNU0 at time t0, DNU1 at

time t1, and never have DNU2, and Pr
�

dDNU1T

�

is the probability of a sequence

of discrete outcomes for an individual who contracted DM at time tDM , DNU0

at time t0, DNU1 at time t1, and never have DNU2.

Finally, the likelihood function for an individual that progressed to DM at

tDM , progressed to DNU0 at t0, progressed to DNU1 at t1, and progressed to

DNU2 at t2 is given by

LDNU2 (tDM ; t0; t1; t2jM; ek) = Pr (DM = tDM )� Pr (DNU0 = t0)� Pr (DNU1 = t1)

�Pr (DNU2 = t2)� Pr (DVT )� Pr (dT )
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where

Pr (DNU2 = t2) = hDNU2t

�

tDM ; to; t1; XDNU2
t ; ek

�

t2�1
Y

t=t2

�

1� hDNU1t

�

tDM ; to; t1; XDNU2
t ; ek

��

Pr
�

DV DNU2T

�

=

tDM
Y

t=4

Pr (DVt (Zt; ek))

t0
Y

t=tDM+1

Pr
�

DVt
�

tDM ; Zt; ek
��

t1
Y

t=t0+1

Pr
�

DVt
�

tDM ; to; Zt; ek
��

t2
Y

t=t1+1

Pr
�

DVt
�

tDM ; to; t1; Zt; ek
��

T
Y

t=t2+1

Pr
�

DVt
�

tDM ; to; t1; t2; Zt; ek
��

Pr
�

dDNU2T

�

=

tDM
Y

t=4

Pr (dt (Wt; ek))

t0
Y

t=tDM+1

Pr
�

dt
�

tDM ;Wt; ek
��

t1
Y

t=t0+1

Pr
�

dt
�

tDM ; to; Zt; ek
��

t2
Y

t=t1+1

Pr
�

dt
�

tDM ; to; t1; Zt; ek
��

T
Y

t=t2+1

Pr
�

dt
�

tDM ; to; t1; t2; Zt; ek
��

where Pr (DNU2 = t2) is the probability of an individual contracting DNU2 at

period t2, Pr
�

DV DNU2T

�

is the probability of a sequence of doctor visits for an

individual who contracted DM at time tDM , DNU0 at time t0, DNU1 at time

t1, and never have DNU2, and Pr
�

dDNU1T

�

is the probability of a sequence of

discrete outcomes for an individual who contracted DM at time tDM , DNU0

at time t0, DNU1 at time t1, and DNU2 at time t2.

8.2 Unmeasured Heterogeneity

For each of the events we assume a discrete heterogeneity distribution which is

model as a polynomial

�o (ek) = �o1

�

k � 1

K � 1

�

+ :::+ �oJ

�

k � 1

K � 1

�J0

k = 1; :::;K and J0 � K � 1

where o = DM; DNU0, DNU1, DNU2, d, and DV ; and K is the number of

heterogeneity points. We estimate Pr (ek) subject to the restrictions that each

probability is non-negative and
PK

k=1 Pr (ek) = 1.
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