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Abstract

This study develops a discrete multiple state duration model that al-
lows for duration dependence, unmeasured heterogeneity, partial observ-
ability of the state and endogenous time-varying treatment. Our econo-
metric strategy has numerous potential empirical applications. We apply
our duration model to the progression of diabetic neuropathy, a compli-
cation of diabetes with four levels of progression, which if left untreated
may lead to amputation. Our results show that the longer a person has
diabetes without having being diagnosed (and treated) increases the prob-
abilities of transitioning to a worse stage, death or amputation.
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1 Introduction

For many outcomes, the timing and length of the treatment or intervention
cannot be ignored. An educational program such as Head Start, for example
may have a different effect if applied to young children, than if in somewhat
altered form, it is applied to teenagers (Garces et al., 2002 and Cunha and
Heckman, 2007). Or the effects of a change in unemployment benefits will have
a different effect if the individual is unemployed for one week rather than four
months and will depend on the phase of business cycle (Lechner and Wunsch,
2009). Similarly, in a medical context, treatment for a chronic condition, such as
chemotherapy for cancer, has a different impact if applied after the cancer has
diffused rather than when the cancer is limited to a single organ (Llobera et al.,
2000). Further, there may be duration dependence in which the probability of
an individual transitioning out of a particular state depends on the time spent
in that state, e.g., the probability of an individual accepting a job offer depends
on how long s/he has been unemployed. Duration models have long been used
in these situations (Kiefer 1988, Lancaster 1990 and van den Berg 2001).
There is a growing econometric literature on endogenous treatment effects
in duration models: Robins (1989, 1997), Gill and Robins (2001), Abbring and
van den Berg (2003), Mroz and Savage (2006), Heckman and Navarro (2007),
Abbring and Heckman (2008), and Liu et al (2009) among others. This litera-
ture has established conditions under which the treatment effects are identified
and how they can be estimated using minimal assumptions. For more compli-
cated models such as multiple duration models, accounting for endogeneity of an
explanatory variable remains a daunting computational challenge.! This paper
contributes to this literature by developing a discrete multiple state duration

model that allows for duration dependence, unmeasured heterogeneity, partial

!See Richardson and van den Berg (2008) for a recent study of vocational Swedish labor
market training on unemployment spells.



observability of states and endogenous time-varying treatment.

We apply our dynamic multi-stage discrete duration model to study whether
early detection of diabetes mellitus is effective in delaying progression to dia-
betic neuropathy, which are complications of the lower extremities (legs and
feet). If untreated, diabetic neuropathy may lead to amputation. We also
study whether early diagnosis of more advanced stages slows disease progres-
sion. Treatment is defined in terms of timing of visits to doctors. Our model
allows for unmeasured heterogeneity using discrete factor models (Heckman and
Singer, 1984), duration dependence, partial observation on one’s current disease
state, and right-censoring. For each time period, we model: the probability
of the disease progressing to a more severe stage; the probability of receiving
treatment (visits); and the probability of experiencing various health shocks.
Following Mroz (1999), we control for endogeneity of treatment by allowing
unobserved discrete factors, aspects of health unobserved by the researcher, to
affect probabilities of disease progression, receipt of treatment, and occurrence
of health shocks. This strategy has been used by Glewwe and Jacoby (2004),
Bhattacharya (2005), Mroz and Savage (2006), and Liu et al. (2010) among oth-
ers. However, the likelihood function estimated here is more computationally
complex than in previous studies since we simultaneously account for multi-
ple disease stages, partial observability of disease progression, endogeneity of
treatments, and health outcomes.

Our duration model is well suited for analysis of effects of treatment (early
diagnosis in our study) on progression of diabetes mellitus; our method has
several advantages over previous studies that attempt to control for the endo-
geneity of treatment using standard models in which the dependent variable is
continuous and it is controlled by a single index (see e.g., Picone et al., 2004).

First, disease progression often occurs over a long time period. Even if a partic-



ular treatment is productive, it may only affect a temporally distant outcome,
which is also subject to future treatment. Our duration model allows us to make
more precise inferences about these distant outcomes than is possible using a
standard specification in which outcomes are measured at fixed intervals with
no allowance for possible effects of future treatment. Second, we can directly
model the effect of early diagnosis on the disease progression and outcomes. A
timely diagnosis and treatment is usually the main reason behind many doctor
visits and screening tests like mammography. Standard methods infer benefits
of early diagnosis of cancer, for example, by analyzing effects of shorter screen-
ing intervals on the number of malignancies detected and the time individuals
live with cancer. However, this approach suffers from lead bias. Just because
people live longer with cancer does not necessarily imply that treatment is ef-
fective (Cole and Morrison, 1980). By modeling the time with the undiagnosed
disease directly, our approach controls for the lead bias problem. Third, our
approach allows for right or left censoring as well as partial observability of the
disease stage. Fourth, we allow marginal productivity of treatment to be time
varying and to depend on the disease stage. Fifth, our approach allows analysis
of duration dependence separately from earlier diagnosis.

We find that earlier diagnosis of diabetes, and presumably treatment that
follows diagnosis, delays onset of lower extremity complications including am-
putation. At the same time there is positive duration dependence, regardless
of whether diabetes was diagnosed or not; the probability of contracting neu-
ropathy and all subsequent stages including mortality and amputation increases
with the length of time since the onset of diabetes and other subsequent stages.
We also find that visits to a podiatrist are more effective in slowing onset of
complications of diabetes neuropathy than are visits to other health profession-

als.



The rest of the paper is organized as follows: Section II provides background
information on diabetes. Section III describes the econometric model and Sec-
tion IV the data. Section V presents our empirical specification, including the
method for accounting for endogeneity of treatments, which is followed by re-

sults in Section VI. Finally, Section VII presents conclusions and implications.

2 Background

Diabetes mellitus is a complex disease, potentially affecting several organ sys-
tems, including the eyes, the cardiovascular system, and the kidneys as well as
legs and feet; it reduces life expectancy. Because some individuals with diabetes
experience loss of sensation in their legs and feet, they are more subject to in-
jury. Diabetic complications of the lower extremities are classified as diabetic
neuropathy. Individuals can reduce disease progression by keeping a healthy
diet, exercising, regularly monitoring their blood glucose levels and blood pres-
sure, obtaining medical care and following their physicians’ recommendations
(e.g., taking drugs as prescribe). If diabetic neuropathy is untreated, it may
lead to an amputation of a toe, a foot, part of a leg or even death.

Medical care of persons with diabetes involves diagnosis of disease progres-
sion and complications, direct provision of treatments, referrals to specialists for
other treatments of the underlying disease, prescribing drugs, and instructing
patients on self-care.

Important randomized controlled trials (RCT) have documented the pro-
ductivity of various regimens, such as blood glucose control, in slowing the
progression of the disease (Montori et al., 2006). However, RCTs tend to have
short follow-up periods, and patients enrolled in RCTs are subject to being on
strict medical protocols, which neither health professionals nor patients may

follow when not subject to those protocols. Monitoring longer term effects of



treatment and how patients and doctors behave in the community when they
are not subject to RCT protocols requires analysis with observational data.

Table 1 presents a description of the stages of diabetic neuropathy and the
associated ICD-9 codes used to identified them. We classify diabetes melli-
tus and diabetic neuropathy into 5 mutually exclusive progressive stages: (1)
healthy (no DM); (2) diabetes mellitus only (DM); (3) diabetic neuropathy
stage 0 (DNUy); (4) diabetic neuropathy stage 1 (DNU;), and (5) diabetic
neuropathy stage 2 (DNUs). Once an individual turns 65, stages were assigned
on a quarter by quarter basis. Individuals were classified as continuing to be
healthy (no DM) if, over the course of three months, they have had one or more
visits to a doctor who could have made a diagnosis of diabetes, but a positive
diagnosis did not occur. An individual was classified as having diabetes only
(DM), if the individual had at least one Medicare claim that included an ICD-
9 DM diagnosis code in that quarter or earlier, but none included a diabetes
neuropathy diagnosis code. Once an individual is diagnosed with DM s/he was
categorized to have DM or worse for the remainder of his/her life. A similar
process was used to follow an individual’s progression through the higher stages
of the disease. Also, if an individual was diagnosed with a later stage of diabetes
like DNU;, we categorize him/her with that stage of diabetes and as having
transited through all of the less severe stages. This approach allows us to model
individuals who were not observed in a less severe stage in the course of their
progression, perhaps due to long intervals between doctor visits, non-compliance
with the treatment regiment or other reasons.

Physician visits may involve establishing a diagnosis, making referrals to
other health professionals, provision of patient education and advice, and pro-
vision of specific therapies. The marginal product of a particular treatment

modality is likely to differ by disease stage. For example, the marginal prod-



uct of therapeutic shoes, which provide protection from bumping into objects
is plausibly much higher at Stage 3 than at Stage 5 when much damage to
lower extremities has already occurred. Our dynamic approach allows for the
marginal product of visits to differ by disease stage.

Our classification of disease stages is imperfect. Patients may report signs
and symptoms of DM to physicians which are not recorded as ICD-9 and CPT
codes on claims. Also, ICD-9 and CPT codes do not typically convey clinical
findings which may in turn guide clinical decisions. This is an additional source
of omitted heterogeneity but it is not clear whether it will bias the estimates.
However, it will certainly lead to higher standard errors. We assume an indi-
vidual specific heterogeneity whose impact on outcomes, visits, and transitions

varies with the disease stage.

3 Modelling a Chronic Disease

We develop a discrete multi-stage hazard model to study the effect of visits to
health professionals on outcomes associated with a chronic disease. For each
period, we jointly model disease progression, the probability of a doctor visit,
and the probability of a health shock. Health shocks take the form of either
amputation or death.

Without loss of generality, we assume an individual is in one of 5 possible
states: no DM, DM, DNU,, DNU;, and DNU, at each point in time. Once
a person enters a more severe disease stage, it is impossible to recover and
return to a less severe stage. The physical damage to diabetic progression is
cumulative. To simplify notation, we suppress the subscript i. We select the
sample conditional on the individual being alive at age 65. The first 3 periods

are included to model the probability of entering DM and/or DNU, before



the person became Medicare eligible at age 65.> We use 3 periods to model the
probability of being healthy by 65, entering DM only by age 65, and progressing
to DNUj or a worse diabetic neuropathy stage by age 65. Right censoring can
occur due to mortality (modeled as an outcome), leaving the sample, enrolling
in an HMO, or any other reason at any time. Period 4 starts when the person
becomes 65.

Let T be the last period that the individual is in our sample. The hazard

function for the progression to DM at time ¢ > 3 is
hPM (DM; = 1XPM e, DMy 1 = 0) = A (XY Bpa + ppar (er)) (1)

where A (2) = ¢/ (1 + €*), XPM is a vector of potentially time varying explana-
tory variables and ey is the unmeasured heterogeneity assumed to be discrete
with K heterogeneity points.? Unmeasured heterogeneity affects the hazard of
progression to a higher stage, probabilities of having a visit, and health shocks.
For ¢ < 3, the hazard function has a form that is identical to (1), but we allow
for different explanatory variables and coefficients on these variables.

Let tpps be the time at which the individual acquires DM; ty measures the
time at which the individual progress to DNUy. t; and to are the correspond-
ing times for entering DNU; and DNUs, respectively. Once the individual
acquires DM s/he is at risk for progressing to DNU, and subsequent stages of
neuropathy. The hazard function for the progression to DNUj at time t > tpas

is

hPNUo (DNUOt — 1|tPM_ XPNVo o1 DNUp,_y = 0) -

A (XtDNUUﬁDNUO + 60 (t”™M) + oo, (ek)) (2)

2We use three pre-age 65 time periods to allow for location specific and possibly time
varying factors to affect the diseases progression.
3See Mroz (1999) and the appendix.



where tPM

=t — tpy is the duration of time since the DM onset and 0 (.)
is a quadratic function. Similarly, the hazard rates for DNU; at time t > t;_;

( = 1,2) is given by

BN (DNUj = 1P, 4PV XN e DNUj oy = 0) =

A(XtDNUjﬂDNUj +6par; (17M) +

Z‘Sl—lvl (tPNU1) + ppwvy, (er) (3)
=1

where tPNUI = ¢ — t; is time with DNU; and dpas; (.) is a quadratic function.
These hazard functions depend on how long the individual has spent in each

of the previous stages (tPM, tPNUi-1)

and allow for different sets of regressors
depending on the disease stage.

In each period, the individual decides whether or not to visit a health pro-
fessional. During that visit, the doctor determines a diagnosis based on the
person’s diabetes state at that time (noDM, DM, DNUy, DNU;, DNU,) and
may perform a procedure to prevent or forestall disease progression. The prob-

ability of having a visit in period ¢ depends on the disease stage. For a healthy

individual (roDM), this probability is
Pr (DV} = 1|Zt, ek) =A (ZtBDV + ppv (ek)) ift<tpum. (4)

For an individual at stage j (j = DM, DNUy, DNU;, DNUs), the probability

of a visit during the period is

Pr (DV, = 1[tPM PN 7, ey)

= A (ZtﬁDv + Z (a0 + aat') + ppy (ek)> . (5)

=1



Among the regressors are variables that do not directly affect disease pro-
gression, e.g., distance to the health professionals. The variables help identify
the effect of visits on disease progression.

Finally, let d be an observable health shock. We model both amputation and
death. As the disease progresses, the probability of a health shock occurring is

likely to change. For individuals without DM, the probability of a shock is
Pr(d, = 1Wy,er) = AWiBy+ pg(ex)) ift <tpp. (6)

For an individual at stage j (j = DM, DNUy, DNU, DNU,), the probability

of a health shock during each time period is

Pr(dy = 1tPM L tPNY Wy er) =

A (Wtﬂd + Z (Vo1 + %,ztl) + pa (ek)) (7)

=1

We assume all events are independent after accounting for the unobservable
heterogeneity ej. Based on the hazards and probabilities of equations 1-7, the
likelihood function for an individual with any possible transition combination

conditional on the unmeasured heterogeneity e; and the matrix of all possible

10



—

— — — —
explanatory variables M = (XDM,XDNUO, ...,XDNU"’,Z,W)4 is

—

— — —
L (tD]\/f7t07t17t27T7 DV? d |ek7M) = L’ﬂDM (T7DV7 d ‘Ek,M

) 1(to>T>tpar)

) Wtpm2>T)

—_— —
XLpm (tDM,T,DV, d |er, M

.y 1(t1>T>to)
><LDNUO (tDM7thT7 DV, d |€k,M)

—_— 1(te>T>t1)
><LDNU1 (tDM7tht17T7DV7 d ‘ekvM)

sy 1(T>t2)
><LDI\7U2 (tDM7t07t17t27T7DV7 d|ek7M)

(®)

1(tDM2T)
) is the likelihood function for an individual

Lobu (T,W,E)kk,M
who did not progress to DM by period T" with a sequence of visits D_‘} =
(DVA, ..., DVr) and health shocks d = (d1,...,dr). Lpn(.) is the likelihood
function for an individual who contracted DM at tpys, but did not progressed
to DNUj by terminal period T. We define Lpny, (), Lpnu, (-), and Lpyu, (4),
similarly. See Appendix A for more details on the construction of the likelihood
function.

Without the unrealistic assumption that individuals continuously monitor,
observe, and report their actual diabetes stage at each point in time, it is crucial
to incorporate the partial observability of the one’s diabetic stages into the
construction of the likelihood function. We do this by integrating over the
possible time periods during which an individual is known to have progressed
to a more serious disease stage. This is similar to the strategy used by Mroz
and Weir(1990) to address the partial observability of lactational amenorrhea in
their life-cycle model of fertility control. As discussed above, the information to
construct these bracketed time periods comes from the timing of doctor visits

and the Medicare claims data. Using information on the date of the last doctor

1X DM i the sequence of all possible values of XPM (XPM _ XDM) We also define

— — — — —
XDPNUo XDNUL XDNUz 7 and W the same way.

11



visit without the condition having been present and the first doctor visit with
the condition, we know the earliest (fmin,;) and latest (fmax ;) time periods in

which tpas, to, t1, and t2 may have occurred
tmin,j < t] < tmax,j

for j = DM, 0,1,2. Conditional on ey, the individual likelihood function for the
observed series (tmin,DZW» tmax,DMa L) tmin,Q, tmax,2a T) is obtained by integrating

over all possible starting and ending values of tpyy, to, t1, and ¢ :

—_— —
L (tmin,DMy -~~7tmax,27Ta DVa d |ek7M) =

min{tmax, o1} min{tmax,0,7} min{tmax,1,7} min{tmax,2,7}

DR B DI G DR B O

tpym=tmin, DM to=max{tpar,tmin,0} t1=max{to,tmin,1} to=max{t1,tmin,2}
to>tpum t12>to ta>ty

—_— —
L(tDMat07t1:t27T7DV7 d‘elﬁM)H] (9)

These periods of time where we are uncertain about precisely when the
individual progressed to the next disease stage constitute a key feature of this
analysis. Not only is this an econometric issue that needs to be addressed; it
is a real, substantive issue for analyzing disease progression and treatments.
Numerous individuals will not recognize that they have progressed to DM or
more advanced stages if they do not see a health care professional who can
diagnose their condition. If the period of time where the disease is present
but unobserved and untreated is long, then the individual may progress much
more rapidly to more severe disease stages, possibly resulting in amputation
or death. In our specification of the hazard functions we explicitly allow the
duration of time a person spends with the disease without having been diagnosed
to affect transitions to more advanced disease stages. This allows us to separate

out whether or not more frequent diagnostic visits and the resulting earlier
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treatments could actually slow down the disease progression from the aliasing
that can occur only because more frequent diagnostic visits tend to lead to
diagnoses at shorter durations of the disease stage. Diabetes is but one of many
diseases where it is crucial to be able to separate the true effects of earlier
treatments of a disease on outcomes from the spurious relationship between
treatments and disease outcomes due to shorter intervals between diagnoses
merely representing diagnoses at likely earlier (and unobserved) durations of
the disease.

Finally, the unconditional log-likelihood function of the observed sample is:

N K
LO)=> (> Pr(ex)L (tmin,D]Wi7 eos a2y Tiy DV, di‘ekaMi))y (10)
=1k

=1

where 6 is the vector of parameters to be estimated, and Pr (eg) is the probability
of the discrete heterogeneity point ey (Appendix A describes ek, p(e), and
Pr(ex) in more detail). To select the number of heterogeneity points (K),
we use a likelihood ratio test as suggested in Mroz (1999). We add points of
support with the corresponding additional parameters until the likelihood ratio

test statistic fails to indicate improvement using a chi-squared distribution.

4 Data

We use data from the National Long-Term Care Survey (NLTCS) a longitudinal
study of the elderly or persons aged 65 and older. The screening process began
with a random sample of persons aged 65 and older in 1982. The respondents
were tracked over time and more respondents were added to the sample in later
waves (1989, 1994, 1999, and 2004).

Over the five cohorts of NLTCS, more than 40,000 individuals were fol-

lowed, and screened interviews were drawn from this sampling frame. Medicare
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claims data (Parts A & B), were merged with NLTCS data for all of these in-
dividuals by date and type of service. Diagnostic data were first added to Part
B claims data in 1991. Furthermore, NLTCS respondents were merged with
National Death Index data, providing the respondents death dates up to 2005.

Using the NLTCS and Medicare claims data from 1991 to 2004, we create a
panel of individuals. We select individuals born between 1926 and 1939. This
restriction ensures that all individuals are no older than 65 years of age when
they enter the sample. We also drop individuals with less than two years (eight
quarters) of data. Our final sample size consists of 10,059 individuals observed
over a total of 221,962 quarters.

We divide the data into quarters of a year which correspond to time periods
(t). In this analysis the longest period over which we observe an individual is
56 time periods. The first quarter of the year after the individual turns 65 is
measured as time period 4 and thereafter every successive quarter is the next
time period ( t41 ). For example, for a person who turns 65 in the first quarter
of 1994, this period is ¢t = 4 and the first quarter of 1996 is ¢t = 12; for someone
who turns 65 in the first quarter of 1996, this quarter is ¢ = 4. The last period,
which is the right censoring ¢, is the time period in which the individual either
dies, has an amputation, or leaves the sample for some reason. We assume
censoring not due to death or amputation is ignorable.

The first three time periods are reserved for calculating the probability of
not acquiring DM prior to entering the sample. The time interval for these
periods is arbitrary, but in our discussion we suppose that the first 3 time
periods measure the previous 15 years before the age of 65 (5 year intervals as

opposed to quarters).
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5 Empirical Specification

There are 12 different equations in the likelihood function: two pre-age 65 haz-
ards (DM and DNUy), two post-age 65-before first visit hazards (DM and
DNUy), four post-age 65 and first visit hazards (DM, DNUy, DNUy, DNUs,),
three visit equations (first general visit after turning age 65, subsequent general
visits and podiatrist visits) and two health outcomes equations (amputation and

death).

5.1 Dependent Variables

Stages: A person is in one of five mutually exclusive stages during a quarter.
When a person transitions to a higher stage within a period, we consider the
person to have been in the higher stage throughout the period.

Diabetes mellitus and all subsequent states are treated as absorbing states.
Thus, if an individual entered the DM stage in time period ¢, s /he remains in that
stage for the remainder of his or her life unless the person transitions to a more
advanced state. Furthermore, an advanced stage of the disease automatically
implies that all previous stages occurred. So if the same individual is diagnosed
with a condition that would place her into stage 4 the first time she is observed
in the data, she automatically acquires the three prior stages, albeit at times
unknown to us.

Visits: We consider two types of visits: general and podiatrist. A podiatrist
is a non-physician who specializes in diseases of the lower extremities. General
visits include physician and podiatrist visits.

General Visits: A person was classified as having had a general visit during
period ¢ if s/he has a claim from any of the following: general practitioner

(01), cardiologist (06), family practitioner (08), internal medicine specialist (11),
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endocrinologist (46), clinical laboratory (69), or podiatrist (48).°

Podiatrist Visits: A person is classified as having a podiatrist visit in period
t, if s/he had general visit in the period and had a claim from a podiatrist (48).
Because a podiatrist claim also implies a general visit, a podiatrist visit must be
interpreted as the additional effect of consulting a podiatrist over other health
care visits included in general visits.

The main role of a health care visit in this analysis is to indicate the pres-
ence of DM, DNUy, DNU;, and DNUs. Ideally any physician could provide
this information; however, many visits are for other purposes, e.g., visits to a
dermatologist or an oncologist (cancer specialist), and hence are not likely to
include assessment of whether or not the patient has DM or its complications.

General and podiatrist visits capture the vast majority of visits devoted to
the diagnosis and treatment of DM and its complications. The role of podia-
trists in treating and making diagnoses increases with successively higher DNU
stages. In our Medicare claims data, 81% of Medicare beneficiaries first received
a diagnosis of DM from one of the general visit types listed above (excluding
podiatrist); an additional 2.5% first received a diabetes diagnosis from a a po-
diatrist. The remainder (16.5%) of the diagnosis are made by other types of
visits. For DNUj the corresponding percentages are 60.5% from general visits
(excluding podiatrist) and 25.4% from podiatrist visits, while for DNU; the
percentages are 34.5% from general visits and 48.3% from podiatrist visits. For
DNUs the percentages are 22.9% from general visits and 58.4% from a podia-
trist.

The dependent variable ‘first visit’ is a binary variable which equals one if
the person has a general visit in a given time period after age 65. Once the
individual has had a first visit after starting Medicare, we include a binary

outcome variable visit in each period indicating whether or not there was a

5CPR codes are in parenthesis.
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subsequent general visit. When the person had a general visit in a given period,
we also include a binary variable for whether or not the person had a podiatrist
claim in that period.

Health Shocks: In each period, the individual may experience two types
of health shocks: a person’s toe, foot, or leg is amputated and death. These are
treated as censoring events.

Other health shocks associated with diabetes mellitus such as heart attacks
and strokes were not included in order to reduce the number of estimable equa-
tions and because they do not affect higher transitions except for mortality

which we model.

5.2 Explanatory Variables

Explanatory variables fall into four categories: (1) early diagnosis (our main
explanatory variable); (2) demographic variables; (3) duration dependence; and
(4) exclusion restrictions.

Early Diagnosis: The effects of early diagnosis are measured using two
different type of controls. First, we include the time with undiagnosed DM,
DNUy, DNU;, and DNU,. These variables are defined as the difference in
quarters between the time of the first visit with a diagnoses of the stage and
the time when the stage began. For example, for a person who acquires DM in
period 6 but only had a visit in period 10, time with undiagnosed DM equals
4. These variables are different from the duration of DM, DNU,, DNU;, and
DNUs that we also control through duration dependence. If early diagnosis is
beneficial, we expect to observe undiagnosed duration to have a positive effect
on the probability of progression to the next stage and possibly a positive effect
on mortality and amputation probabilities. Given the partial observability of

the diabetes stage, the effect of these times with undiagnosed disease depend
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critically on the integration implicit on equation (9).6

Second, we include binary variables for whether the person visited a general
physician and a podiatrist during the last year lagged by six months. We distin-
guish between general and podiatrist visits because the marginal productivity
may be different depending on the type of health professional that the person
visited (Sloan et al., 2010). We expect these variables to have a negative effect
on the probability of progression to a more severe stage, mortality and ampu-
tation. Because general visit includes a podiatrist visit, the podiatrist binary
measures the additional effect of visiting a podiatrist on outcomes compare to
a general visit.

Demographic Variables: We include binary variables for gender, educa-
tional attainment, marital status, arthritis, and race.” We also include a year
trend and its square, and the year in which the individual become 65. These
variables are used in all equations. We expect more highly educated and married
persons to have better health outcomes. The year trend controls for the effects
of age; older persons should experience increased probabilities of progression
to higher stages, mortality, and amputation. The year in which the individ-
ual turns 65 controls for technological change and cohort effects. Generational
changes in diets, for example, might affect diabetes outcomes.

Duration Dependence: Duration dependence is measured by a quadratic
function of the time in quarters from the period the individual enters each of
the stages (DM, DNUy, DNU;, and DNUs,). Duration dependence affects the
probability of visits and health outcomes by shifting the intercept and by adding
the effects of time with the condition. For example, an individual in stage 1

will have a given probability of visits. After acquiring DM, i.e., entering stage

6Mroz and Weir (1990) discuss identification of the distribution governing a partially ob-
served process for a simpler model than that analyzed here.

TThese variables were obtained from the NLTCS screener file using the latest available
year.
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2, we allow the intercept to shift and add time with DM as a regressor. We
repeat these same steps for DNUy, DNUy, and DNU,. Again, given the partial
observability of the diabetes stage, the effect of duration dependence depends
critically on the integration implicit on equation (9).

Exclusion Restrictions: We use distance to the nearest health professional
as exclusion restrictions affecting doctor visits but not disease progression or
health shocks. Distance is computed as the distance for each sample person
from the center of the person’s zip code of residence to the center of the zip code
of each health care provider. For each individual we select the shortest distance
to such providers. The NLTCS only provides area of residence information at
the level of the primary sampling unit (PSU), which is a Standard Metropolitan
Area for persons living in such areas and a rural area of a state for others.
For each PSU, we compute the mean minimum distance to a provider for each
Medicare beneficiary in the Medicare claims data. Thus, even for a large city,
the mean minimum distance exceeds zero. Among PSUs, the mean minimum
distance in miles to the nearest provider ranges from 0.02 to 12.03 for general
visits and 0.17 to 80.88 for podiatrists. We expect an increase in the minimum
distance to be negatively related to visits but not to affect disease progression

or health shocks after controlling for visits.

6 Results

In our analysis sample, 3,488 of 10,059 individuals (34.6%) were diagnosed with
DM (Table 2). Lower percentages, 10.2%, 5.3% and 3.5% transitioned to stages
DNUy, DNU; and DNU,, respectively. The mean duration in the healthy stage
(no DM) is 5.15 years with a mean total duration of 6.71 years in our data. For
the 3,488 individuals who ever had DM, the mean duration with DM is 3.54

years and mean total duration in the sample is 7.29 years. For DNU,, mean
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durations are 1.53 and 7.73 years; for DNU;, mean durations are 1.17 and 8.06
years; and for DN Us, mean durations are 2.98 and 8.12 years.

The probabilities of observing death and amputation increase with diabetes
disease progression. For a healthy individual, the lifetime probabilities of ob-
serving death and amputation are 0.05 and 0.005 while for an individual who
progresses to DN Us,, the corresponding probabilities are 0.21 and 0.15. As the
disease progresses the probabilities of general and podiatrist visits increase. On
average, for each quarter the probability of a healthy individual visiting a gen-
eral doctor is 0.47 and for a podiatrist is 0.03. For a person with DM, the
probabilities are 0.59 and 0.06, while for a person with DNUs,, the probabilities
are 0.66 and 0.32. Other health and treatment variables follow the expected
pattern with respect to disease progression. However, it is difficult to place a
causal interpretation on these simple summary statistics.

Tables 3 contains select coefficient estimates for our duration model with 8
points of support. We only report transition to diabetes and further compli-
cations after the first healthcare professional visit, outcomes (death and am-
putation), and general and podiatrist visits. The other transitions (pre age 65
outcomes and the first post age 65 doctor visit) were estimated but are not
reported. We censor individuals who progressed to Stage 3 (DNUy) by the
time of their first post-age 65 doctor visit at the date of that visit. The model
estimates the transition to DM, amputation, and death more precisely than
transitions to DNUy, DNU; and DNU,. Appendix B reports estimates with
no heterogeneity controls.

The time with undiagnosed DM has a positive and significant impact on
the transitions to the onset of DNU,, amputation, and death. This implies
that early diagnosis of DM can delay complications associated with DM. The
effects of unobserved DM duration on the hazards for DNU; and DNUs,, how-
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ever, are not significant and have the opposite sign. These insignificant effects
are consistent with the hypothesis that once one progress beyond DM that the
harmful effects from uncontrolled DM are captured completely by the event
of having progressed to a more severe stage. Also once the individual makes
the transition to DM, time with undiagnosed DNU, and DNU; have negative
effects on the onset of further lower extremity complications (opposite signs to
our expectations). However, as discussed below, duration dependence for DN Uy
and DNU; is very large and positive for these transitions to further complica-
tions, implying that once an individual contracts DNUy, s/he will transition
very rapidly to DNU; and DNUs. It is hard to identify the effects of time with
undiagnosed DNU, and DNU; because people spent little time in these more
severe stages and visited the doctor more often (see Table 2).

General visits (estimated with a six months lag) are not effective in delaying
the onset of DNUy, DNU; and DNUs; nor do they delay amputation or death.
On the other hand, podiatrist visits are productive in delaying amputation and
the coefficients always have the expected sign. This result is consistent with the
reduced form findings of Sloan et al. (2010).

Across all transition probabilities, the estimates of the quadratic duration
dependence function imply a U-shape between the probability of transitioning
to the next stage or outcome and time with DM, DNUy, DNU; and DNUs,.
However, the bottom of the U is reached very quickly for most outcomes, im-
plying positive duration dependence thereafter. Once an individual transitions
to DNUj the probability of progressing to DNU; increases substantially with
time. The effect is even larger when analyzing the DNU; duration dependence
on the transition to DNUs,. These effects are consistent with the fact that in-
dividuals spend a short time in DNU, or DNU; stages. As expected, having

DM and/or DNU, have large positive effects on the probability of death and
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having DNU; and/or DNU; has a large positive effect on the probability of
amputation.

Other variables, in general, have the expected effects. Non-whites and males
have higher probabilities of transition to DM and DNU;. These imply that non-
whites and males are more likely to acquire diabetes at an earlier age. Males are
also more likely to die and have an amputation. Individuals with high school or
better education are associated with a lower probability of progressing to DM
and have lower mortality probabilities. Married persons have lower transitions
to DM and lower amputation probabilities. Older individuals (time and time
squared) have higher transitions to DM and DNUs after the ages of 71 and 72.

Individuals who turned 65 in later years have higher transition probabilities
to DM and DNUj, but lower transition probabilities to DNU; and lower mor-
tality. This result is consistent with finding of increasing rates of diabetes in
younger cohorts but at the same time improvements in mortality. A plausible
explanation is the increased rate of diabetes are due to changes in diets and
improvement in mortality are due to health care technological improvements.

The main determinants of the probability of having a general visit are male
(-), better education (-), marriage (+), age (+), arthritis (+), year the per-
son become 65 (+), having DM (+), having DNUy (+), and having DNU,
(4+). Both exclusion restrictions (distance to general health professional and
podiatrist) are significant, but have a positive effect of visits, which was un-
expected. The main determinants of podiatrist visits are white (4), male (-),
better education (+), age (+), arthritis (+), having DM (-), having DNUy (+),
and having DNU; (+). Podiatrist distance (our main instrument) has the ex-
pected sign and the coefficient is highly significant. When we did not control for
heterogeneity (Appendix B) both distance to general health professionals and

podiatrists have the expected sign (negative) and they are highly significant in
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both equations.

Tables 4 shows the heterogeneity points of support for the different transi-
tions and the implied probabilities for each of the eight points of support. Using
a likelihood ratio, we rejected models with fewer points of support including the
model with no heterogeneity. The probabilities associated with the mass points
range from 0.0219 to 0.2391 which indicates that there is no point with a very
small or very large weight. Also, there are no extreme mass points for any of
the specifications.

The implied correlation between the heterogeneities points of the different
equations seem plausible (Table 5) and often they are quite substantial. The
unobserved factors are mostly positively related across outcomes. The exception
is that the unobserved factors affecting DNUs; are negatively correlated with
those for all of the other outcomes.

Early diagnosis and presumably treatment of DM affects progressing to
worse stages, death, and amputation through several channels and in a complex
manner. Calculating marginal effects of early diagnosis is not straightforward.
To better gauge the effects of early diagnosis on progression to worse stages we
simulated our model based on our estimates of the parameters for an ”average
individual” of the exogenous variables: white, male, education, marriage, year
the person become 65, arthritis, the average distance to the nearest doctor, and
the average distance to the nearest podiatrist. The individual was assumed to
be healthy at the time of his first visit at time period 4 (thus we did not use the
pre 65 and pre first visit equations). Using our hazard functions we simulated
the probability of contracting diabetes, dying, or having an amputation for each
period after period 4 for two different individuals. One who visits the doctor
every six month and another who visits the doctor once a year until they are

diagnosed with diabetes. Once they contract diabetes we simulate subsequent
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visits, worse stages, and outcomes using the appropriate hazard functions. We
found that a person who visited the doctor at a six month intervals during those
early years was able delay the onset of diabetic neuropathy by 0.14 quarters,
mortality by 0.15 quarters, and amputation by 0.12 quarters, roughly two weeks
each.® From a policy point of view, the value of delaying death by two weeks

could easily exceed the cost of having just one more doctor visit each year.

7 Conclusion and Extensions

This study develops and estimates a discrete multiple state duration model that
allows for duration dependence, unmeasured heterogeneity, partially observed
states, and endogenous treatment. The model is well suited for obtaining causal
effects of time-varying explanatory variables on the duration of a given state,
future states, and exit from the condition under the presence of omitted variable
bias. To our knowledge, our study is the first to allow for endogenous time-
varying explanatory variables in the context of multiple state duration models.

We apply this model to the study of the progression of diabetic neuropa-
thy, which are serious complications of the lower extremities associated with
diabetes. Diabetic neuropathy can progress through several stages of increas-
ing severity. If untreated, it may lead to an amputation of a toe, a foot, or
part of a leg or even death. Given limitations of randomized controlled trials,
including the high cost of following-up individuals over a lengthy time span,
since complications of diabetes often develop slowly, econometric models that
allow measurement of the effectiveness of these treatments are crucial to better
treating the disease.

An important feature of our model is that it allows us to distinguish true

effects of earlier treatment of a disease on outcomes from the spurious relation-

8These marginal effects are based on 10,000 simulations.
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ship between treatments and disease outcomes by merely diagnosing the disease
earlier. Diabetes is not the only disease where it is crucial to separate these
effects. This problem is called “lead bias” in the medical literature and it is
widely recognized as clouding the true effects of screening tests on delaying the
progression of different cancers.

Our results show that duration dependence is positive for every stage of
diabetes. The longer an individual has the disease the more likely s/he is to
transition to a more severe stage or leave the sample because of death or am-
putation. However, our results also show that the longer a person has diabetes
without having being diagnosed (and treated) further increases the probabilities
of transitioning to a worse stage, death or amputation. Thus, our results are
consistent with the hypothesis that earlier treatment of diabetes is effective in
delaying complications after controlling for the length of time the individual
have diabetes. We found that a person who visited the doctor at six month
intervals instead of once a year during her/his early years was able to delay the
onset of diabetic neuropathy, mortality, and amputation roughly by two weeks.
From a policy point of view, the value of delaying death by two weeks could
easily exceed the cost of having just one more doctor visit each year.

We acknowledge several limitations. First, we define treatment as visiting
the doctor (either general visit or podiatrist visit) but we do not know the exact
content of the visit. Thus, for example, since the claims data do not contain
information on prescribed drugs, we cannot assess whether a particular prescrip-
tion drug is effective. Nor do we know if the doctor advised the patient to stop
smoking or increase physical activity. Second, we do not measure individual
behaviors of individuals with diabetes, such as better control of blood glucose
through diet and exercise, which also may affect the progression of diabetes.

However, because we allow for unmeasured heterogeneity, not controlling for
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individual behaviors will not affect the consistency of our treatment variables.
These two caveats are limitations of our data since our model can be extended
to control for individual behaviors and different treatments. Third, our unmea-
sured heterogeneity is time invariant within each equation in the econometric
model. A potential extension is to interact the unmeasured heterogeneity term
with age to allow changing as the individual becomes older.

Overall, the approach is promising for evaluating causal effects with admin-
istrative data from a variety of contexts, ranging from medical to educational

to job training programs.
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8 Appendix

8.1 Likelihood Function

Conditional on eg; the likelihood function for an individual that did not progress

to DM by the last observation T is given by
LnD]\/I (T|M,€k) = Sur (DM = T) x Pr (DVT) x Pr (dT)

where

T
Sur(DM =T) = [ (1—hP" (XPM er))
t;l
Pr(DVEPM) = T[Pr(DV; (Z,ex))
t;4
Pr(a#”M) = T]Pr(d (Wi ex))

where Sur (DM = T) is the probability of an individual surviving to 7" without
DM, Pr (DVPM) is the probability of a sequence of doctor visits for an indi-
vidual who never have DM, and Pr (d%D M ) is the probability of a sequence of

discrete outcomes for an individual who never have DM.

The likelihood function for an individual that progressed to DM at tpys and

did not progressed to DNU, by T is given by

LDM (tDA[,T|M, ek) =Pr (DM = tDM)XSw“ (DNU() = T)XPI“ (DVT)XPI' (dT)
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where

tpam—1
Pr(DM; =tpy) = ht (XPYer) [ (1=nPY (XY er))
t=1
T
Sur(DNUy =T) = [] (1—h£NU“ (tDM,XtDNU“,ek))
t=tpm
tpm T
Pr (DVPM) = HPr(DVt(Zt,ek)) H Pr (DV; (tPM, Z,,e1.))
t=4 t=tpym+1
tpm T
Pr(d;’?M) = HPr(dt(Wt,ek)) H Pr(dt(tDM7Wt,ek))
t=4 t=tpyp+1

where Pr(DM; = tpas) is the probability of an individual contracting DM at
period tpys, Sur (DNUy =T) is the probability of an individual surviving to
T without DNU,, Pr (DVTPM) is the probability of a sequence of doctor visits
for an individual who contracted DM at time tpy; and never have DNU,, and
Pr (d? M) is the probability of a sequence of discrete outcomes for an individual
who contracted DM at time tpys and never had DNUj.

The likelihood function that progressed to DM at tpjy, progressed to DNUy

at tg, and did not progressed to DNU; by T is given by

LDNUO (tDM,tO,T|M,€]€) = Pr (DM = tDM) x Pr (DNUO = to)

xSur (DNUy, =T) x Pr (DVr) x Pr(dr)
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where

to—1
Pr(DNUy =ty) = hPNVo (tDM,XtDNU“,ek) I1 (1—h£NU0 (tDM,XtDNU",ek))
t=tpm
T
Sur(DNU, =T) = [] (1 — hPNU (tDM,tO,XtDNUl,ek))
t=to
tpm to T
Pr(DVPN) = T Pr(DVi(Zien)) [ Pr(DVi(tP Zier)) T] Pr(DVi (106, Zer))
t=4 t=tpnm+1 t=to+1
tpm to T
Pr(ap¥) = T Pr(aWoew) I Prid (¥, Wier) [T Prdi (247, 21, er))
t=4 t=tpm+1 t=to+1

where Pr (DNU, = tg) is the probability of an individual contracting DNUj at
period tg, Sur (DNU; = T) is the probability of an individual surviving to T
without DNU;, Pr (DVT{D N UO) is the probability of a sequence of doctor visits
for an individual who contracted DM at time tpa;, DNUy at time tg, and
never have DNU;, and Pr (d? N UO) is the probability of a sequence of discrete
outcomes for an individual who contracted DM at time tpy;, DNUp at time
to, and never have DNU;.

The likelihood function for an individual that progressed to DM at tpys,
progressed to DNUj at tgy, progressed to DNU; at t1, and did not progressed

to DNUs by T is given by

LDNU1 (tD]w,to,tl,T|M,€k) = Pr (DM = tDM) x Pr (DNUO = to) x Pr (DNUl = tl)

xSur (DNUy =T) x Pr(DVy) x Pr(dr)
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where
Pr (DNUl = tl)
Sur (DNUy, =T)

Pr (DVPNY)

Pr (le”VUl)

ty—1
htDNUl (tDM’to’XtDNU17ek> i—[ (1 -~ h?NUl (tDM7to’XtDNU1’ek))
t=to
T
H (1 _ htDNUg (tDM’to7tl’XIPNU2,ek>>
t=t1
tpm to
[[Pr(DVi (Zier)) ] Pr(DVi (tPM, Zi,ex))
t=4 t=tpnm+1
ty T
H Pr (DV; (1P, 1°, Z;, ex)) H Pr (DV; (tPM 10,11, Zy e1,))
t=to+1 t=t1+1
tpm to
[[PrdWien) [ Pr(de (8, Wi ex))
t=4 t=tpm—+1
t T
[T Pr(d (2"t Zeser)) T Pr(de (tPM 10,8, Zi,er))
t=to+1 t=t1+1

where Pr (DNU; = t;) is the probability of an individual contracting DNU; at

period t1, Sur (DNUy = T) is the probability of an individual surviving to T

without DNUs, Pr (DVTI? N Ul) is the probability of a sequence of doctor visits

for an individual who contracted DM at time tpy;, DNUy at time tg, DNU; at

time ¢1, and never have DNU,, and Pr (d?NUl) is the probability of a sequence

of discrete outcomes for an individual who contracted DM at time tpy;, DNU,

at time tg, DNU; at time t1, and never have DNU,.

Finally, the likelihood function for an individual that progressed to DM at

tpar, progressed to DNUj at tg, progressed to DNU; at t;, and progressed to

DNU, at ts is given by

Lpnu, (tDM,tmtl,tQ‘M,ek) = Pr(DM =tpy) x Pr (DNUO =ty) Xx Pr(DNU; = 1;)

x Pr(DNU, = t3) x Pr(DVy) x Pr (dr)
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where

to—1
Pr(DNUy =t,) = RPNV (tDM,t",tl,XtDNU2,ek) I1 (1—hENU1 (tDA'{,t",tl,XtDNUz,ek))
t=to
tpm to t1
Pr(DVPN) = [ Pr(DVi(Zne)) [ Pr(DVi (P Ziey) T] Pr(DVi (2,00, Zser))
t=4 t=tpnm—+1 t=to+1
to T
[I Pr(Dvi (¢ 108", Zi,ew)) [ Pr(DV: (7Y 10,8142, Z4,er))
t=t1+1 t=to+1
tpm to t1
PrQ#NUQ = JIPrdWee)) J[ Prd (™ Ween) [ Pr(de ("Y1, 20, er))
t=4 t=tpyp+1 t=to+1
to T
I Prde (tPM 0,81, Ziser)) [ Pr(de (£PM 20,8142, Ziser))
t=t1+1 t=to+1

where Pr (DNUs = ts) is the probability of an individual contracting DNU, at
period to, Pr (DVII? N UQ) is the probability of a sequence of doctor visits for an
individual who contracted DM at time tpy, DNUp at time tg, DNU; at time
t1, and never have DNU,, and Pr (d?NUl) is the probability of a sequence of
discrete outcomes for an individual who contracted DM at time tpy;, DNU

at time ty, DNU; at time t1, and DNU, at time to.

8.2 Unmeasured Heterogeneity

For each of the events we assume a discrete heterogeneity distribution which is

model as a polynomial

@) = E-1N k—1\"
Po \Ek = Po1 K—1 T Pog K —1

k= 1,.,Kand Jy< K—-1

where 0o = DM, DNUy, DNU;, DNUs, d, and DV; and K is the number of
heterogeneity points. We estimate Pr (ej) subject to the restrictions that each

probability is non-negative and Zle Pr(e;) = 1.
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TABLE 1: DISEASE PROGRESSION

STAGE PROGRESSION CONDITION ICD9 CODE
1 Healthy
2 Dlabet(eDsl\IX;ellltus Diabetes Mellitus 250 %
) Neuropathy 250.6 357.2 355.xx
Lower Extre_mﬂy Paresthesia 782.xx
3 Complication o
(DNU,) Pain in Feet 729.5
Diabetic Amyotrophy  [358.1
4 Lower Extremity Cellulites 681.1 682.6 682.7
Complication (DNU,) | Charcot Foot 0707.10
5 Lower Extremity Osteomyelitis 730.06 730.07 730.16 730.17 730.26 730.27
Complication (DNU,) Gangrene 250.7 785.4
TABLE 2: SUMMARY STATISTICS
PROGRESSION
Healthy DM DNU, DNU, DNU,
Number of Individuals Ever Observed™* 10,059 3,488 1,026 535 368
Duration in Years Before Exit** 6.71 7.29 7.73 8.06 8.12
(s.d.) (3.65) (6.26) (7.41) (7.88) (8.00)
Duration in Stage in Years Before Exit** 5.15 3.54 1.53 1.17 2.98
(s.d.) (3.84) (3.33) (1.60) (1.23) (2.96)
Death (%)* 4.97 8.20 8.28 6.92 21.20
Amputation (%)* 0.48 0.43 0.10 0.11 14.67
Arthritis (%)** 7.11 10.67 13.26 14.77 16.03
Quarters with a General Practitioner Visit (%)* 46.64 59.33 69.23 66.59 46.35
Quarters with a Podiatrist Visit (%)* 3.29 6.02 13.41 25.96 32.51
White (%)** 86.72 81.62 79.14 77.20 77.45
Male (%)** 45.58 49.00 46.78 49.72 50.54
Married (%)** 56.77 53.41 51.56 49.53 51.63
Education (%)** 48.53 43.18 41.81 39.63 40.22
Year Turned 65* 1997.0 1996.5 1996.5 1995.5 1995.0
(s.d.) (3.62) (3.57) (2.42) (3.28) (3.18)

* Based on the number of individuals that exit the data-set in the stage.
**Based on the number of individuals in the stage or greater.




TABLE 3: RESULTS WITH EIGHT POINTS HETEROGENEITY

Explanatory Variable DISEASE' OUTCOMES VISITS
DM DNU, DNU, DNU, DEATH AMPUTATION | GENERAL PODIATRIST
EARLY DIAGNOSIS
Time with undiagnosed DM 0.0194 -0.0114 -0.0082 0.0191 0.9664
(0.0065 ) (0.0091) (0.0105) (0.0057 ) (0.5753 )
Time with undiagnosed DNU, -0.2308* -0.0658 0.0863 -0.1101
(0.1224 ) (0.1160) (0.0860 ) (0.1921)
Time with undiagnosed DNU, -0.1285* -0.2847 -0.0737
(0.0743 ) (0.2576) (0.1408)
Time with undiagnosed DNU, 0.0042 -0.0019
(0.0074) (0.0100)
One Year General Visit -0.0241 -0.2071 0.6011* -0.0760 0.4068
(6 month lag) (0.1351) (0.2181) (0.2945 ) (0.1077) (0.3519)
One Year Podiatrist Visit -0.1543 -0.1418 -0.5703*
(6 month lag) (0.2056 ) (0.1226) (0.3087 )
OTHER VARIABLES?
Constant -4.2078***  -4.2985***  0.1761 0.5229 -8.9968***  -9.1675"** -1.7798***  -4.1576***
(0.1399 ) (0.3222 ) (0.5317) (0.6689 ) (0.2867 ) (0.7125 ) (0.0549 ) (0.1097 )
White -0.4345***  -0.0252 -0.2382* 0.0051 0.1053 0.1057 0.0134 0.3665***
(0.0637 ) (0.0854) (0.1314 ) (0.1744) (0.0916 ) (0.2501) (0.0352) (0.0762 )
Male 0.2956*** -0.0757 0.2075* -0.0085 0.2273*** 0.6646*** -0.2969***  -0.5002***
(0.0464 ) (0.0698) (0.1091 ) (0.1445) (0.0676 ) (0.1953 ) (0.0248 ) (0.0430 )
) -0.2531***  -0.0323 -0.1563 -0.0401 -1.2249**  -0.2773 -0.0624* 0.3627***
High School or Better
(0.0621 ) (0.0874) (0.1366 ) (0.1787) (0.1233 ) (0.2539) (0.0343 ) (0.0640 )
Married -0.1434***  0.0476 -0.0427 0.1595 0.0042 -0.5780** 0.0884*** -0.0371
(0.0517 ) (0.0769) (0.1243) (0.1624) (0.0900) (0.2185 ) (0.0279 ) (0.0461)
Time — Age -0.0484***  -0.0169 0.0111 -0.0779** 0.1145*** 0.0021 0.0076*** 0.0343***
(in quarters) (0.0074 ) (0.0171) (0.0271) (0.0352 ) (0.0147 ) (0.0389) (0.0019 ) (0.0039 )
Time Square 0.0009*** 0.0003 -0.0005 0.0013** -0.0010***  0.0002 0.0004*** -0.0001
(0.0001 ) (0.0003) (0.0004 ) (0.0006 ) (0.0002 ) (0.0006) (0.0000 ) (0.0001)
Arthritis 0.3189*** -0.0045 -0.1464 0.0189 -0.0597 0.4096 0.4557*** 0.4600***
(0.0928 ) (0.1259) (0.1889) (0.2354) (0.1202) (0.3172) (0.0403 ) (0.0555 )
Year that a person becomes 65 |0.4887*** 0.5299*** -1.0709***  -0.2655 -0.2438 0.4507 0.5912*** 0.0305
(1991=0.1,1992=0.2, ...) (0.0789 ) (0.1197 ) (0.1889 ) (0.2577) (0.1492) (0.3445) (0.0383 ) (0.0713)
EXCLUSION RESTRICTIONS
Weighted average distance to 0.2830***
general doctor (0.0622 )
Weighted average distance to 0.0357*** -0.1499***
podiatrist (0.0117 ) (0.0197 )
DURATION DEPENDENCE
0.5442*** -0.3731 0.3074*** -0.2666"**
DM
Contracted (0.1064 )  (0.3426) (0.0255 )  (0.0458 )
) ) -0.0268***  -0.0177 -0.0215 -0.0205***  -0.0028 0.0263***
Time with DM
(0.0084 ) (0.0116) (0.0143) (0.0064 ) (0.0142) (0.0018 )
Time with DM Square 0.0195*** 0.0209** 0.0185**
(0.0067 ) (0.0082 ) (0.0079 )
Contracted DNU, 1.0438*** -1.0494 0.6626*** 0.7235***
(0.1692 ) (1.0331) (0.0691 ) (0.0759 )
Time with DNU, -0.4490***  -0.0472 -0.0354***  0.0276 -0.0414***
(0.0257 ) (0.0381) (0.0140 ) (0.0202) (0.0069 )
Time with DNU_ Square 0.4406™ 0.0852
(0.0302 ) (0.0615)
Contracted DNU, -0.2403 2.7808* -0.1441 1.2582**
(0.2872) (1.1079 ) (0.1152) (0.1206 )
Time with DNU, -0.5516***  0.0411* -0.0140 -0.0630***
(0.0486 ) (0.0216 ) (0.0329) (0.0106 )
Time with DNU, Square 0.4274™*
(0.0688 )
Contracted DNU, 0.2298 2.6540** 0.4692** -0.0222
(0.2973) (0.5063 ) (01172 )  (0.1249)
Time with DNU, 0.0120 -0.1417** 0.0527***
(0.0209) (0.0397 ) (0.0104 )
Log Likelihood -198,314.52666

ek ek

significant at 0.01 level significant at 0.05 level  *significant at 0.1 level

1 Several Equations described in the text were estimated but are not reported. They include: two pre-age 65 hazards — DM and DNUO ; two post-age 65-before
first visit hazards — DM and DNUO ; the transition to DM post-age 65-post first visit and the first doctor visit.

2 We also control for high school or better missing, marital status missing, and general visit continuity missing.




TABLE 4: HETEROGENEITY FOR EIGHT POINTS OF SUPPORT

DISEASE' OUTCOMES
Pointof | o ability
Support DM DNU, DNU, DNU, DEATH AMPUTATION| GENERAL PODIATRIST
1 0.1387 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.2391 0.3364 01844 05650  -0.2256 0.7692 -0.1013 13772 -2.6573
3 0.1652 0.7474 00748  -0.5598  -0.3936 12527 0.0267 2.7762 -1.9580
4 0.1131 11216 05420  -02257  -04776 1.4766 0.2635 3.8712 0.4933
5 0.0262 1.3470 0.9817 01958  -0.4515 14672 0.4883 43363 3.0021
6 0.0219 13122 1.1583 04634  -0.2891 1.2505 0.5805 3.8457 4.2340
7 0.0747 0.9053 0.8362 0.3357 0.0358 0.8527 0.4195 2.0735 23144
8 0.2211 0.0147 02202 -0.4287 0.5495 0.2999 01154 -1.3060 -4.2712
Expected Value 0.4656 00944  -0.3076  -0.0670 0.7537 0.0413 12896 1.5010
Standard Deviation 0.4374 0.3885 0.3067 0.3649 0.4940 0.1960 1.8092 2.2745
TABLE 5: CORRELATION FOR EIGHT POINTS OF SUPPORT
DM DNU, DNU, DNU, DEATH AMPUTATION GENERAL PODIATRIST
DM 1.0000
DNUO 0.8412 1.0000
DNUA 0.3098 0.7708 1,0000
DNU2 -0.7281 -0.4327 0.0182 1.0000
DEATH 0.9220 05680  -0.0824  -0.7700 1.0000
AMPUTATION 0.8309 0.9998 0.7826  -0.4206 0.5524 1.0000
GENERAL 0.9397 0.6989 01660  -0.9186 0.9171 0.6869 1.0000
PODIATRIST 0.6829 0.9102 08424  -0.5214 0.3726 0.9134 0.6509 1.0000




APPENDIX B: RESULTS WITHOUT HETEROGENEITY

Explanatory Variable DISEASE' OUTCOMES VISITS
DM DNU, DNU, DNU, DEATH AMPUTATION| GENERAL PODIATRIST
EARLY DIAGNOSIS
0.0197**  -0.0882 0.0037 0.0151"*  0.6405
Ti ith undi d DM
1me wifh undiagnose (0.0049) (0.2614) (0.0087) (0.0047 ) (0.5147)
-0.0111 0.0509*  0.0154 -0.0208

Ti ith undi d DNU
me Wil tindlagnosed B (0.0205)  (0.0297 ) (0.0187) (0.0236)

-0.0918***  -0.0498*  0.0074

(0.0289 ) (0.0258 ) (0.0250)
-0.0069 0.0683**
(0.0273)  (0.0273 )

Time with undiagnosed DNU,

Time with undiagnosed DNU,

One Year General Visit 0.1024 -0.2307 0.4267 0.3901***  0.4530**
(6 month lag) (0.1169)  (0.1880)  (0.2640)  (0.0761 ) (0.1328 )
One Year Podiatrist Visit -0.1745 0.0327 -0.4019~
(6 month lag) (0.1805)  (0.0954) (0.2318 )
OTHER VARIABLES?
Constant 35167  -3.9299**  -0.4078 0.0780 -8.2824™*  -9.1748 0.3585"**  -2.8954***
(01166 ) (0.2762 ) (0.4294) (0.5908) (0.1642 ) (0.4414 ) (0.0258 ) (0.0511 )
White -0.4287**  -0.0451 -0.1848 -0.0274 0.1137 0.1593 0.1039***  0.2229***
(0.0621 ) (0.0794) (0.1243)  (0.1690) (0.0758)  (0.1490) (0.0141 )  (0.0287 )
Viale 0.2879**  -0.0657 0.2327**  0.0264 0.2366**  0.6500 -0.2290**  -0.3283***
(0.0406 ) (0.0612) (0.1016)  (0.1415)  (0.0505 ) (0.0833 ) (0.0095 )  (0.0186 )
I -0.2324™*  -0.0405 -0.1283 -0.0320 -1.1922"*  -0.3027 -0.0318**  0.3683***
(0.0596 ) (0.0811) (0.1274)  (0.1736) (0.0905 ) (0.1635) (0.0129)  (0.0274 )
Marriod -0.1581**  -0.0042 -0.0584 0.1227 -0.0243 -0.5489 0.0381***  -0.2091***
(0.0487 ) (0.0696) (0.1137)  (0.1610) (0.0669)  (0.1324 ) (0.0105 )  (0.0203 )
Time -0.0577**  -0.0228 0.0263 -0.0541 0.1033**  0.0013 -0.0219**  0.0134***
(in quarters) (0.0060 ) (0.0156) (0.0244)  (0.0335) (0.0088 ) (0.0311) (0.0016 )  (0.0026 )
Time Square 0.0010"**  0.0003 -0.0007* 0.0011* -0.0010"*  0.0002 0.0006***  -0.0001***
(0.0001 ) (0.0002) (0.0004)  (0.0006) (0.0001 ) (0.0005) (0.0000 )  (0.0000 )
Asthrits 0.3895*  0.0164 -0.1947 -0.0213 -0.0237 0.3689 0.5467***  0.4151***
(00912 ) (0.1244) (0.1870) (0.2262) (0.1063)  (0.2784) (0.0224 ) (0.0322 )
Year that a person becomes 65 |0-4581%*  0.4248™*  -1.0698"*  -0.2297 -0.3541"*  0.4112 0.3587***  -0.1811***

(1991=0.1,1992=02, ...)  |(0.0786 ) (0.1149 ) (0.1767 ) (0.2484)  (0.0949 ) (0.1324 ) (0.0165 ) (0.0339 )

EXCLUSION RESTRICTIONS

Weighted average distance to -0.2832"**
general doctor (0.0355 )
Weighted average distance to -0.0402***  -0.3426**
podiatrist (0.0058 ) (0.0140 )
DURATION DEPENDENCE
0.6771*** -0.0547 0.5841*** -0.4809**
Contracted DM
ontracte (0.0776 )  (0.1803) (0.0119 )  (0.0270 )
) ) -0.0128* -0.0072 -0.0196 -0.0211***  -0.0050 0.0440***
Time with DM
(0.0068 ) (0.0100) (0.0133) (00058 ) (0.0151) (0.0009 )
0.0074* 0.0126** 0.0103
Ti ith DM S
mewt quare (0.0035 ) (0.0050 ) (0.0065)
Contracted DNU, 1.0706*** -0.9616* 0.8414*** 0.7622***
(01532 ) (04881 )  (0.0421 ) (0.0496 )
Time with DNU, -0.4545*** -0.0501 -0.0362***  0.0305* -0.0453***
(00222 ) (0.0316) (0.0135) (0.0177 ) (0.0042 )
Time with DNU_ Square 0.4491™ 0.0838
(0.0252 )  (0.0511)
Contracted DNU, -0.2534 2.7885*** -0.0755 1.1580**
(0.2672) (06153 )  (0.0827) (0.0829 )
Time with DNU, -0.5516***  0.0467** -0.0189 -0.0431**
(0.0486 ) (0.0196 ) (0.0227) (0.0076 )
Time with DNU, Square 0.4274™
(0.0688 )
Contracted DNU, 0.1367 2.6831*** 0.3272*** 0.0469
(0.2722) (03938 )  (0.0827 ) (0.0854)
Time with DNU, 0.0141 -0.1628*** 0.0602***
(0.0194)  (0.0251 ) (0.0073 )

Log Likelihood -231,522.278410

***significant at 0.01 level  ***significant at 0.05 level  *significant at 0.1 level

1 Several Equations described in the text were estimated but are not reported. They include: two pre-age 65 hazards — DM and DNUO ; two post-age 65-before
first visit hazards — DM and DNUO ; the transition to DM post-age 65-post first visit and the first doctor visit.

2 We also control for high school or better missing, marital status missing, and general visit continuity missing.




