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Abstract

This paper proposes a new estimation method for regression discontinuity models, allowing for es-
timation of a treatment effect beyond the jump point (with additional assumptions). The proposed
procedure consistently estimates the treatment effect function, as well as the average outcome in the
absence of treatment. The treatment effect estimator is root-N consistent. We apply the method
to an important question in health economics—what is the effect of having Medicare insurance on
admissions and health care costs after age 657 Our preferred models shows an increase in both

admissions and costs after age 65 due to Medicare.

KEYWORDS: Regression discountiuity; Medicare; mortality; health expenditures.



1 Introduction

Regression discontinuity (RD) has recently been suggested as a framework for evaluating treatment
programs in a quasi-experimental design. The key assumption is that the probability of treatment is a
discontinuous function of a continuous variable. Small changes in the value of this continuous variable
therefore produce a large jump in the probability of treatment, thus providing identification of the
treatment effect. In many cases this provides a powerful statistical tool to identify the treatment
effect of interest. However, standard RD says nothing about the treatment effect for any other value
of the continuous variable away from the discontinuity. For many treatments, however, the effect of
the treatment may continue to change over time. The policy interest is in estimating the treatment
effect over an extended range of the identifying continuous variable.

Our new approach extends regression discontinuity to allow for estimated effects beyond the
jump point. Our approach is easy to estimate because it only requires running a series of least
squares regressions. It is flexible, being semi-parametric, and therefore consistently estimates the
parameters for a variety of underlying functions. We also explain the limitations and underlying
assumptions of this approach. Therefore, an important part of his paper is not only showing how
to extend regression discontinuity beyond the jump point, but also in understanding the limitations
inherent in the assumptions necessary to estimate the model.

We apply the methods to data on near-elderly who then become eligible for Medicare. We follow
them for several years after age 65 so that we can estimate the effects of insurance on mortality and
health care expenditures beyond the jump point. Our preferred model shows a modest improvement
in mortality at age 65, but, surprisingly, a worse effect over time such that the net effect after 5 years
(age 70) is about zero. Our results are not sensitive to the identifying assumptions.

We start with the basic regression discontinuity model and then build upon it by allowing the
treatment effect to vary over time beyond the jump point. We next lay out the assumptions needed
to identify such an effect. The following section explains how to estimate the parameters of the model
for either a sharp or fuzzy design. We also discuss mispecification bias. The last part of the paper
implements the model to estimate the effect of having Medicare health insurance on admissions and

on health care expenditures after age 65.

2 Model

We formulate the model by imposing restrictions on the following dummy variable equation (see Ai
(2008)):



where ¢ indexes individual, y; denotes the observed outcome, x; denotes the observed treatment
status: x; = 1 if treatment is received and z; = 0 if treatment is not received, «; denotes the
outcome if treatment is not received, and «a; + 3, denotes the outcome if treatment is received
(so that [, is the treatment effect). The variables («;, 3;,x;) are often related to some underlying
variables z; (which could be more than one variables) through the probability of receiving treatment
p(2) = E{x;|z; = z}, the average baseline effect a(z) = E{w;|z; = 2}, and the average treatment
effect 5(z) = E{B,;|z; = z}. The key restriction is that the probability of receiving treatment, p(z),
is a discontinuous function. Specifically, for some exclusive decomposition Z = Z_U Z, there exists

some zg on the boundary of both subsets such that

lim p(z) = limp(z7(t)) for some path 2*(t) € Z, for t > 0 and 27 (0) = 2o,

2=z t—=0
lim p(z) = %ir%p(z_(t)) for some path z (t) € Z_fort > 0 and z_(0) = 2.
2—2, -

Discontinuity means that

lim p(z) # lim p(2)
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holds. In economic applications, the subset Z, defines eligibility criterion for the treatment program
with 2y as the minimum criterion and Z_ consists of individuals who do not meet the minimum
criterion. Since ineligible individuals are not allowed to participate in the program, we have p(z) = 0
for all z € Z_. Thus, the discontinuity restriction is satisfied if there is a nontrivial probability of
receiving treatment for any eligible individual: p(z) > 0 for any z € Z,. It is worth noting that
the eligibility criterion Z,, though determined by a single underlying variable in most economic
applications, may depend on several underlying variables. For instance, a perspective student’s
eligibility for a need-based scholarship requires her SAT score to be above certain threshold and her
family income is below certain level. If eligibility is determined by more than one variable, then z; is
not ungiue. There may exist other points at which p(z) is discontinuous. The proposed approach in
this paper applies to any discontinuity point so we should treat z; as a generic discontinuity point.

Under the conditional mean independence condition:
E{Bixi|lzi = 2} = E{B;|zi = 2} E{wi|2 = 2} = B(z) * p(2)

and the condition that «(z) and f(z) are both continuous at z = 2y, Hahn, Todd, and Van der



Klaauw (2001) show that the coefficient 3(z) is identified as

lim__,_+ Elyi|zi = 2z} — lim__,_- E{yi|zi = 2}

lim, .+ p(z) — lim,_, - p(2)

5(20) =

They then proceed to propose an estimator for 3(zp) by replacing the pathwise limits with consistent
nonparametric estimates. Porter (2003) derives the asympptotic distribution of this and other similar
estimators. Using the same proof as in Hahn, Todd, and Van der Klaauw (2001), if there exist other
discontinuity points, we can show that the values of 3(z) at those discontinuity points are also
identified.

The attraction of Hahn’s et. al. procedure is that it is quite simple to compute and has desirable
asymptotic properties. The limitation of their procedure is that it says nothing about the treatment
effect on non-threshold eligible individuals. It is possible that the threshold individuals receive no
effect: (z9) = 0 but other eligible individuals receive positive effect: [(z) > 0 for z € Z,. It
is also possible that the threshold individuals receive negative effect: [(z9) < 0 but well qualified
individuals receive positive effect: 5(z) > 0 for large z € Z,, or that 5(z) > 0 and (z) < 0 for large
z € Z,. Thus, to evaluate the effectiveness of the treatment program, it is important to estimate
the whole function (z), not just 5(zp). Unfortunately, under Hahn’s et. al. conditions, §(zp) is the
only parameter that is identified. The identification difficulty arises from the fact that there are no
individuals with the same underlying variables 2z in both the ineligible and eligible group and that
the eligible individuals alone cannot distinguish the treatment effect 5(z) from the baseline effect
a(z).

Clearly, to identify the treatment effect function, some restrictions must be imposed on either the
baseline effect «(z) or the treatment effect 5(z) or both. Since the treatment effect function is the
focus of most empirical studies, it is natural to impose restrictions on the treatment effect function
but leave the baseline effect function a(z) unspecified. It is worth noting that any parameterization
of 5(z) such as h(z, ) is not necessarily identified without some restrictions on «(z). This follows

because we can always write
h(z,00) + a(z) = h(z,0) + (a(z) + h(z,00) — h(z,0)) = h(z,0) + a(z), z € Z;

for any 6. With restriction that «(z) is continuous at z = 2z, we can identify h(zo,y) but not 0y if
0, is not univariate.

Some other form of restriction must be imposed to identify 5(z). We now show that the following



functional form restriction on [(z):

" B(z)
o™

= 0 holds over z € Z, almost everywhere, (2)

where m is some known integer (e.g., m = 2) and z = (v,w’)’ with v a continuous scalar, is enough
to identify 3(z) and a(z). To see this, suppose that 3(z) and a(z) have up to m'* derivatives with
respect to v almost everywhere. Consider the sharp design © = 1{z € Z,}. Condition (2) allows us

to eliminate the treatment effect 5(z) by differentiation:

O"E{yi|lzi = 2} 0"a(z)
oum - Oum

over z € Z almost everywhere.

Since we can compute F{y;|z; = z} for almost all z from observed data, we can compute the derivative

h(z) = 82;—0;(13) almost everywhere. Notice that condition (2) implies
B(z) = b(w)'t’ (v),

for some J x 1 vector of known functions ¢/(v) satisfying

d™t’ (v)

= (0 almost everywhere,
dvm

and b(w) is a vector of unknown functions of the other underlying variables w. Examples of the

known functions t/(v) include power functions:

with vy as the known threshold, the step functions (e.g., m = 1):
t'(v) = (1,1{e; < v < e}, ..., l{es <v})
for some known ey, e, ..., €7, and the piecewise linear functions (e.g., m = 2):
t'(v) = (1, ey < v < eg}, ..., ey <v}) @ (1,0).

In most applications, it is preferrable to specify ¢/(v) as low order spline basis functions. The
component b(w) is either parameterized (such as linear form) or left unspecified. We will discuss

both cases. But for demonstration purpose, we will use the simplest case: z = v, t/(v) = 1 and



b(w) = 0y as example.

Compute the indefinite integration of h(z) with respect to v for m times, we obtain

az) = / (/ : -/h(v,w)dv : ) dv + c(w)'p’ (v)
+c(w)’p

= 9(2) ’(v)

for almost all z, where c(w) is a vector of unknown functions and ¢(z) is the known part of the
indefinite integration. This means that a(z) is identified if ¢(w) is identified. Let W denote the
support of w and let V denote the support of v. Suppose that Z, = {v € V,v > v} x W and
Z_={v eV, v <wvy} x W. Then, c(w) is identified by ineligible individuals as ¢(w) solves

min £ { (3 — () = c(w)'p” () s = w,; = 0}.

After computing «(z) = g(z) + c(w)'p’ (v), b(w) is identified by eligible individuals:

rg(i)nE {yi — a(z) — b(w;)'t” (v))*|wi = w,x; = 1},

provided that

E{t’(v;)t’(v;)'|w; = w, z; = 1} is nonsingular for almost all w.
We summarize these results in the following assumption and lemma.

Assumption 1. (i) The observations {(y;,z;, z;),i = 1,2,..., N} are identically distributed; (ii) the

following conditional independence condition

E{Bxi|zi = 2z} = E{B,;|zi = 2} E{xi|z; = z} = B(2) * p(2)

holds for all z; (i) for some known basis functions t’(v), 8(z) = b(w)'t’ (v); (iv) for some known

integer m, t’/(v) and a(z) have up to m'™ derivatives with respect to v almost everywhere and

d™t’ (v)
dv™

= 0 holds almost everywhere;
(v) 2. ={veV,o>v} xWand Z_ ={v eV, v <v} x W; (vi)

E{t’ (v)t! (v;) |w; = w,x; = 1}



is nonsingular for every w; (vii) x = 1{v > vy} and p(z) = z.

Lemma 1. For the sharp design, Assumption 1 identifies a(z) for z € Z and B(z) = b(w)'t?(v) for
A Z+.

Before we turn to the case of fuzzy design, we illustrate the identification through the simplest
example: z = v, t/(v) = 1 and b(w) = . In this example, we have
dE{ylv,z = 0} _ dE{y|v,z =1}

h(v) = o for v < v and h(v) = o for v > wy,

alv) = /h(v)dv +c=g(v)+c.

The unknown constant ¢ solves

min E { (y; — g(v;) — ¢)*|z; = 0},
which yields

c=FE{y; — g(v;)|z; = 0}.

The treatment effect solves

1 F— L) — — 2 . =

malnE {yZ g(v;) — c— 0)°|x; 1} ,

which yields

0o = E{y; — g(v;) — ¢)|z; = 1}.

It is clear from the above expression that we use the whole treatment group, not just the threshold
individuals, to estimate the average treatment effect. Thus, the proposed procedure yields a root-N
consistent estimator for the average treatment effect. The proposed procedure is criticized, however,
for being multistep (e.g., step I eliminates the treatment effect through differentiation; step II recovers
the baseline effect from the ineligible group; step I1I estimates the treatment effect from eligible group)
and not better than Porter’s (2003) dummy variable approach. Again, in our simplest example,

Porter’s dummy variable approach is the model
y; = a(v;) + xifg +u; i = 1,2, .. N.
Applying Robinson’s partialling out procedure, we obtain

vi — E{yilvi} = (xv; — E{xi|vi}) 0o + w.

6



The problem here is that x; — E{x;|v;} is identically zero for all v;. Porter suggests using the

approximation z; — E{z;|v;} and estimate the treatment effect by

ZN: (Iz - E{levz}) Yi
Z <xz - E{xl|vz}>2

=1

This estimator appears using all observations, not just those near threshold. However, looking deeper,
we find this estimator is no better than Hahn’s estimator which use observations near threshold. The
reason is that the approximation error x; — E{xzm}, though not identically zero, converges to zero
at differential rate. The approximation error converges to zero for all v outside a neighborhood of
vp faster than for v in the neighborhood of vy. Since the slower rate terms dominate the faster
rate terms in both the numerator and denominator of Porter’s estimator, his estimator essentially
uses individuals near threshold. Moreover, because of the approximation error converges to zero at
rate slower than root-N, Porter’s estimator is not root-N consistent. We are able to achieve root-N
consistentcy because we exploit information on derivatives, not just the discontinuity, wheras Porter
(2003) does not.

We now turn to the fuzzy design. Under our assumption, we have F{z|z} = E{z|v}. So the
probability of receiving treatment is p(v) = E{x|v}. The difference between fuzzy and sharp design
is that p(v) is no longer an indicator function. Our approach is to transform the model so that the
transformed model is identical to the sharp design. Let p(v) denote any positive and continuously

differentiable probability function for all v and satisfying p(v) = p(v) for all v > vy. Define

(vi)

~ Yi ~
= = and a(z;) =
U= 5 (2)

= e

It is easy to show that
E{yilzi = 2} = a(z) + B(2)x

where T = 1{v > v} is the eligibility status variable. If we treat any eligible individuals as "treated"
regardless of whether they actually receive the treatment or not, the above equation is the RD with
sharp design with Z as the "treatment status" variable, a(z) as the baseline effect, and y as the
observed effect. Applying Lemma 1 to this model, we identify &(z) and 8(z) = b(w)'t’(v). Since

p(v) is identified by regressing x on v, we obtain:

Lemma 2. For the fuzzy design, suppose that p(z) has up to m'™ derivatives with respect to v almost



everywhere. Assumption 1 identifies «(z) for z € Z and [(z) for z € Z,.

To illustrate, we again use the simplest case. The probability of receiving treatment can be

estimated parametrically by probit or logit regression of # on v and v? or nonparametrically. Denote

h(v) = dE{y@’f =0 for v < vy and h(v)

Gly) = / R(0)dv+ 7 = §(0) + &,

_ dE{ylv,z =1}
N dv

for v > vy,

¢ = E{y—g(vi)|z; = 0}.

The treatment effect is given by
0o = E{y; — g(vi) — ¢)|a; = 1}.

The paper is organized as follows: Section 2 details an estimation strategy, Section 3 discusses

the consequence if the treatment effect function is misspecified, and Section 4 concludes the paper.

3 Estimation

As we discussed above, the key step for estimating the treatment effect is to estimate the baseline
effect. To estimate the baseline effect, we need to estimate the conditional mean function. We will
use the sieve regression which is also applied by Gallant and Nychka (1987), Andrews (1994), Newey
(1997), Ai and Chen (2003), Ai (2005a,b) and others. Specifically, let s(w) = (s1(w), s2(w),- - -)
denote a sequence of known basis functions that can approximate any measurable function c(w)

arbitrarily well in the sense that there exist coefficients (7, my - -+) such that

= sup — 0 as Ky — 4o00.

z€EZ

)~ S sy,

Ko
c(w) =Y s5(w)m;

o0 7=1
Examples of the basis functions include power series and B-splines. Let t(v) = (t/(v)’, ty11(v), t112(v), -
-) denote the known basis functions that can approximate any measurable function of v arbitrar-
ily well under the norm |[-||,. Here we include ¢’(v) in the basis functions for a technical con-

venience. For some integers K;(> J) and K,, denote t%1(v) = (t/(v),t;:1(v),...,tx, (v)) and



sB2(w) = (s1(w), s2(w), - - -, sr, (w))". With K = K, K5, denote
¢ (2) = " (v) ® 5™ (w),

where ® is the Kronecker product. Then, for any measurable function f(z), there exist coefficients
7 such that
i

| f(z) — qK(z)/WKHOO = sgzp |f(2) — " (2)7Kk| = 0 as K1, K3 — +o00.

Moreover, if f(z) is continuously differentiable with respect to v, we will assume

These approximation results permit us to use the truncated series ¢*(z) and s2(w) to approximate

o (2)
dvm

Let {(yi, zi,x;),i = 1,2,- - -, N} denote a sample of observations. To simplify exposition and

Ff(z) ¢ (2)mk
ovs ov?

= O(K™") uniformly in K7, K5 and for s =0,1,...,m.

o0

the unknown functions, and use to approximate the derivative.

without loss of generality, we assume that the first N, individuals are ineligible for treatment while

the last N — N, individuals are eligible for treatment.

3.1 Sharp design

Regressing y; on ¢%(z;) for the ineligible group, we obtain the regression coefficients

Tre = (QeQc) QLY

where Q. = (¢%(21),¢"(22),- -, ¢%(2n.)) and Y, = (y1,- - -, yn.). The conditional mean function for

ineligible individuals is estimated by
E{y,|zZ =2} = ¢%(2) Tre = ¢ (2) Tike + @& (2) Taxe for v < vy,

where ¢i (2) = t7(v) ® s%2(w), and the derivative is estimated by

O"E {yilz = 2} 0mgK(2) Faxe
o™ o ovm

for v < . (3)



Regressing y; on ¢ (z;) for the eligible group, we obtain the regression coefficients

Tre = (QQ:) ' QY5

where Q; = (¢% (2n,41), ¢® (2n,42), - - ¢%(2n)) and Y; = (yn,41,- - -, yn). The conditional mean

function for eligible individuals is estimated by
E{yilzi = 2} = ¢" (2) T = @1 (2) Ture + @5 (2) Fart for v > vy,

and the derivative is estimated by

o"E {yilzi = 2} _ 8mq§(z)’%2;<t
o™ B dum

for v > wy. (4)

Notice that the derivative estimators in (3) and (4) should estimate the same function %"sz) but the

estimates ok, and Tax; are not necessarily identical. Our proposal is to fit a smoothed curve

=~ 0" gy (2)'Tax
h = =
(2) ovm ’
where 7o solves
N, ~ N ~
~ . - 8qu(Zi)/7T2Kc 8qu(Zi)/7TQ 8qu(2i)/7T2Kt aqu(Zi)/WQ
2K n71T12nZ( 28vm B 2(%”"‘ )2 + Z ( 28vm B 28127” )2'
i=1 i=Ne+1

The baseline effect is estimated by
a(z) = g5 (2) Tarc + ("2 (w) @ p” (v))'C
where ¢ is obtained by
regressing y; — qa () Tax on s%2(w;) @ p’ (v;),i = 1,2, ..., N..
After computing the baseline effect, we estimate the treatment effect function by

regressing y; — o (2:)'Tax — (™2 (w;) @ p” (v;))'C on t7(v;) @ s%2(w;)',i = N, +1,..., N.

10



we obtain the OLS estimates 7 and
B(z) = (/(v) @ "2 (w)) 7.

The consistency of a(z) and /B(Z) can be easily established using arguments similar to those of Newey
(1997) and Ai and Chen (2003).

To illusrate this step, we consider the case z = v and 3(z) = B, + f;v. So J = 2 and t/(v) =
(1,v). For some K; > 2, denote t%1(v) = (1,v,v? ...,051). Obtain the least squares estimates

TKe = (7TK0077TK017 ---,WKcKl) from

regressing y; on 1, v;, ...,viKl fori=1,2,...,N,.

Then R
OPE{yilvi = v}
ov?

Obtain the least squares estimates T = (T k10, T K11, - T KtK,) from

= Q%ch + 61}/7%](63 + ...+ Kl(Kl — 1)UK1_2§T\KCK1 for v < Vo-

regressing y; on 1,v;,...,v~* for i = N, +1,..., N.

- Ug

Then R
O*E {y;|lv; = v}
ov?

Obtain Tox from

= 25‘('\[(1/2 + 6’(151'\](153 + ...+ K1<K1 - 1)UK1725T\K15K1 for v Z Vo.

82E {yz|vz = U}
ov?

regressing on 2,6v;, ..., Ky (K; — 1o/ 2 fori =1,..., N.

Then we estimate the baseline effect by
av) =c +cw + (V2 .., v T,
where ¢y, ¢; are obtained by
regressing y; — (v7, ..., 07 )Tag on 1,v; for i = 1,2, ..., N...
After computing the baseline effect, we estimate the treatment effect function by

regressing y; — (v2, ..., v} ) Far — (1,v;)¢ on 1,v;,4 = N. +1,..., N.

11



we obtain the OLS estimates 7 and

3.2 Fuzzy design

For the fuzzy design, we need to estimate the probability of receiving treatment. A simplest approach

is to fit a probit model by

Ky

probit regression of x; on 1,v;,...,v;" " for z; = 1.

Denote the fitted values by
P, =®((1,v;,...,058),i=1,2,.., N

where § is probit estimate. Denote
Yi =

The treatment effect function can be estimated by applying the procedure of sharp design with y;
replaced by ;.

4  Misspecification Bias

The proposed procedure produces consistent estimates under the functional form restriction (2).
Since the true treatment effect function is unknown, it is a legitimate concern that the proposed
procedure may produce biased estimates if (2) is not satisfied. In the case that the functional form
restriction (2) is false, what does the proposed procedure actually estimate? To investigate this
question, consider the sharp design. Notice that differentiation now yields

O"E{yi|zi = 2} 0™ a(z)

= over z € Z_ almost everywhere,

oum oum
0 E{gzm . = 0 [a(g) + ) over z € Z, almost everywhere.
(U [

12



The smoothing step in the proposed procedure, in this case, finds an approximation hx (2) = ¢% (2)'7x
" E{yi|zi=2}
to ———

8,0 m

in the sense that

om om
sup alz) _ hi(z)| — 0 and sup 2(z) +8()] hi(z)| — 0.
ez | Ovm 2€Z4 o™
Suppose that % is bounded everywhere except for the threshold (i.e. v = vg). Then hx(z)

is bounded for all z and all K. Let b*(w)'t’ (v) denote the least squares projection of 3(z) and satisfy
b* (w)'t’ (vo) = B(vg, w) for all w, (5)
in the sense that
b*(w) : argmin E{[3(2) — b(w)'t” (v)]*|w}

subject to the constraint (5). Write
B(z) = b*(w)'t’ (v) + rs(2).
Let gk (z) denote the integration of hg(z) and let cx(w) solve
r£1(1)nE {(yz — gr (%) — C(wi),tj(vz‘))Qlwi =W, r; = 0} .

Then ax(z) = gi(z) + cx(w)'t’ (v) is an approximation to f;(z) = a(z) over z € Z_ and f;(z) =
a(z) +r(z) over z € Z,. It is worth pointing out that constraint (5) is critical for this approxi-
mation result. If this constraint is not satisfied, f;(z) is discontinuous at the threshold. From the
approximation theory, a discontinuous function cannot be approximated by a sequence of functions
with bounded derivatives. However, the derivative of ak(z) is hx(z) which is bounded for all z and
K.

Let by (w) solve:

min B {y; = axe() = bic(w)t! )y = w,, = 1}

Then, by (w) is an approximation to b*(w). Hence the estimator g(z) is a consistent estimator of
B (z) = b"(w)'t' (v).

There are two implications of this approximation result. First, it implies that the average treat-

13



ment effect for threshold individuals can be estimated consistently by

N

UO) wz
i=Nc+

regardless of whether (2) holds. Moreover, because the average treatment effect estimator uses all
eligible individuals, it is root-N consistent. The root-N consistency is achieved by exploiting the
derivative information which is not utilized by the existing estimators. The second implication is
that the approximation error can be small for large J if ¢/(v) is part of some approximating basis
functions. Thus, for the non-threshold individuals, B(z) is an estimate for §(z) with small bias if we

choose J large enough.

5 Empirical example

5.1 Motivation

Two of the fundamental questions in health economics are how does health insurance affect health
and how does it affect health care expenditures? These questions are important to answer because
of the large amounts of money spent on both public and private health insurance. For example,
during the debates about how best to implement the Patient Protection and Affordable Care Act
(ACA), proponents of the ACA argued that extending health insurance would improve population
health. Opponents, however, raised the expected higher costs. The RAND Health Insurance Ex-
periment found the expected negative relationship between out-of-pocket payments and health care
expenditures in a non-elderly population, but no substantial effect on health (Manning et al., 1987).
Other studies that have found health effects of insurance have not convincingly controlled for the
endogeneity of insurance.

A number of recent papers have returned to these questions by examing the experience of people
who become eligible for Medicare at age 65. This population is interesting because any effects of
insurance on morbidity and mortality are expected to be larger than for the non-elderly population
and because Medicare is such a large and influential purchaser of health care. In recent papers, Card,
Dobkin, and Maestas (2008, 2009) use a regression discontinuity approach to estimate the narrow
effect of Medicare insurance on mortality following emergency admissions for certain conditions at the
age where most people become eligible—age 65. They find a statistically-significant effect of nearly a
1-percentage point drop in the seven-day mortality, equivalent to a 20% reduction. Furthermore, the

results cannot be explained by those who had previously been uninsured; Medicare seems to have an

14



effect even on those previously insured.

Card, Dobkin, and Maestas (2008, 2009) find small but statistically-significant effects of having
Medicare insurance on mortality for a specific group of people: those admitted to the emergency room
for severe conditions. Because they used regression discontinuity, with the probability of insurance
jumping right at age 65, their estimated effect is defined right at the threshold where eligibility
changes. Their estimated effects are precise, immediate, and narrowly defined.

Another view, though, of health insurance is that it has a larger value beyond the immediate
effect right at age 65. Having health insurance may improve access to care, provide better continuity
of care, and increase prevention. None of these effects are immediate, such as estimated by Card,
Dobkin, and Maestas. Instead, they would be cumulative over time. Improving access to care, for
example, affects health care use and outcomes in the current period but also in the future. This
dynamic view of the importance of health insurance has been shown to be important in assessing
the effects of prescription drug insurance (Yang, Gilleskie, Norton, 2009). A regression discontinuity
design cannot reveal whether health insurance has such longer-term effects. Traditional regression
discontinuity can only estimate the immediate effect of health insurance right at the discontinuity
(Hahn, Todd, Van der Klaauw, 2000). This is why it is important to find models that allow for
estimation of treatment effects beyond the jump point.

Polsky and colleagues (2009) take a different approach to answering a similar question about
the health effects of Medicare insurance. They focus on those who are not insured just before age
65. They estimate Markov transition models to estimate the transition probabilities between several
states of health, including death, and compare those insured before age 65 to those uninsured,
and what happens after becoming Medicare eligible. They find no statistically significant effects of
Medicare on health trajectories, including the probability of death by age 73.

5.2 Simple example

Consider a simple specific example, based on Medicare eligibility at age 65. Age is the continuous
variable z. To focus on the mechanics of estimating the model, assume that Medicare has both a
discrete effect on expenditures at age 65 and a linear effect over time. Therefore, 5(z) is a linear
function of z, and m = 2. The reason that m = 2 is because m is one more than the order of
the treatment function. So for linear treatment, m = 2, and for quadratic treatment, m = 3.
Furthermore, assume that «(z) is a cubic equation. Under these assumptions, here is the recipe for
applying our regression discontinuity method. We ignore other covariates in this example; they can

easily be added.
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. Regress y on (age — 65), (age — 65)°, and (age — 65)” for the sample of those under age 65.

y = ag + ay (age — 65) + ay (age — 65)° + a3 (age — 65)°

. Generate a new variable 9s4.-1, equal to the second derivative of the estimated y with respect to
(age — 65) for the sample of those under age 65. The reason to estimate the second derivative

is that we assumed that m = 2.

Yoderiv = 202 + 6Gi3|age < 65

. Regress y on (age — 65), (age — 65)°, and (age — 65)” for the sample of those at least age 65.
y = By + B (age — 65) + B, (age — 65)° + 5 (age — 65)°

. Generate a new variable ys4.;, equal to the second derivative of the estimated y with respect

to (age — 65) for the sample of those at least age 65.

Yaderiv = 285 + 63;5]age > 65
. Regress yageriv 00 just (age — 65) for the full sample to estimate a constant term and a slope.
Yoderiv = 70 + ,Yl (age - 65)

. Generate a new variable equal to y minus the double indefinite integral of ¥s4eri, With respect

to age for the full sample.

Ynew = Y — % (age — 65)2 + % (age — 65)3

. Regress ey on (age — 65) for the sample of those under age 65 to estimate the two terms not
defined by the double indefinite integral.

Ynew = 00 + 01 (age — 65) |age < 65

. Generate a new variable vy, that is the difference between y and the double integral of ysgeri0
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with respect to age, including information from the previous two regressions for the full sample.

~ ~

— 70 (age — 65)% + % (age — 65)°

ya:y—sg—gl(age—%) 5

9. Run a regression of y, on (age — 65) for the sample at least age 65.

Yo = 0o + 01 (age — 65)

It is important to compare our method with just running a simple regression with least squares
regression on a cubic equation of age. The difference is the convergence rate (not efficiency; of course
the estimator with faster convergence rate is more accurate). If both the treatment effect and the
base outcome are correctly parameterized, then it is a parametric problem. If the base outcome is
incorrectly parameterized—as is likely—then our estimator converges at square root of sample size,
while the simple regression method converges at much slower rate.

Before running any models, it is important to check the specification of the polynomial for age,
the variable of interest, for the baseline effect (the polynomial in a/(z)). One way to do that is to
run a cross-validation. In ordinary least squares, including more polynomials always improves the R-
squared, but can lead to over-fitting. If there is not a strong theoretical reason to choose a particular
specification, we recommend running a cross-validation to check the specification in the following
way. Start with a quadratic function in age. Run N models, each time leaving out one observation.
Compute the fitted value and then the prediction error for the dropped observation. Sum the squared
prediction errors over all observations. Do this again with a cubic function. Continue until adding
more polynomials does not improve the fit as measured by the sum of squared prediction errors. Use

the model specification that minimizes the sum of squared prediction errors.

6 Data

We used hospital discharge data from the Nationwide Inpatient Sample (NIS) from 2001 through
2003. The NIS is part of the Healthcare Cost and Utilization Project (HCUP), a federal-state-
industry partnership sponsored by the Agency for Healthcare Research and Quality. The NIS pro-
vides key data elements for this study. The NIS has a large sample with information about admissions
and health care expenditures across many states and several years. It is the largest all-payer inpatient
care database in the United States—with data from approximately 8 million hospital stays from up

38 states each year (the participant states vary from year to year). The NIS represents approximately
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a 20% stratified sample of U.S. community hospitals. Each NIS record contains information regard-
ing the primary and secondary diagnoses, procedures, the admission and discharge status, patient
demographics, length of stay, total charge and expected payment source. Hospital characteristics
(ownership, size, teaching status, etc) are also recorded.

The unit of analysis is at the state-year-age level. Information from the NIS is aggregated by
state and year for each age between ages 45 and 85. In our final sample for analysis, there are 3,680
observations from 35 states; this is less than 4,305 = (41 ages)x (35 states)x (3 years) because of
missing data for certain states in some years. There are 1,120 observations in 2001, 1,200 in 2002,
and 1,360 in 2003, States included in our analysis are: AZ, CA, CO, CT, FL, GA, HI, IL, IN, IA,
KS, KY, ME, MD, MA, MI, MN, MO, NV, NH, NJ, NY, NC, OH, OR, RI, SC, SD, TN, UT, VT,
VA, WA, WV, and WI.

The two dependent variables of admissions and hospital costs are constructed as per capita rates,
where the per capita rates are specific to the state and year and age group.. By merging the NIS
sample from HCUP with Census data at state level, we calculated the admission rate per 10,000
people and hospital care cost per 1,000 capita as the dependent variables. Because the NIS does not
provide actual dollar values of the cost as paid by the payers, we used the cost-to-charge ratio file
provided by HCUP to convent the inpatient total charges to total cost. Such ratio is based on the
cost-to-charge ratio at hospital level. The cost is measured in 2003 dollars, based on the Consumer
Price Index of medical goods published by Bureau of Labor Statistics.

We control for state-level variables that may affect supply and demand by merging the NIS with
variables from the Area Resource Files. These variables include the average income per capita,
unemployment rate, and high school graduation rate as state-level factors that affect demand. We
also included number of hospital beds per 1,000 capita and the number of physicians per 1,000 capita

as state-level factors that affect supply. The summary statistics are presented in Table 1.

7 Results

Initial regression results show that admissions increase with age at an increasing rate both before and
after age 65, but the magnitidudes indicate that the marginal effect of age is even larger after age 65..
Admissions also decline with income and education, consistent with health being positively related to
income and education. Perhaps surprisingly, the unemplyment rate—which is usually related to the
level of private health insurance among non-elderly adults—does not affect admissions. In terms of
supply-side variables, admissions are higher in areas with more beds per capita. Doctors per capita

are unrelated to admissions. The signs and significance of the results are similar for those at least
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age 65 and for those under age 65, however the magnitudes appear generally large for the elderly.

For costs, the linear effect of age is positive and significant. The quadratic term is positive
and significant only for those under age 65; for the elderly the coefficient on the quadratic term is
negative and insignificant. For costs, income (positive) and education (negative) now have opposite
signs. More dotors per capita decrease costs while more beds increase costs. Again, the results are
generally similar in sign but not magnitude for the two age groups.

We next turn out attention to the main results from the newly proposed model.

The cross validation shows that the best fitting model for admissions has a squared term for age
(see Table 5). In constrast, a fourth-order polynomial fits best for costs (although cubic is nearly
as good). Therefore, we focus on models in which the baseline effect « (z) of age is squared for
admissions (model "21" in Table 4) and fourth-order for costs (models "41 and "42" in Table 4).

We ran five different versions of the model, with different specifications for age (see Table 4).
The model specifications are distinguished by two numbers, the first is the polynomial for age for
the baseline effect v (z) and the second is the polynomial in age for the treatement effect 5 (z). For
example, model "21" means that the baseline effect is quadratic and the treatment effect is linear.
Identification requires that the baseline effect have at least one more polynomial in age than the
treatment effect.

The results imply that the treatment effect of Medicare is positive on both admissions and costs
for individuals beyond age 65 (see Table 4). The coefficient on age in the "21" admissions model is
positive, indicating that admissions per capita increase with age due to Medicare beyond the trending
effect of age modeled prior to age 65. For costs, the coefficient on age in model "41" and both age
and age squared in model "42" again indicate that costs increase with age beyond the trending effect
of age. To get a sense of the magnitudes, we graphed the results for all five models. The preferred
models are graphed in bold lines. Age is on the x-axis and either admissions or costs are on the
y-axis. The results imply that Medicare has an effect that changes over time, in this case getting

stronger. As discussed before, this is not surprising due to the cumulative effects of access to care.

8 Conclusions

In this paper, we propose a new estimation method for regression discontinuity model under the
additional assumption that the treatment effect function satisfies some functional form restriction,
and the average outcome in the absence of treatment has higher order of continuous derivatives.
These additional assumptions allow us to remove the treatment effect through differentiation and to

use all observations, not just the few near the threshold, to estimate the model. Thus, our procedure
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yields better estimates than the existing procedures. We also discuss the consequence of misspecifying
the treatment effect function, and find that our estimators still provide useful information about the
treatment effect even if our parameterization is false.

Our estimation method could be applied to any empirical model where the researcher is interested
in the treatment effect not only at the jump point, but beyond. In health economics, this would
apply to most program evaluations. We are typically interested not only in the immediate effect but
most programs have long-run and cumulative effects. The full story may abe of far greater interest

than the simple story that traditional RD can tell.
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Table 1: Summary statistics of the NIS Sample by age and state: 2001-2003

Mean Std. Dev.

Dependent variables

Admission rate per 10,000 capita 285 190
Hospital cost per 1,000 capita $204,249  $136,265
Independent variables

Age 64.5 11.5
Unemployment rate 5,18 1.03
Income per capita $30,992 $4,455
High school graduation rate 71.3% 9.61%
# of MDs per 1,000 capita 2.61 0.62
# of Hospital beds per 1,000 capita 3.55 0.88
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Table 2: Results of initial regression for admissions per 10,000 capita, by age

Admissions If Age < 65 If Age > 65
Age 12524 ¥ 13.68 **
(0.829) (1.92)
Age? 2778 ** 0.3192 **
(0.0383) (0.0976)
Unemployment rate 1.86 -1.99
(1.18) (3.00)
Income per capita ~ —.000941 *  —0.00290 **
(0.000414)  (0.00105)
HS graduation rate —1.467 ** -3.081 **
(0.129) (0.328)
MDs per capita -2.37 3.47
(2.76) 7.03
Beds per capita 13.19 ** 36.93 **
(1.41) (3.58)
Constant 323.6 ** 432.5 **
(16.3) (41.1)
N 1,840 1,840
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Table 3: Results of initial regression for cost per 1,000 capita, by age

Hospital Costs If Age < 65 If Age > 65
Age 10,498 ** 13,600 **
(711) (1559)
Age? 2117 **  119.1
(32.9) (79.2)
Unemployment rate 231 —382
(1009) (2,431)
Income per capita  1.142 ** 3.811 **
(.355) (.855)
HS graduation rate —1,076 ** 2,214 **
(111) (266)
MDs per capita ~13,681 ** 19781 **
(2,367) (5,700)
Beds per capita 2,992 * 7,972 **
(1,207) (2,905)
Constant 253,863 ** 252,964 **
(13,976) (33,353)
N 1,840 1,840
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Table 4: Results of final model, for admissions and for cost

Model Admissions Cost
21 Age 1.118 * 3,432 **
(.540) (415)
Constant  11.40 10,511 *
(6.00) (4,610)
31 Age 1.118 * 3,432 **
(.540) (415)
Constant  6.00 1,103
(6.00) (4,610)
41 Age TA84 FF 4352 **
(.540) (415)
Constant  19.17 ** 16,872 **
(6.00) (4,611)
32 Age 1.04 1,888
(2.07) (1,589)
Age? A47 ** 376.6 **
(.105) (80.7)
Constant 17.81 * 10,311
(8.48) (6,514)
42 Age -2.97 2,767
(2.07) (1,589)
Age? 1.499 **  1,987.5 **
(.105) (80.7)
Constant  23.48 ** 22,507 **
(8.48) (6,514)
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Table 5: Cross Validation

Admissions  Hospital Cost
Age 43,537,696  2.389e+13
Age? 38,052,316 2.306e+13
Age® 38,071,676  2.287e+13
Age* 38,093,160 2.286e-+13
Age® 38,116,688  2.287e+13
Age® 38,140,280  2.288e+13
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