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Abstract  

Statistical methods have been developed for cost-effectiveness analyses (CEA) of cluster 

randomised trials (CRTs) where baseline covariates are balanced. However, CRTs may have 

systematic differences in individual and cluster-level covariates between the treatment groups. 

This paper presents three methods to adjust for imbalances in observed covariates: seemingly 

unrelated regression (SUR) with a robust standard error, a ‘two-stage’ bootstrap (TSB) approach 

combined with SUR, and multilevel models (MLMs). We consider the methods in a CEA of a 

CRT with covariate imbalance, unequal cluster sizes and a prognostic relationship that varied by 

treatment group. The cost-effectiveness results differed according to the approach for covariate 

adjustment. 

Our simulation study assessed the relative performance of methods for addressing systematic 

imbalance in baseline covariates. The simulation extended the case study and considered 

scenarios with: different levels of confounding, cluster size variation and few clusters. 

Performance was reported as bias, root mean squared error and confidence interval (CI) coverage 

of the incremental net benefit. Even with low levels of confounding, unadjusted methods were 

biased, but all adjusted methods were unbiased. MLMs performed well across all settings, and 

unlike the other methods, reported CI coverage close to nominal levels even when with few 

clusters of unequal sizes. 
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1. Introduction 

Econometric evaluation often uses observational data to estimate ‘average treatment effects’ 

(ATE). In non-randomised studies, baseline characteristics may be correlated with both treatment 

choice and the endpoints of interest, i.e. the distribution of potential confounders (both observed 

and unobserved) can be different across treatment groups. Several approaches such as regression, 

instrumental variables, matching and inverse probability weighting have been advocated for 

reducing selection bias in observational studies (Basu and Rathouz, 2005, Sekhon and Grieve, 

2011, Jones and Rice, 2011). In cost-effectiveness analyses (CEA), many studies use data from 

clinical trials where individual patients are randomised. Here, if the randomisation is properly 

conducted, systematic differences in baseline characteristics between the treatment groups can be 

avoided, and the resultant estimates will be unbiased (Imai et al., 2008, Senn, 1989). For CEA of 

clinical trials, regression approaches have been proposed for the purposes of improving precision 

or conducting pre-specified subgroup analyses, (Barber and Thompson, 2004, Briggs, 2006, 

Hoch et al., 2002, Manca et al., 2005, Nixon and Thompson, 2005, Willan and Briggs, 2006, 

Willan et al., 2004).  

For CEA of interventions that operate at a group rather than an individual-level (e.g. changing 

incentives for providers), or where there is a high risk of contamination amongst individuals 

within a geographical setting (e.g. alternative strategies for containing an infectious disease), a 

cluster randomised trial (CRT) may be preferred. Here the unit of randomisation is the cluster, 

for example the primary care physician, not the patient. The CRT can be designed to try and 

avoid selection bias, for example by concealing treatment allocation, and also recruiting 

individuals at the same time as cluster randomisation.  

A general concern with CRTs (Carter, 2010, Donner, 1998, Donner and Klar, 2000, Puffer et al., 

2005) is that studies tend to be unblinded, with individuals recruited after treatment allocation is 

known. CRTs with these flawed designs are prone to differences between the treatment groups in 

patient and cluster-level baseline characteristics that are systematic, rather than due simply to 

chance (Eldridge et al., 2008, Hahn et al., 2005, Puffer et al., 2003). For example, potential 
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participants with particular characteristics (e.g. older patients) may be less likely to enter one of 

the randomized groups once assignment is known. Hence, the CRT’s design can encourage 

systematic imbalances in baseline characteristics, which if associated with endpoints, can lead to 

bias. In a CRT with the flawed design described, a baseline cluster-level covariate such as 

provider volume, may be imbalanced at baseline and this may be correlated with cost due to 

economies (or diseconomies) of scale. Furthermore, a baseline covariate may have a prognostic 

relationship that differs by treatment group (Gelman and Pardoe, 2007, Liu and Gustafson, 

2008); this may occur if for example, the study protocol is less rigid for the control than the 

treatment group.  

Hence, for CEA of CRTs to provide unbiased estimates, analytical methods are required to adjust 

appropriately for systematic differences in observed baseline covariates. This raises the issue of 

which covariates to include and how best to undertake the adjustment (Austin et al., 2010). 

Methodological guidance emphasises that covariate adjustment should be limited to those 

variables anticipated to be strongly associated with the endpoints of interest (Altman, 2005, Imai 

et al., 2008). Consideration should also be given to non-linear terms and covariate by treatment 

interactions if these are anticipated to be important (Assmann et al., 2000, Gelman and Pardoe, 

2007). However, the choice of covariates for adjustment should not simply be according to 

whether or not there are statistically significant baseline differences between the treatment 

groups (Imai et al., 2008). 

In CEA of CRTs, little attention has been given to analytical methods (Gomes et al., 2011a). 

Recent work  presented methods that allow for clustering and the correlation between costs and 

outcomes: seemingly unrelated regressions (SUR) and generalised estimating equations (GEEs) 

both with a robust variance estimator, multilevel models (MLMs) and a two-stage non-

parametric bootstrap (TSB) (Gomes et al., 2011b). The study assumed that baseline covariates 

were balanced between the treatment groups. Indeed, the potential for selection bias seems to be 

generally ignored in CEA of CRTs. Our review (Gomes et al., 2011a) found that of 62 published 

CEA of CRTs, about 60% did not report an assessment of covariate balance, and of the 27 
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studies reporting baseline information, only 16 adjusted for any baseline imbalances. The 

remaining 11 studies justified reporting unadjusted results by the lack of any statistically 

significant baseline differences. 

The aim of this paper is to assess the relative performance of alternative methods for CEA of 

CRTs when there are systematic imbalances in individual and cluster-level baseline covariates. 

This paper considers alternative approaches for CEA of CRT in an extensive simulation study 

and an empirical application. We consider regression-based methods such as MLMs and SUR, 

and extend a non-parametric TSB to handle covariate adjustment. We do not consider GEEs as 

these performed poorly in studies with few clusters (Gomes et al., 2011b). We estimate ATE, as 

these are of prime interest for policy makers (Claxton, 1999, Imbens and Wooldridge, 2009, 

Jones and Rice, 2011). In the next section, we outline the methods under comparison. Section 3 

presents the motivating example. Sections 4 and 5 report the design and results of the simulation 

study. The last section discusses the findings and suggests areas for further research.  

  

2. Statistical methods for covariate adjustment in CEA of CRTs 

In CEA of CRTs, statistical methods are required that adjust for covariate imbalances while 

accounting for the clustering and the correlation between costs and health outcomes. We 

consider three methods: SUR with robust standard errors (SE), MLMs, and an approach that 

combines the TSB with SUR (TSB+SUR).  

We use the following notation: let cij and eij represent the costs and outcomes for the ith 

individual in the jth cluster. For simplicity the models and the simulation study are described for 

CEA with two alternative treatments but the models extend to evaluations with more than two 

randomised groups. Each method is illustrated assuming linear additive effects for covariates and 
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treatment (Nixon and Thompson, 2005, Willan and Briggs, 2006). For simplicity, we illustrate 

adjustment for one individual-level ( ijx ) and one cluster-level ( jz ) covariate. 

 Seemingly unrelated regressions (SUR) 

SUR consists of a system of regression equations with residuals that are allowed to be correlated 

(Greene, 2003, Wooldridge, 2010). The set of covariates can differ for each endpoint, and as in 

model (1), SUR can include individual ( ijx ) and cluster-level covariates ( jz ) 

 

where tj is the treatment indicator (tj =0 for control and 1 for treatment group). The incremental 

costs (
c

1 ) and outcomes (
e

1 ), can be estimated by ordinary least squares (OLS). SUR can also 

assume that the individual error terms (  ) follow a bivariate Normal distribution (BVN), with 

variances 
2
c  and 

2
e . The correlation between costs and outcomes, conditional on covariates, is 

recognised through the parameter  . Model (1) can incorporate interaction terms, for example, 

of treatment with a continuous individual-level covariate ( ijx ). The covariate 
ijx  can be centred 

on the mean so that 
c

1  and 
e

1  are the incremental costs and outcomes, at that covariate mean. 

The uncertainty estimates can account for clustering with robust standard errors (SE) (Greene, 

2003). However, a potential concern is that the asymptotic assumptions required for the robust 

variance estimation may not be satisfied in CRTs with few clusters, particularly when there are 

unequal numbers per cluster (Gomes et al., 2011b). 

Multilevel models (MLMs) 

MLMs can explicitly recognise clustering by incorporating the cluster-level random effects ( c
ju ,

e

ju ) while adjusting for cluster and individual-level covariates (Nixon and Thompson, 2005). For 
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example, an MLM that includes one individual-level covariate ( ijx ) and one cluster-level ( jz ) 

and can be described as: 

 

 

which as above can be extended to include treatment by covariate interactions. Model (2) 

acknowledges individual and cluster-level correlation between costs and outcomes, conditional 

on the covariates, through the parameters   and  . This particular MLM (2) assumes the error 

terms are normally distributed but alternative distributions such as a gamma distribution for costs 

could be chosen. A general concern with MLMs or SUR is whether estimates are unbiased and 

precise if the model is misspecified, by for example, assuming that the individual-level residuals 

are normally distributed when cost data are highly skewed.  

Two-stage bootstrap (TSB) 

We also considered a non-parametric TSB, which can accommodate clustering and the 

correlation between costs and outcomes, but avoids making distributional assumptions. We 

provide an overview below, and define the steps taken in the algorithm (Appendix 1) but for full 

details of the TSB approach readers are referred to (Davison and Hinkley, 1997). 

A simple TSB resamples clusters and then individuals within each resampled cluster (Davison 

and Hinkley, 1997). However, to provide an accurate estimation of the variance, Davison and 

Hinkley advocate a ‘shrinkage correction’. This procedure requires that shrunken cluster means 

and standardised individual residuals are calculated before any resampling. Bootstrap datasets 

are then constructed by combining resampled shrunken means with resampled individual-level 

residuals. The ATE of interest (for example the INB) can be taken as the mean of the INBs 

across the bootstrap replicates. Uncertainty can be reported by calculating bias-corrected and 
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accelerated 95% CIs (Nixon et al., 2010). This approach can provide unbiased estimates of the 

INB and good CI coverage, even with few clusters of unequal size, if baseline covariates are 

balanced (Gomes et al., 2011b). We used this approach for the TSB without covariate 

adjustment. 

When systematic imbalances are anticipated and covariate adjustment is required, the TSB 

described above may be insufficient. The previous resampling approach of combining each 

shrunken cluster mean with individual residuals drawn across all clusters, does not preserve a 

relationship between the cluster mean and the covariate information within the cluster. To avoid 

this problem we modify Davison and Hinkley’s original resampling routine so that the bootstrap 

datasets respect the cluster membership. In the modified algorithm, shrunken cluster means and 

standardised residuals are calculated as before, but each cluster mean is now combined with 

individual residuals drawn from that same cluster (see Appendix 1 for further details).  

We then adjust for covariate imbalances by applying SUR (model 1) to each bootstrap resample, 

to report adjusted incremental costs and outcomes and INBs, which are then averaged across the 

bootstrap replicates. The SUR reports SEs for each incremental measure, without applying the 

robust estimator, because any clustering is recognised by the bootstrap routine. The SEs are then 

also averaged across the bootstrap replicates, to report 95% CIs. A potential concern is that while 

the TSB avoids distributional assumptions, the SUR adjustment assumes that cost and outcome 

data in the bootstrap replicates are from bivariate Normal distributions.  

 

3. Motivating example 

Design and description 

This CEA of a CRT evaluated alternative interventions for preventing postnatal depression 

(PoNDER) (Morrell et al., 2009). The CRT included 2659 patients attending 101 GP practices 

(clusters), and as is typical (Gomes et al., 2011a), the number of patients per cluster varied 

widely (from 1 to 77). Intra-cluster correlation coefficients (ICCs) were moderate for QALYs 
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(ICCe=0.04), but high for costs (ICCc=0.17). While QALYs were approximately normally 

distributed, costs were moderately skewed. 

In PoNDER, prior to patient recruitment, clusters were randomly allocated to usual care (control) 

or a psychological intervention delivered by a health visitor (treatment). The intervention 

consisted of health visitor training to identify and manage patients with postnatal depression. 

Baseline measurements were recorded for variables anticipated a priori to be potential 

confounders (Morrell et al., 2009). Previous studies suggest that cluster size, the number of 

patients randomised in each cluster, may be a confounder (Campbell et al., 2000, Omar and 

Thompson, 2000). In PoNDER, because clinical protocols were less restrictive in the control 

than treatment group, it was anticipated that any relationship between the cluster size and the 

endpoints would be stronger in the control group. Hence, a priori it was judged important to 

consider models that included an interaction of treatment with cluster size. This analysis used 

baseline and 6 month endpoints for 1732 patients (70 clusters) with complete information.  

Table I describes covariate balance between treatment arms, reported as percent standardised 

mean differences (Austin, 2009), which allows comparison across different types of variables 

(e.g. continuous, binary) and is invariant to sample size (Austin, 2009) For example, for a 

continuous covariate (x), the standardised mean difference is calculated as 

100*2/)var(var/)( 01

01 xxx xxd  , with 1x ,
0x  and 01 var,var xx

 the means and variances for 

each group. There is no consensus on the level of imbalance that is of concern, but a standardised 

difference of 10% has been judged meaningful (Austin, 2009, Rosenbaum and Rubin, 1985).  

In PoNDER, a cluster-level covariate, cluster size, and some individual-level covariates were 

relatively imbalanced (Table I). Cluster size was strongly correlated with costs and QALYs but 

only for the control group. When the full data set was considered rather than the subset with 

complete information, covariate imbalance was similar. 

<< Table I here >> 
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We compare the analytical approaches described above, in pre-specified analyses: i) without 

covariate adjustment ii) with adjustment for main covariate effects and iii) with adjustment that 

includes main effects and a treatment by cluster size interaction. SUR was estimated in STATA 

by iterative feasible generalized least squares with a robust SE. The bivariate normal MLM was 

implemented by maximum likelihood (in R). An MLM that allowed costs to take a Gamma 

distribution was fitted using Markov Chain Monte Carlo Methods (MCMC) by calling 

WinBUGS from R (Spiegehalter et al., 2003). The MCMC estimation was with 5000 iterations, 

three parallel chains with different starting values and assuming diffuse, vague priors (Lambert et 

al., 2005). The unadjusted TSB was implemented with Davison and Hinkley’s shrinkage 

correction (Davison and Hinkley, 1997). For covariate adjustment after the TSB, we combined 

our new TSB routine with SUR but without a robust SE. Bootstrap methods were implemented 

in R, with 1000 replicates. We reported mean (SE) incremental costs, QALYs and INBs (ceiling 

ratio of £20 000 per QALY), and accompanying Akaike Information Criteria (AIC)
1
.  

 

Case study results 

The treatment group had lower mean costs, higher mean QALYs, a positive INB and a high 

probability of being cost-effective (above 0.9) (Table II). Without covariate adjustment, the 

MLM reported a less negative incremental cost than the other methods; the MLM gave relatively 

high weight to smaller clusters which in the control group had relatively low costs; hence the 

mean cost for the control group was lower for the MLM versus SUR (£272 vs £303). After each 

model adjusted for main covariate effects, the estimated INBs were about 50% lower and the 

AICs were much reduced. Once the models included the treatment by cluster size interaction, 

SUR and the MLM gave similar estimates, and lower AICs. When the MLM was specified with 

Gamma rather than Normal costs, the estimated INB was similar, but model fit improved further. 

<< Table II here >> 

 

                                                 
1 For SUR the AIC is computed from the least squares statistics and does not take into account the robust estimation. 

For TSB+SUR, the AIC is also taken from the same least squares statistics and averaged over the bootstrap samples. 
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4. Monte Carlo simulations 

Data generating process (DGP) 

The simulation study was designed to test the methods across a range of settings where 

systematic imbalances in baseline covariates may be anticipated in CEA of CRTs. The choice of 

scenarios was based on the PoNDER case-study, a systematic review of published CEA of CRTs 

(Gomes et al., 2011a) and previous methodological studies (Campbell et al., 2005, Eldridge et 

al., 2006, Flynn and Peters, 2005, Pocock et al., 2002, Senn, 1994, Turner et al., 2007). It was 

judged important to allow the following to differ: the level of covariate imbalance, the 

correlation of each covariate (individual and cluster-level) with cost and QALY endpoints, the 

ICCs, the variation in cluster size and the number of clusters per treatment arm.  

We designed a flexible DGP that incorporated baseline imbalances and correlations between 

covariates and endpoints, while recognising clustering, and correlation between costs and health 

outcomes. Briefly, costs and outcomes were simulated from a bivariate distribution in two stages, 

at the cluster then the individual level, to reflect the clustering inherent in CRTs. The DGP 

allowed for a wide range of parameters to be varied, and for each endpoint to have different 

parametric distributions. All covariates were included additively.  

We illustrate below a simple DGP with one continuous cluster-level covariate
2
 and one 

continuous individual-level covariate (equations 3.1 and 3.2). We simulated cost ( c ) and 

outcome ( e ) data from a potential CRT with M clusters per arm and mn (m = 1,…M) individuals 

per cluster. We firstly generated cluster-level mean costs and outcomes (
c

j ,
e

j ) that followed 

distributions with means ( c , e ) and cluster-level standard deviations ( ec  , ). Then, individual-

level data ( ijc , ije ) were simulated from distributions centred at the cluster-level means, and with 

                                                 

2 In PoNDER, the imbalanced cluster level covariate was cluster size. To afford more flexibility in the simulation 

study, a different cluster-level characteristic was assumed imbalanced between the treatment groups.      
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individual-level standard deviations ( ec  , ). Costs and outcomes were allowed to be correlated 

at both the cluster ( ) and individual-level (  ). The level of clustering was defined by the 

ICCs; for example for costs )/( 222

ccccICC   . The number of individuals per cluster was 

drawn from a Gamma distribution defined by a mean and coefficient of variation, which ensured 

cluster size remained positive (Eldridge et al., 2006). 

   Cluster-level means:    

   

 Individual-level data:       

 

We incorporated the cluster-level covariate ( jz ) when simulating the cluster-level mean costs 

and outcomes, and the individual-level covariate ( ijx ) when simulating individual-level data
3
. 

Both cluster and individual-level covariates were assumed to be continuous and drawn from 

normal distributions, ),(~ zzj Nz 
 
and ),(~ xxij Nx  .  

The DGP introduced systematic baseline imbalances by allowing the covariate means to differ 

across treatment arms set according to standardised mean differences (Austin, 2009)
4
. For the 

individual (
c

2 ,
e

2 ) and cluster-level (
c

3 ,
e

3 ) covariates, coefficients were simulated as a 

function of the correlation coefficient ( r ) between each covariate and the corresponding 

endpoint (Turner et al., 2007). For instance, the coefficient of the individual-level covariate 

(Normal) on health outcomes (Normal) was determined as )1(/ 22

2 ee

x

ee rr 



 , and the 

                                                 
3As individuals within a cluster tend to be relatively similar, the covariate was allowed to be clustered. 
4 The standardised mean differences assumed constant variance across treatment arms. 
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corresponding coefficient on costs (Gamma) as )1(/)/1( 22

2 ccc

x

cc rrshape 



 . The DGP 

easily extends to allow the prognostic strength of a covariate to differ by treatment group, by 

including treatment by covariate interaction terms. 

Definition of scenarios 

Table III lists parameters allowed to vary across the scenarios. Other parameters, such as the 

level of correlation between costs and health outcomes (0.2), mean cluster size (50) and true INB  

(£1 000; ceiling ratio £20 000 per QALY), were held constant across scenarios. Covariates ijx  

and jz
 
were assumed to follow Normal distributions (mean 50 and SD 20) throughout.  

The first group of scenarios (Table III, S1-S5), considered different levels of imbalance for an 

individual-level covariate, and confounding just for health outcomes. In the initial scenario, 

baseline imbalance and the correlation between the covariate and health outcome were both set 

to zero (S1). We then simulated scenarios with increasing levels of baseline imbalance and 

correlation with health outcomes (S2-S5). For these scenarios, we reported the performance for 

each method before and after adjustment. The scenario, S5, characterised by high levels of 

imbalance and confounding, was taken as the base case for subsequent scenarios. 

The second group of scenarios, considered the choice of adjustment method across a broader set 

of circumstances (Table III, S6-S11). These scenarios allowed for confounding in the cost 

endpoint, assumed to follow a Gamma distribution (S6). Subsequent scenarios allowed: for 

imbalance in a cluster-level covariate, assumed correlated with both endpoints (S7); high ICCs 

(S8); unequal cluster sizes (S9); and few clusters (S10). In addition to the change described each 

scenario incorporated the characteristics of the preceding setting. The final scenario (S11), 

motivated by PoNDER, and anticipated in CRTs more generally (Campbell et al., 2000), allowed 

the prognostic relationship of a cluster-level covariate to differ by treatment arm.  

<< Table III here >> 
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Implementation 

For each scenario, each method estimated INBs before and after covariate adjustment. MLMs 

and TSB were implemented in R (R, 2011) and SUR in STATA (STATA, 2009). SUR was 

estimated by iterative feasible generalized least squares with a robust SE, and the bivariate 

normal MLMs by maximum likelihood. The TSB was implemented before, and after adjustment 

with SUR (no robust SE) as in the case study. We conducted 2000 simulations for each 

scenario
5
. The relative performance of the alternative methods was assessed according to mean 

(SE) bias, root mean squared error (rMSE), variance, confidence interval (CI) coverage, and CI 

width of the INB (ceiling ratio of £20 000 per QALY). We reported performance before and 

after adjustment (S1-6, S11), and across the adjusted methods (S6-10). 

 

5. Simulation results 

Table IV reports the results for the first set of scenarios where an individual-level baseline 

covariate had different levels of imbalance and correlation with health outcome. Even with low 

levels of baseline imbalance and correlation (S3), methods without adjustment produced slightly 

biased results. At increased levels of imbalance and correlation (S5), the unadjusted approaches 

reported high bias (>10%) and low CI coverage (below 0.9 for a nominal level of 0.95). All 

adjusted approaches reported unbiased estimates of the INB, including the new TSB routine 

combined with SUR
6
. However, the CI coverage for the TSB combined with SUR was lower 

than for the other methods (0.91 vs 0.94) across all scenarios.  

In the scenario without imbalance and confounding (S1) covariate adjustment increased the 

variance of the INB (after covariate adjustment with the MLM, the average variance was 12 125 

vs 12 027 before adjustment). By contrast, if the covariate was balanced but correlated with 

                                                 
52000 simulations provide coverage rates of 0.94 to 0.96 (for true coverage of 0.95) with 95% confidence. 
6Using Davison and Hinkley’s original TSB routine, combined with SUR provided biased results; for example for 

S5 the mean (SE) bias was 23.6 (2.56). 
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outcome (S2), the corresponding variance was slightly smaller after adjustment (12 122 vs 12 

227). 

<< Table IV here >> 

For the scenarios with confounding on costs (S6), an imbalanced cluster-level covariate 

correlated with both endpoints (S7), high ICCs (S8), variation in the cluster size (S9) and few 

clusters (S10) all unadjusted methods reported biased estimates and low CI coverage (below 

0.9). Following covariate adjustment, each method provided unbiased estimates of the INB 

(Appendix 2). However, as Figure 1 shows, CI coverage differed across methods. The 

combination of TSB and SUR gives poor CI coverage (0.91 or less) under each scenario. The CI 

coverage with SUR is lower than for the MLM, when the numbers per cluster vary
7
 (S9) and 

there are few clusters (S10). For these scenarios, MLM also reports lower variance and rMSE 

than SUR (see Appendix 2 for further details). For scenario S10, characterised by imbalanced 

individual and cluster-level covariates correlated with endpoints, high ICCs, few clusters (8 per 

arm) and cluster size variation, the adjusted MLM still gives reasonable coverage (0.93).  

<< Figure 1 here >> 

Table V reports the results for the last scenario (S11), where the prognostic relationship for a 

cluster-level covariate differed by treatment arm, there were unequal numbers per cluster, high 

ICC (0.2), but moderate numbers of clusters (20 per arm)
8
. The results show that unless the 

treatment by covariate interaction is incorporated, each method reports biased estimates of the 

INB and low CI coverage. After including the interaction term, each method reported unbiased 

estimates, lower rMSE and improved CI coverage. The MLM with the interaction term reported 

the lowest rMSE and was the only approach to report CI coverage close to the nominal level. 

                                                 
7 Here, for cluster size we assume a coefficient of variation of 1. Even with a coefficient of variation of 0.5, SUR 

reports variance and rMSE that are 20% higher than for the MLM. 
8 We also considered a scenario where the interaction of treatment is with an individual-level rather than a cluster-

level covariate, but the results are similar to those presented for S11. 
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<< Table V here >> 

 

6. Discussion  

This study presents alternative methods for CEA of CRT where baseline covariates differ 

between treatment groups. These adjusted methods address systematic imbalances in both 

individual and cluster-level covariates. The case study illustrates that in CEA of CRT, cost-

effectiveness estimates can differ according to method.  The simulation extends the case study, 

and shows that without adjustment, CEA can report biased estimates even with low levels of 

confounding.  By contrast, each adjustment method provides unbiased estimates. Of the 

alternative methods, the MLMs report CI coverage close to nominal levels across all the 

circumstances considered (CI coverage of 0.93 to 0.95). In settings with unequal numbers per 

cluster and few clusters, SUR with a robust variance estimator, reports low CI coverage and high 

rMSE compared to the MLM.  The TSB and SUR approach proposed gives low CI coverage in 

each setting considered. 

This is the first paper to consider analytical methods for addressing systematic covariate 

imbalance in CEA of CRT. A previous  simulation study (Gomes et al., 2011b) suggested that 

MLMs or a TSB approach were appropriate for CEA of CRTs, but only considered 

circumstances with balanced covariates. Our paper shows that where the CRT has systematic 

baseline differences between the treatment groups, methods that assume covariate balance are 

insufficient. We consider a simple approach to adjusting for systematic imbalances in patient or 

cluster-level covariates, which is to apply SUR with a robust SE. Previous work reported that 

SUR performed well for CEA of CRTs unless the number of clusters was small (Gomes et al., 

2011b). By contrast, our paper shows that when there are unequal numbers per cluster, adjusted 

SUR can report poor coverage even with a moderate number of clusters (20 per treatment arm). 

This is an important concern, as a previous review reported that 75% of studies have uneven 
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numbers per cluster, and of these about 50% have fewer than 20 clusters per arm (Gomes et al., 

2011a).   

Rather than relying on the asymptotics required for robust variance estimation, or the 

distributional assumptions made by MLM, we extend a previous TSB algorithm and combine it 

with SUR. While this new, combined approach performs well in terms of bias and rMSE, it leads 

to lower CI coverage than MLMs or SUR alone. Hence, this TSB is less appealing for CEA 

when covariate adjustment is required. While one alternative would be to combine the TSB with 

a SUR or GEE that has a robust variance estimator, as our results show the asymptotic 

assumptions required are unlikely to be satisfied by the numbers of clusters commonly in CRTs. 

An alternative approach to avoiding distributional assumptions about the endpoints, would be to 

bootstrap individual-level residuals from adjusted MLMs (Carpenter et al., 2003). 

The MLMs proposed have more general appeal for CEA of CRTs. The MLMs that assume 

bivariate normality, perform relatively well even with highly skewed costs; this corroborates 

previous findings suggesting that methods that assume normality may be reasonably robust to 

skewed cost data (Nixon et al., 2010, Willan et al., 2004). In the case study, the MLM was 

extended to assume a Gamma distribution for costs, and as in previous studies, this slightly 

reduced the width of the uncertainty intervals (Grieve et al., 2010). The MLMs presented here 

can be easily extended to report multiplicative treatment effects (Thompson et al., 2006) or ATEs 

for each subgroup of policy-interest (Vaness and Mullahy, 2006). 

In addressing systematic imbalances, issues beyond the choice of estimation method warrant 

careful consideration. In particular, pre-specified analysis plans for CEA should consider a priori 

what form the potential confounding may take, informed by theory, previous literature and 

expert opinion. In our case-study, as may be present more generally in CEA, adjusting for main 

effects was judged insufficient. Here, it was important that each method recognised that a 

prognostic relationship can differ by treatment group. Indeed, the simulation highlighted that 

ignoring a more complex prognostic relationship can bias the overall cost-effectiveness 

estimates. 
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This research does have some limitations. The methods proposed allow for systematic 

differences in potential confounders that were observed. The design of CRT may also lead to 

systematic imbalances in unobserved characteristics. Hence methods such as instrumental 

variable estimation that can address unobserved differences also warrant careful consideration 

(Basu et al., 2007, Polsky and Basu, 2006).  In some circumstances the CRT may be designed 

such that the only baseline imbalances are by chance; our study does not apply to these 

circumstances.  The MLMs proposed performed well across a range of settings including skewed 

cost data, but in the simulation study the DGP did not consider some complexities that can arise 

including variances that differ across clusters, and non-normal distributions for cluster-level 

residuals,  In principle, the MLMs presented could be extended to allow for such complexities, 

but previous research suggest the improvements in inference may be relatively small (Grieve et 

al., 2010).  

This paper opens up several areas for further research. In particular, it would be useful to extend 

the methods to handle nonlinear relationships between covariates and endpoints, missing and 

censored data. A complementary approach, which can offer protection against misspecification 

of the covariate adjustment model would be to extend the MLM to doubly robust estimation 

(Bang and Robins, 2005). Here, a model for treatment choice, a propensity score, could be 

estimated including covariates anticipated to be potential confounders, with the MLM weighted 

according to the inverse probability of treatment (Imbens, 2004). Such doubly robust estimators 

are consistent as long as either the treatment or the endpoint model is correctly specified (Bang 

and Robins, 2005). 

This paper extends the literature examining the relative merits of hierarchical models (Cameron 

and Trivedi, 2005, Jones, 2009), robust variance estimation (Greene, 2003, Wooldridge, 2010), 

and non-parametric bootstrap approaches for covariate adjustment. In a context where 

adjustment methods are required to address systematic differences between treatment groups as 

well as accommodate clustering and the correlation of costs with health outcomes, we find that 

MLMs perform relatively well. While any of the adjustment methods proposed reports unbiased 
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estimates, the MLMs can provide more precise estimates with better CI coverage, than the other 

approaches.  
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 Table I.  The PoNDER case-study. Covariate balance for baseline covariates, and correlation 

of those covariates with endpoints.  

Covariates 
Control 

group 

(n=495) 

Treatment 

group 

(n=1237) 

Standardised 

difference (%) 
Correlation with endpoints 

Cluster-level  

    

Cluster size 
35.2  

(21.08) 

39.8  

(19.71) 
26.3 

46.0cos

0 tr   

29.00 qalyr   

03.0cos

1 tr   

05.01 qalyr  

Individual-level 
   

  

Age 
32.0    

(5.12) 

31.3    

(5.03) 
13.8 

03.0cos

0 tr  

04.00 qalyr   

04.0cos

1 tr  

02.01 qalyr  

Baseline QALY 
0.256 

(0.035) 

0.259 

(0.034) 
7.4 

12.0cos

0 tr
 

77.00 qalyr    

19.0cos

1 tr   

76.01 qalyr  

Depression score 
6.85     

(4.95) 

6.57    

(4.81) 
5.7 

10.0cos

0 tr  

56.00 qalyr   

30.0cos

1 tr   

54.01 qalyr
 

Socio-economic    

Status 

345  

(69.8%) 

876  

(70.8%) 
2.3 

03.0cos

0 tr   

08.00 qalyr  

02.0cos

1 tr   

01.01 qalyr
 

Major life events 
202  

(40.8%) 

492  

(39.8%) 
2.1 

02.0cos

0 tr

16.00 qalyr   

05.0cos

1 tr   

17.01 qalyr  

Previous    

Depression 

40       

(8.1%) 

107    

(8.6%) 
2.1 

02.0cos

0 tr  

09.00 qalyr   

11.0cos

1 tr   

16.01 qalyr
 

Living alone 
22       

(4.4%) 

44       

(3.6%) 
4.5 

06.0cos

0 tr

05.00 qalyr   

04.0cos

1 tr   

13.01 qalyr
 

Note: continuous covariates reported as Mean (SD) and binary covariates as N (%). 
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 Table II. PoNDER case-study. Mean (SE) incremental cost (£), incremental QALY, INB (£) for models without and with covariate adjustment. 

1Model without covariates; 2Model adjusted for cluster size, socio-economic status, age and other key clinical factors (Morrell et al., 2009); 3Model with previous covariates 

plus a treatment interaction with cluster size; Ϯresults reported at the mean cluster size. 

 

 

 SUR  MLM  TSB 

 
Base 

case
1
 

Adjusted 

for key 

covariates
2
 

With 

interaction
3 Ϯ

 

 

Base case
1
 

Adjusted 

for key 

covariates
2
 

With 

interaction
3 Ϯ

 

 

Base  

case
1
 

Adjusted for 

key 

covariates
2
 

With 

interaction
3 Ϯ

 

Incremental cost 
-63.4 

(50.2) 

-67.5 

(45.0) 

-86.4 

(29.1) 

 
-21.4 

(25.3) 

-19.9 

(25.2) 

-78.4 

(29.7) 

 
-61.7 

(45.7) 

-37.2 

(10.1) 

-43.0 

(10.4) 

Incremental QALY 
0.0043 

(0.0020) 

0.0019 

(0.0012) 

0.0021 

(0.0013) 

 
0.0044 

(0.0021) 

0.0019 

(0.0013) 

0.0021 

(0.0013) 

 
0.0042 

(0.0024) 

0.0027 

(0.0011) 

0.0028 

(0.0012) 

INB (λ=£20 000) 
149.4 

(70.1) 

105.5 

(57.9) 

127.8 

(47.8) 

 
109.0 

(50.0) 

58.1 

(36.8) 

119.7 

(42.4) 

 
146.1 

(65.3) 

91.7 

(25.5) 

99.6 

(28.8) 

AIC 16 886 15 110 14 808 
 

16 630 14 936 14 742 
 

16 894 15 090 14 840 



25 

 

Table III. Description of the main parameter values allowed to vary across the different 

scenarios in the simulation study. 

Scenario Individual-level covariate 
 

Cluster-level covariate Costs ICCs cvimb M 

 
d er  

cr   d er  
cr  

    

            

S1 0 0 0  0 0 0 Normal 0.01 0 20 

S2 0 0.1 0  0 0 0 Normal 0.01 0 20 

S3 5 0.1 0  0 0 0 Normal 0.01 0 20 

S4 5 0.3 0  0 0 0 Normal 0.01 0 20 

S5 20 0.3 0  0 0 0 Normal 0.01 0 20 

            

S6 20 0.3 -0.3  0 0 0 Gamma  0.01 0 20 

S7 20 0.3 -0.3  20 0.3 0.3 Gamma 0.01 0 20 

S8 20 0.3 -0.3  20 0.3 0.3 Gamma 0.2 0 20 

S9 20 0.3 -0.3  20 0.3 0.3 Gamma 0.2 1 20 

S10 20 0.3 -0.3  20 0.3 0.3 Gamma 0.2 1 3 

S11 20 0.3 -0.3  20 0.3
ϯ
 0.3

ϯ
 Gamma 0.2 1 20 

Notes: d- standardised difference;
 er – correlation between covariate and outcomes;  

cr – correlation between 

covariate and costs; cvimb - coefficient of variation of the cluster size; M – no. of clusters per arm; ϯcorrelation 

was 50% higher for treatment arm (differential prognostic strength).  

The choice of parameter values was informed by previous systematic and conceptual reviews (Gomes et al., 

2011a), and from data extracted from eight case studies (Gomes et al., 2011b).
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Table IV. Bias (SE) of the INB for a set of scenarios (S1-S5) which allow for increasing levels of baseline imbalance for an individual-level 

covariate, and increasing levels of correlation of that covariate with health outcome (QALYs, true INB=£1 000). 

   
SUR MLM TSB 

Scenario 
Baseline 

imbalance 

Correlation 

between covariate 

and outcome 

Without 

covariate 

adjustment 

With 

covariate 

adjustment 

Without 

covariate 

adjustment 

With 

covariate 

adjustment 

Without 

covariate 

adjustment 

With 

covariate 

adjustment 

S1 None None 
0.14    

(2.46) 

0.56    

(2.50) 

0.14    

(2.46) 

0.56    

(2.50) 

0.13    

(2.47) 

0.43    

(2.47) 

S2 None Low (0.1) 
0.26    

(2.47) 

0.11    

(2.46) 

0.26    

(2.47) 

0.11    

(2.46) 

0.24    

(2.48) 

0.11    

(2.46) 

S3 Low (5) Low (0.1) 
9.79    

(2.47) 

0.07    

(2.46) 

9.79    

(2.47) 

0.07    

(2.46) 

9.81    

(2.48) 

0.04    

(2.46) 

S4 Low (5) High (0.3) 
30.9    

(2.58) 

0.08    

(2.46) 

30.9    

(2.58) 

0.08    

(2.46) 

31.0    

(2.58) 

0.02    

(2.46) 

S5 High (20) High (0.3) 
125.3    

(2.58) 

0.01    

(2.47) 

125.3    

(2.58) 

0.01    

(2.47) 

125.3    

(2.58) 

0.03    

(2.47) 
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Table V – Bias, variance, rMSE CI coverage and width of the INB for a scenario (S11) with a cluster-level prognostic relationship that differs 

by treatment arm (true INB=£1 000). 

 SUR MLM TSB 

Without 

covariate 

adjustment 

Adjust for 

main 

effect only 

Adjust for 

interaction* 

Without 

covariate 

adjustment 

Adjust for 

main 

effect only 

Adjust for 

interaction 

Without 

covariate 

adjustment 

Adjust for 

main 

effect only 

Adjust for 

interaction 

Mean (SE)                

bias  

421.9  

(28.9) 

167.9   

(9.4) 

3.93    

(28.0) 

422.3  

(27.9) 

167.5   

(7.6) 

3.51       

(22.3) 

423.9   

(29.1) 

168.2   

(9.0) 

4.71    

(26.2) 

variance 1 673 434 176 655 183 833 1 555 618 116 477 112 697 1 695 850 162 577 158 030 

rMSE 1 361 453 438 1 317 380 367 1 369 437 425 

CI coverage 0.808 0.879 0.885 0.790 0.919 0.947 0.809 0.875 0.881 

Mean CI width 1 742 1 472 1 352 1 711 1 343 1 194 1 749 1 482 1 401 

* ATE is reported at the covariate mean. This scenario is characterised by high ICCs (0.2), unequal numbers per cluster, and 20 clusters per treatment arm
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Figure 1 – CI coverage of the INB (nominal level is 0.95) for adjusted methods for the 

following scenarios: base case (S5); confounding on costs (S6); imbalanced cluster-level 

covariate (S7); high ICCs (S8); high cluster size variation (S9); few clusters (S10)*. 

 

 

 

 

 

 

 

 

*Each scenario includes the other characteristics of the preceding scenario. 

 

 

 

 

 



29 

 

 

Appendix 1 – Algorithm for the non-parametric TSB combined with SUR. 

Suppose we have Mk clusters randomised to treatment (k=2) and control (k=1), with nj 

individuals within each cluster j. 

1. For i in 1 to nj (individuals in cluster j)  

2. For j in 1 to Mk (clusters in treatment k) 

3. For k in 1 to 2 (treatments) 

4. Calculate shrunken cluster means,    
  and    

 , for cost and outcome
9
. 

5. Calculate standardized individual-level residuals,           and            , for cost and 

outcome
10

. 

6. Randomly sample (with replacement) Mk pairs of cluster means,  
       
  and  

         
 , 

from the shrunken cluster means calculated in step 4.  

7. Within each resampled cluster, randomly sample (with replacement)      
  

     pairs 

of standardized residuals (step 5),  
       
  and  

         
 , where   =1...      

  

    . 

8. Re-construct the sample ( 
         
  ,  

           
 ) by adding the shrunken cluster means 

from step 6 and the standardized residuals from step 7, i.e.  
         
    

       
   

       
  

where          and likewise for effects; call it a ‘synthetic’ sample. 

9. Incorporate the covariate set ( 
    ) into each synthetic sample: ( 

         
  

 
    ,             

       ). Covariates can be different for costs versus outcomes.  

10. Repeat steps 4 to 9 for each treatment arm and stack these ‘synthetic’ samples into a 

single bootstrap sample.  

11. Replicate steps 6 to 10 R times to construct R bootstrap samples. 

12. Apply SUR without robust standard error to each bootstrap sample generated in step 

11, to estimate mean and standard error (SE) of incremental costs (∆C), incremental 

outcomes (∆E) and the covariance (∆C,∆E), adjusted for potential confounders. 

13.  Calculate the parameter of interest, e.g. INB, by averaging SUR estimates across the 

R replications:                         
 
   , where   is the willingness-to-pay for 

a QALY.  

14. Applying the Central Limit Theorem, CIs for INB can be constructed as      

             (Nixon et al., 2010) where, 

                      
              

                     
 
   .

                                                 

9
    

       
          

    where c is given by          
  

    
  

   

         
; SSw= within-sum of squares and 

SSB = between-sums of squares, b = average cluster size (a formulation akin to the harmonic mean is used here 

(Smeeth and Ng, 2002)). 
10

           
                  

      
 , where          is the observed cost for the i-th individual in cluster j. These are 

similarly calculated for outcomes and separately for the two treatments.  
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Appendix 2 – Bias (True INB=£1 000), variance and rMSE of the INB for adjusted methods, across scenarios S5-S10*.  

 Bias Variance rMSE  

SUR MLM TSB+SUR SUR MLM TSB+SUR SUR MLM TSB+SUR 

Base-case (S5) 

0.04       

(2.47) 

0.01    

(2.47) 

0.26    

(2.47) 
12 168 12 172 12 174 110.3 110.3 110.3 

Confounding on costs (S6) 

1.77       

(2.65) 

1.78    

(2.65) 

1.59    

(2.65) 
14 092 14 092 14 073 118.7 118.7 118.6 

Cluster-level covariate (S7) 

0.06       

(2.69) 

0.06    

(2.69) 

3.24    

(2.67) 
14 475 14 468 14 258 120.3 120.2 119.4 

High ICCs (S8) 

7.84       

(7.06) 

8.11    

(7.05) 

8.25    

(7.05) 
99 431 99 549 99 431 315.5 315.3 315.4 

High cluster size variation (S9) 

10.3       

(9.54) 

2.04    

(7.76) 

9.07    

(9.22) 
182 142 120 300 169 880 426.8 346.8 412.2 

Few clusters (S10) 

0.15       

(15.5) 

0.56    

(12.8) 

1.48    

(14.5) 
478 875 329 378 422 329 691.8 573.8 649.7 

* Each scenario includes the other characteristics of the preceding scenario. 

 




