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1 Introduction

With low fertility rates prevailing in most developed countries, the populations age fast,

and this entails a high demand for health care. If the health care cost is borne only by formal

health care, then eventually there may be a point at which the health care system ceases

to be sustainable. If formal health care can be replaced to some extent by informal family

health care, then this may lead to a considerable reduction on the formal health care cost.

In the literature of health economics, there are studies that examined the effects of

informal health care on formal health care, which often find that informal care substitutes

for formal care. Although there are studies such as Charles and Sevak (2005) showing that

informal care (measured by the dummy for any informal care) is a substitute for nursing

home care (measured by the dummy for ever staying in nursing home), in the following, we

briefly review three studies that are the most relevant to our paper: Van Houtven and Norton

(2004), Bolin et al. (2008) and Bonsang (2009).

In Van Houtven and Norton (2004), informal care is the care hours provided by all

children (their spouse and their children), and formal cares including nursing home care and

outpatient care are of eight different types in total (mostly continuously distributed, but

formal home care and outpatient surgery are binary). Only about 19% of the respondents

received informal care. Van Houtven and Norton used U.S. data: 1998 Health and Retirement

Survey (HRS) and 1995 Asset and Health Dynamics Among the Oldest-Old Panel Survey

(AHEAD). Van Houtven and Norton found that informal care is mostly a substitute except

for outpatient surgery.

In Bolin et al. (2008), nine formal care variables are used including formal home care,

visits to doctors and hospitalization days. Their informal care (informal care hours from

children and grandchildren) has the non-zero proportion ranging 19-40% across the countries

in their 2004 European data “SHARE”. Bolin et al. found that informal care is a substitute

for formal home care, but a complement to doctor and hospital visits, and that the effects

vary depending on the region (i.e., informal care interacts with the region dummies).

In Bonsang (2009), informal care is the care hours provided by children of the respondent

(a single-living elderly), and formal cares are paid domestic help (low-skilled) and nursing

care (high-skilled); both formal cares are home cares. Using the 2004 European data SHARE,

Bonsang (2009) found that informal care is a substitute for the low-skilled formal home care,
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but a weak complement for the high-skilled formal home care, and that the substitution effect

decreases as the level of disability of the elderly person increases (i.e., informal care interacts

with the disability level).

In terms of methods, Van Houtven and Norton (2004), Bolin et al. (2008) and Bon-

sang (2009) used a ‘two-part approach’. But strictly speaking, the methods used there to

deal with endogenous regressors apply only when the endogenous regressors are continuously

distributed. Probably because of this restriction, least squares estimator (LSE) was used to

estimate the reduced form (RF) model for informal care that is an endogenous regressor for

formal care (the response variable). But the LSE is problematic because the informal care

variable includes too many zeros. Also, the response variable has a non-trivial proportion

of zeros. In short, both the main endogenous regressor of interest and the response vari-

able are not continuously distributed to allow linear models, but either discrete or mixed

(discrete/continuous).

One reason for the endogeneity of informal care is that both formal and informal cares

may be determined simultaneously. Another reason is that both cares may share common

factors–most notably, health status. But controlling for health status is troublesome, be-

cause it may be influenced by both cares. Note that, as instruments for informal care,

distances to children, placement of daughters in the birth order, or the number of (female)

children have been used in the literature.

While there is no particularly good solution for the endogeneity problem, this paper

will show a two-stage procedure to overcome the problems of too many zeros in a non-

negative endogenous regressor (informal care) and a non-trivial proportion of zeros in the

response variable (formal care). For the RF estimation of the non-negative regressor, we

will be using ‘Quasi Poisson’ approach, and for too many zeros, we will be using the zero-

inflated Poisson idea of Lambert (1992). In a nutshell, our two-stage procedure is applicable

to censored models with non-negative endogenous regressors including count variables where

the endogenous regressors have too many zeros.

The rest of this paper is organized as follows. Section 2 shows the details of the two-stage

procedure. Section 3 applies the estimator to Korean data to estimate the effect of informal

care on formal care, where informal care is the number of care givers (thus a count). Finally,

Section 4 concludes. A word on notation before proceeding further: ‘a q b|c’ denotes the

independence between a and b given c.
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2 Two-Stage Procedure

2.1 Model Assumptions

Suppose that y1 ≥ 0 is formal care, y2 ≥ 0 is informal care (a count), x1 is a k1 × 1

exogenous regressor vector for the y1 structural form (SF) equation, and x is the k×1 system

exogenous regressor vector for (y1, y2) that strictly includes x1. That is, only x1 in x affects

y1 “directly”, and x is the collection of the exogenous regressors affecting either y1 or y2.

Observed are

(xi, y1i, y2i), i = 1, ..., N , which are iid across i.

Our approach below applies not only to a count, also to a non-negative y2. In view of the iid

assumption, we will often omit the subscript i.

Assume that the observed y1 and y2 are generated from its latent versions y∗1 and y∗2 as

follows: for unknown parameters γy, γx, α and β, an error term ui and a binary variable qi,

y1i = max(0, y
∗
1i) with y∗1i = γyy2i + x01iγx + ui and u|x is symmetric around 0;

y2i = qiy
∗
2i, P (q = 1|xi) =

exp(x0iα)

1 + exp(x0iα)
and E(y∗2|q = 1, xi) = exp(x0iβ).

Here y∗1 is modelled as censored at zero with its error term symmetric around zero. This

symmetry assumption is to use symmetrically censored least squares estimator (SCL) of

Powell (1986), and may be replaced by another semiparametric assumption if a different

semiparametric censored model estimator as in Powell (1984) or Lee (1992) is used.

Since x appears for q and y∗2, the q and y∗2 equations should be regarded as a RF. This

RF view is necessary because y1 does not appear for the q and y∗2 equations, and also because

E(y∗2|q = 1, x) = exp(x0β) is adopted, not the more “structural” E(y∗2|x) = exp(x0β). There

are two views on RF’s as noted in Lee (2012). One view is that there is a SF for y2 with y1

and “x2” as the regressors, and substituting the y1 SF and then solving the equation for y2

yields the y2 RF with x on the right hand side. The problem with this view is that it is not

clear whether the equation is solvable for y2 or not, and if so, whether the solution is unique

(and stable). The other view on RF is to take E (y2|x) as the y2 RF, and use a parametric

function for E(y2|x) as an approximation if desired. The problem with this view is that no

information/structure can be imposed on E(y2|x) and the parametric form may be ad hoc.

Some further remarks about the model are in order. First, a sample selection model holds

for y∗2 because y
∗
2 is observed only when q = 1; the binary ‘selection variable’ q is assumed
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to follow the logit model whereas y∗2 given q = 1 is posited to have an exponential regression

function. Second, the key implication of the selection model for y2 is

E(y2|x) = P (q = 1|x)E(y∗2|q = 1, x) =
exp(x0α)

1 + exp(x0α)
exp(x0β).

Third, the expression ‘too many zeros” may be formally defined as

E[{y2 −
exp(x0α)

1 + exp(x0α)
exp(x0β)}2] < E[{y2 − exp(x0β)}2];

i.e., the logit function improving the exp(x0β) prediction of y2 is defined as “too many zeros

in y2”. Fourth, it may be better to model y1 also as a sample selection model rather than

as the censored model which is a special case of selection model, but the censored model is

adopted for simplicity because dealing with a sample selection model is difficult–this would

not matter much though as the proportion of zeros is low for y1 in our data (14%).

Define 1[A] = 1 if A holds and 0 otherwise, and call y∗2 = 0 ‘participation zero’. As

done in Lee (2011), it is helpful to compare three different models for q in relation to the

participation zero possibility:

Model 1 : q = 1[y∗2 > 0] where y2 (= qy∗2) = 0 implies y
∗
2 = 0;

Model 2 : q determined by some variables (and y∗2) with participation 0 possible;

Model 3 : q determined by some variables (and y∗2) with participation 0 impossible.

Model 1 is the ‘corner solution model’ in which case y2 becomes also a zero-censored model

as y1 is. Model 2 is relevant if q = 1 is only an “attempt/try” for an activity and y∗2 is

a “performance” in the activity following the attempt/try. Model 3 is relevant if q = 1 is

having the actual activity and y∗2 is the degree of the activity with zero ruled out.

For instance, q = 1 may be an attempt/try to export, where y∗2 = 0 is possible even if

one tries (q = 1). Instead of attempt/try, one may define q = 1 as actually exporting and

y∗2 as the actual export volume that cannot be zero. Which one between Models 2 and 3 to

adopt may depend on what is available in the data. If a variable q for ‘whether one desires

to export or not’ is available in the data along with the export volume including zero, then

y2 = qy∗2 is the observed export volume with y∗2 = 0 possible. If only the actual export

volume including zero without such a variable for q is available, then one has no choice but

to set q = 1[y2 > 0] with participation zero ruled out. In our data, since there is no separate

variable for q, we will set q = 1[y2 > 0] to adopt Model 3
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One may wonder ‘why not adopt Model 1 that looks simpler than Model 3’. The answer

is that there is really no difference between Model 1 and Model 3 for our empirical analysis.

To see the point, suppose y∗2 = x0α+ v2 with v2 being logistic independently of x and Model

1 holds. Then

q = 1[y∗2 > 0] = 1[x
0α+ v2 > 0] =⇒ E(q|x) = exp(x0α)

1 + exp(x0α)
and

E(y∗2|q = 1, x) = E(y∗2|y∗2 > 0, x) = x0α+E(v2|v2 > −x0α, x) 6= exp(x0α).

In this case, the exponential model is only an approximation for x0α+ E(v2|v2 > −x0α, x),

and consequently we need to allow different parameters α for E(q|x) and β for E(y∗2|q = 1, x)

as when Model 3 is adopted.

2.2 First Stage To Obtain Control Function

In our two-stage procedure, the first stage consists of two parts: estimating α in the logit

model for E(q|x) and estimating β in the exponential model for E(y∗2|q = 1, x). For the latter,

one can use Quasi-Poisson (QPOI) maximum likelihood estimator (MLE): maximize the

usual Poisson likelihood function with q = 1 attached to use the “sandwich-form” asymptotic

variance. That is, the QPOI maximand is

1

N

X
i

qi{y2ix0ib− exp(xib)}

and the asymptotic variance matrix is

E−1{qxx0 exp(x0β)} ·E[qxx0{y − exp(x0β)}2] ·E−1{qxx0 exp(x0β)}.

Denoting the first-stage estimators as α̂ and β̂, the second-stage is estimating γy and γx

for the y1 SF allowing for the endogeneity of y2 in the y1 SF. As reviewed in Lee (2012), there

are several different methods to deal with an endogenous regressor in a limited dependent

variable (LDV) model–the LDV model is the zero-censored model for y1 in our case. Among

those methods, the most convenient for our empirical analysis is ‘control function (CF)’

approach, because many interaction terms between y2 and elements of x will be allowed.

With the endogeneity of y2 removed by a CF, we can freely allow such interaction terms,

which is complicated in the other approaches for the y2 endogeneity. Specifically, a residual

v̂2 for y2 is obtained from the first stage, and it is used as an extra regressor in the y1 SF. Not

just v̂2, but also v̂22 and v̂32 can be used if including those terms removes the y2 endogeneity
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better by accounting for the additive part of u that depends on v2. Then (v̂2, v̂22, v̂
3
2) becomes

the CF, and the y2 endogeneity can be tested by looking at whether their coefficients are all

zero or not. Going further than (v̂2, v̂22, v̂
3
2), higher order terms or interaction terms between

v̂2 may be used as well.

For an LDV regressor such as y2, it is not obvious which form of residual will be the

best choice for CF. For a count regressor, there is no “natural” residual. To motivate our

approach to this, consider generating a Poisson regressor y with parameter exp(x0ξ+ε) where

ε with εq x is related to u so that y becomes endogenous for y1; e.g., u consists of ε and an

additive error. To generate y, many exponential random durations with the same parameter

exp(x0ξ + ε) should be generated first. Then the number of the exponential durations that

can be fit into the unitary time interval is the desired y–after this, y1 can be generated using

(x and) y and u that depend on ε. For the endogenous y, at least the following two types of

residuals can be thought of.

The ‘additive residual’ for y is y − exp(x0ξ), from which it follows that

E{y − exp(x0ξ) |x} = E[ E{y − exp(x0ξ)|ε, x} |x] = E[ exp(x0ξ)eε − exp(x0ξ) |x]

= E[exp(x0ξ) · (eε − 1) |x] = 0

which holds by rescaling ε such that eε = 1 and including the constant scale factor in the

intercept of x0ξ. That is, using y − exp(x0ξ) amounts to using exp(x0ξ)(eε − 1) as a CF in

the y1 SF. If ε is small, then exp(x0ξ)(eε − 1) ' exp(x0ξ)ε. A better choice than the additive

residual might be the multiplicative residual y exp(−x0ξ)− 1, which leads to

E{y exp(−x0ξ)− 1 |x} = E[ E{y2 exp(−x0ξ)− 1|ε, x} |x] = E(eε − 1|x) = 0.

Hence, using y2 exp(−x0ξ)− 1 is analogous to using eε− 1 as a CF in the y1 SF. If ε is small,

then eε − 1 ' ε.

The main difference between the two residuals is that the additive residual carries the

heteroskedasticity factor exp(x0ξ) while the multiplicative residual does not. For y2 = qy∗2,

the two residuals are, respectively,

y2 −
exp(x0α)

1 + exp(x0α)
exp(x0β) and y2{

exp(x0α)

1 + exp(x0α)
exp(x0β)}−1 − 1.

For our empirical analysis, we will try both residuals, because which is better will be deter-

mined ultimately by how much endogeneity can be picked up by each type of residual; the

more the better.
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Since SCL in the second stage needs only the symmetry of u|x, the only parametric

assumption invoked in our two-stage procedure is the logit in the first-stage. Since there is

no practical semiparametric estimator for binary responses, assuming logit does not seem so

restrictive. If we desire to avoid even the logit assumption, then we may assume simply

E(y2|x) = exp(x0β).

This will be also applied to our data later, and as it turn outs, its performance is inferior to

our two-stage procedure allowing for “zero inflation”.

2.3 Second Stage with Symmetrically Censored LSE (SCL)

In our two-stage procedure, the second-stage is SCL with a CF used as an extra regressor

to remove the y2 endogeneity. Here we explain SCL first, pretending that y2 is exogenous for

a while. To simplify notations, define

w ≡ (y2, x01)0 and γ ≡ (γy, γ0x)0.

to get y1i = max(0, w0iγ + ui).

Observe

w0γ + u ≥ 0 ⇐⇒ u ≥ −w0γ.

If w0γ > 0, then the censoring of y1 at zero replaces the lower tail of u with a “mass” −w0γ.

The idea of SCL is to artificially replace the upper tail with w0γ to restore the symmetry of

u. This leads to a moment condition:

E{ 1[w0γ > 0] · (1[|u| < w0γ]u+ w0γ1[|u| ≥ w0γ]) · w} = 0.

A minimand with the moment condition as its asymptotic first order condition is

1

N

X
i

[ {y1i −max(0.5y1i, w0iγ)}2 + 1[y1i > 2w
0
iγ] · {(0.5y1i)2 − (max(0, w0iγ))2} ]

and SCL is obtained by minimizing this for γ.

If w0iγ '∞ ∀i, then the minimand becomes the LSE minimand N−1P
i(y1i − w0iγ)

2; in

fact, what is needed is only u > −w0γ (−w0γ being smaller than the lower support boundary

of u|w) for which w0γ '∞ is sufficient. The second-order (Hessian) matrix of SCL is

H ≡ E(1[|u| < w0γ]ww0)

8



which becomes E(ww0) that is the second-order matrix of LSE when |u| < w0γ always (implied

by w0γ ' ∞). If the censoring proportion becomes small, then SCL becomes close to LSE,

and in this sense, SCL is a natural estimator for a censored response with a small censoring

proportion. The main advantage of SCL over MLE’s for the censored model is that SCL does

not specify the distribution of u|w and allows an unknown form of heteroskedasticity because

the above moment condition does not require uq w.

Powell (1986) suggested an iterative scheme to get γ̂. Start with an initial estimate γ̂0,

say LSE, and then iterate the following until convergence:

γ̂ = (
X
i

1[w0iγ̂0 > 0] · wiw
0
i)
−1
X
i

{1[w0iγ̂0 > 0]min(y1i, 2w0iγ̂0) · wi}.

This does not guarantee global convergence. Also the matrix to be inverted may not be

invertible. If this problem occurs, then removing 1[w0iγ̂0 > 0] in the inverted matrix may

help. From our experience, however, this algorithm works well.

Going back to the case with endogenous y2, let v2 be either the additive or multiplicative

residual from the y2 RF. Then the second stage in our two-stage procedure is SCL with w

augmented by the CF v̂2 (and v̂22 and v̂32). With the endogeneity of y2 removed by the CF,

SCL can be implement as above. The only modification needed is the asymptotic variance

of SCL because the first stage estimation errors α̂− α and β̂ − β affect the SCL asymptotic

variance through v̂2, which is to be examined in detail in the following subsection. Our two-

stage procedure works well computationally, because all estimators involved (logit, QPOI and

SCL) converge well. This computational advantage should not be downplayed as it matters

greatly in practice.

2.4 Asymptotic Distribution

With w exogenous for y1, the first- and second-order derivatives of the SCL minimand

give the following asymptotic linear expansion of SCL:

√
N(γ̂ − γ) =

1√
N

X
i

H−1 · 1[w0iγ > 0](1[|ui| < w0iγ]ui +w0iγ1[|ui| ≥ w0iγ])wi + op(1)

=
1√
N

X
i

H−1ζi + op(1), where ζi ≡ 1[w0iγ > 0](1[|ui| < w0iγ]ui +w0iγ1[|ui| ≥ w0iγ])wi.

From this, it follows that, with ‘Ã’ denoting convergence in law,

√
N(γ̂ − γ)Ã N(0,H−1E(ζζ 0)H−1) where E(ζζ 0) = E{1[w0γ > 0]min(u2, (w0γ)2) · ww0}.
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As already mentioned, the first-stage estimation errors α̂ − α and β̂ − β affect the SCL

asymptotic variance through v̂2, which is discussed now.

Redefine w and γ as

w = (y2, x
0
1, v̂2, v̂

2
2, v̂

3
2)
0 and γ = (γy, γ

0
x, γ1, γ2, γ3)

0

where v̂2 = v̂2(α̂, β̂) that depends on α̂ and β̂ is either the additive or multiplicative residual,

and (γ1, γ2, γ3) is the coefficient vector for (v̂2, v̂
2
2, v̂

3
2).

The presence of the first-stage estimators α̂ and β̂ matters for the ‘gradient vector’ ζ in

the above linear expansion of SCL, but not for the second-order matrix H. Hence write the

asymptotic linear expansion as

√
N(γ̂ − γ) =

1√
N

X
i

H−1ζi(α̂, β̂) + op(1)

=
1√
N

X
i

H−1{ζi(α, β) +E(ζα0)ηαi +E(ζβ0)ηβi}+ op(1)

where ζα0 and ζβ0 denote the derivatives of ζ(α, β) for α and β, respectively, and ηαi and ηβi

are ‘influence functions’ for α̂ and β̂:

ηαi = {E(ss0)}−1si for logit score function si = {y2i −
exp(x0iα)

1 + exp(x0iα)
}xi,

ηβi = [E{qxx0 exp(x0β)}]−1qixi{y2i − exp(x0iβ)}.

Since the dimension of γ is (k1+4)× 1 and the dimension of α and β are both k× 1, ζα0 and

ζβ0 are (k1 + 4) × k matrices, which can be obtained by numerical differentiation. See, e.g.,

Lee (2010) for more details on this way of accounting for the first-stage estimation errors.

From the asymptotic linear expansion taking into account α̂− α and β̂ − β, we get

√
N(γ̂ − γ)Ã N(0,H−1E(λiλ

0
i)H

−1) where λi ≡ ζi(α, β) +E(ζα0)ηαi +E(ζβ0)λi.

E(λλ0) can be estimated consistently by replacing (α, β, γ) with (α̂, β̂, γ̂) and the expected

values in λ by the corresponding sample means. If E(y2|x) = exp(x0β) is adopted, then

the only required change is redefining v2 without the logit probability and then removing

E(ζα0)ηαi in λ. The endogeneity of y2 can be tested using (γ̂1, γ̂2, γ̂3), as their coefficients

should be all zero under the null of y2 exogeneity. Although we toiled to account for the

first-stage estimation errors α̂− α and β̂ − β, they can be ignored for SCL under the null of

y2 exogeneity.
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2.5 Details on Control Function

In practice, it may be enough for a CF to carry a significant estimate, and thus the

results under y2 exogeneity assumption differ much from those allowing y2 endogeneity. But

it would be more desirable to know what the CF looks like “underneath” and to justify it

properly. Here we take a detailed look at the CF’s under more assumptions.

For an error ε related to u and a parameter vector β̃, make an extra assumption

E(y∗2|q = 1, x, ε) = exp(x0β̃ + ε) and εq (x, q).

This implies our earlier model assumptions

E(q = 1|x, ε) = P (q = 1|x) ( = exp(x0α)

1 + exp(x0α)
),

E(y∗2|q = 1, x) =
Z

E(y∗2|q = 1, x, ε)f(ε|x, q = 1)dε = exp(x0β̃)
Z

eεf(ε)dε

= exp(x0β̃) exp{lnE(eε)} = exp(x0β̃ + lnE(eε)} = exp(x0β)

where f(ε|x, q = 1) denotes the density of ε|(x,= 1) and β differs from β̃ only in that the

intercept in β equals the intercept in β̃ plus lnE(eε).

The reason for the extra assumption on E(y∗2|q = 1, x, ε) can be seen in

E{y2 −
exp(x0α)

1 + exp(x0α)
exp(x0β) |x} = E[ E{y2 −

exp(x0α)

1 + exp(x0α)
exp(x0β)|ε, x} |x]

= E[
exp(x0α)

1 + exp(x0α)
exp(x0β̃)eε − exp(x0α)

1 + exp(x0α)
exp(x0β) |x]

= E[
exp(x0α)

1 + exp(x0α)
exp(x0β̃)E(eε)

eε

E(eε)
− exp(x0α)

1 + exp(x0α)
exp(x0β) |x]

= E[
exp(x0α)

1 + exp(x0α)
exp(x0β) · { eε

E(eε)
− 1} |x] = 0.

That is, using the additive residual CF amounts to using

exp(x0α)

1 + exp(x0α)
exp(x0β) · { eε

E(eε)
− 1} {' exp(x0α)

1 + exp(x0α)
exp(x0β)ε if ε is small}.

Analogously, using the multiplicative residual CF amounts to using {eε/E(eε)}− 1 (' ε if ε

is small).

In the above extra assumption, since we need to have y2 exogenous once ε is controlled,

the relation of ε to u should be the only source for the y2 endogeneity. A natural question

to arise is how restrictive the assumption ‘εq (x, q)’ is. Literally, it is restrictive in requiring

that the y2 endogeneity source ε be independent of the selection equation q as well as of
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x. But ‘ε q (x, q)’ does not necessarily imply ‘y∗2 q q|x’ that the ‘outcome equation’ y∗2 and

the selection equation q are independent given x–an assumption often invoked in practice–

because y∗2 has randomness sources other than ε. To see this point, think of generating an

uniform random variable to use it (along with (x, ε)) to generate both y∗2 and q; through the

same uniform random variable, q and y∗2 become related despite εq (x, q).

2.6 Two-Part Approach in the Literature

It is helpful to compare our two-stage procedure to the two-part approach in the litera-

ture. The two-part approach assumed

first part : 1[y∗1 > 0] = 1[γyy2 + x01γx + u > 0] and y2 = x0δ + v

second part : y1 = ξyy2 + x01ξx + ei given y1 > 0

where δ and ξ are parameters, and v and e are error terms.

For the first part, substitute y2 = x0δ + v to obtain

1[y∗1 > 0] = 1[γy(x
0δ + v) + x0Sγx + u > 0] = 1[x0ψ + γyv + u > 0]

where ψ ≡ γyδ + Sγx and S consists of 0’s and 1’s such that x01 = x0S;

ψ is the RF parameters for 1[y∗1 > 0] while (γy, γx) is the SF parameters. For the endogeneity

of y2 in the first part, a CF approach combined with minimum distance estimator (MDE)

was used: the LSE residual v̂ for the y2 equation is used along with x to obtain (ψ̂, γ̂y), and

then (δ, γx) is estimated by MDE using ψ̂ ' γ̂yδ+Sγx–simply imagine LSE of ψ̂ on (γ̂y, S)

to estimate (δ, γx).

Some remarks on the two-part approach are in order. First, (γy, γx) can be estimated in

the 1[y∗1 > 0] SF with v̂ controlled; no MDE is needed. Second, the linear model for y2 is not

plausible as y2 has many zeros. Third, the second part of the two-part approach has been

“sold” (relative to sample selection models) for a better prediction of y1; hence the second

part is not suitable to allow for endogenous regressors.

3 Empirical Analysis

Our data was drawn from the elderly of age 65 or above in ‘the Korean Longitudinal

Study of Ageing’ for the year 2008. The information on the variables can be found in Table 1.
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In Table 1, ‘formal’ is the annual medical and long-term care expenditure in about $1000–

the other amounts in the table are all annual amounts in the same unit. The number of care

givers is our informal family care variable, 85% of which are zeros. Table 1 also shows yearly

informal care hours (‘care hours’) of which 85% are zeros again, but this variable will not

be used for y2–the estimation results with care hours as y2 is mostly insignificant with no

endogeneity of y2 picked up by the CF’s.

Table 1: Descriptive Statistics

Variable Mean (SD) Min,Max Variable Mean (SD) Min,Max

formal ($1,000) 1.179 (2.34) 0, 48.4 age 74.6 (6.12) 65, 107

# care givers 0.215 (0.58) 0, 4 male 0.425 (0.494) 0, 1

care hours 157 (619) 0, 8760 married 0.636 (0.481) 0, 1

fi. asset ($1,000) 4.88 (21.6) 0, 500 Seoul 0.137 (0.343) 0, 1

real est. ($1,000) 152 (222) 0, 2948 work 0.213 (0.409) 0, 1

own house 0.409 (0.49) 0, 1 kid-par ($1,000) 13.5 (28.2) 0, 866

fam.inc. ($1,000) 16.3 (21.0) 0, 700

pension ($1,000) 1.42 (4.44) 0, 94.9 nkids 3.99 (1.61) 0, 10

hi.bl. pressure 0.091 (0.288) 0, 1 nfem.kids 1.92 (1.40) 0, 8

diabetes 0.048 (0.215) 0, 1 nkids-co 0.412 (0.56) 0, 3

cancer/tumor 0.013 (0.114) 0, 1 nfem.kids-co 0.092 (0.30) 0, 3

chronic pulmo. 0.016 (0.127) 0, 1 nkids-act 2.61 (1.41) 0, 8

chronic liver 0.005 (0.073) 0, 1 nfem.kids-act 0.765 (0.97) 0, 7

cardio disease 0.035 (0.183) 0, 1 nkids-30 0.597 (0.99) 0, 6

cerebral bl.vessel 0.038 (0.191) 0, 1 nkids-60 0.838 (1.18) 0, 6

mental disease 0.016 (0.125) 0, 1 nkids-120 0.768 (1.22) 0, 9

arthritis/rheuma. 0.195 (0.396) 0, 1 # generations 1.48 (1.06) 0, 4

‘fi. asset’ is financial asset amount, and ‘real est.’ is real asset amount. ‘own house’

is the dummy for owning a house. ‘fam.inc.’ is household income, and pension is pension

and other welfare receipt amount. ‘hi.bl. pressure’ is the dummy for high blood pressure.

‘cancer/tumor’ is the dummy for cancer or malign tumor. ‘chronic pulmo.’ is the dummy for

chronic pulmonary disease. ‘chronic liver’ is the dummy for chronic liver disease. ‘cerebral

bl.vessel’ is the dummy for cerebral blood vessel disease. ‘arthritis/rheuma.’ is the dummy
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for arthritis or rheumatism. ‘male’ is the male dummy, ‘Seoul’ is the dummy for living in

Seoul, and ‘work’ is the dummy for working. ‘kid-par’ is the transfer amount from children

to the parents. ‘nkids’ is the number of children and ‘nfem.kids’ is the number of female

children. ‘nkids-co’ is the number of children cohabiting with the respondent, and ‘nkids-act’

is the number of children economically active. ‘nkids-30’ is the number of non-cohabiting

children living in 1-30 minutes’ distance by public transportation; nkids-60 and nkids-120 are

analogously defined for 31-60 minutes and 61-120 minutes, respectively. ‘# generations’ is

the number of generations living together.

To avoid extreme values in the amount variables, all amount variables are transformed

with ln(·+ 1) so that 0 remains 0 after the transformation and positive values remain posi-

tive. Other than the variables in Table 1, self-reported health status is also available in five

categories. But when health status was used for estimation, its coefficient was significantly

positive, implying that health status is likely to be affected by formal/informal care, and

thus it cannot be used as a regressor. Although the children-related variables can be used as

instruments (IV) for y2, there is no good IV for health status. Hence health status is dropped

from the regressor list. By omitting health status, the y2 endogeneity becomes more likely.

To appreciate the consequence of omitting health status, consider a linear model for

positive health status h and a linear y1 SF with h explicit:

h = θ1y1 + θ2y2 + θ0xx+ κ (θ1, θ2 > 0) and y1 = γhh+ γyy2 + x01γx + u (γh < 0)

where θ’s are parameters and κ is an error term; ‘θ1, θ2 > 0’ means improving health with

health care, and ‘γh < 0’ means lesser formal care for the healthier. Substitute the h equation

into the y1 equation to obtain

y1 = γh(θ1y1 + θ2y2 + θ0xx+ κ) + γyy2 + x01γx + u

= γhθ1y1 + (γhθ2 + γy)y2 + γhθ
0
xx+ x01γx + (γhκ+ u).

Solve this for y1 to get

y1 =
1

1− γhθ1
{(γhθ2 + γy)y2 + γhθ

0
xx+ x01γx + (γhκ+ u)}.

The interest is on the following effects of y2 on y1:

γy (‘net effect’ with h controlled) vs. γ∗y ≡
γhθ2 + γy
1− γhθ1

(‘gross effect’ with h substituted out)
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because only γ∗y is identified by dropping h although the desired effect is γy–but one may

“declare” that γ∗y is the desired effect. Since 1 − γhθ1 > 1, the sign of the coefficient of y2

depends on the sign of γhθ2 + γy which consists of the net effect γy of y2 on y1 and the

‘indirect effect’ γhθ2 < 0 of y2 on y1 through the improved health. Since γhθ2 < 0, γy < 0

implies γhθ2+γy < 0; γy > 0, however, makes the sign of γhθ2+γy ambiguous. ‘γ
∗
y < 0’ does

not necessarily imply γy < 0; but γ∗y > 0 implies γy > 0. Since 1− γhθ1 > 1 and γhθ2 < 0,

the absolute magnitude of γ∗y is smaller than that of γy when γy > 0; but when γy < 0, it is

ambiguous.

Table 2: Logit and Quasi-Poisson for y2

Variables Logit (t-value) QPOI (t-value)

financial asset -0.034 (-1.53) -0.012 (-1.35)

real estate 0.011 (0.26) -0.007 (-0.41)

own hose -0.245 (-1.63) -0.107 (-1.84)

family income 0.057 (1.06) 0.031 (1.50)

pension 0.026 (0.91) -0.012 (-1.25)

age -0.068 (-0.45) 0.006 (0.10)

age2 0.109 (1.16) 0.000 (0.00)

male 0.661 (4.01) 0.029 (0.47)

married 0.119 (0.70) -0.025 (-0.31)

Seoul -0.707 (-3.68) 0.126 (1.91)

work -0.820 (-3.80) -0.109 (-1.40)

kid-par -0.052 (-2.54) -0.006 (-0.70)

nkids 0.225 (2.07) 0.024 (0.63)

nfem.kids -0.180 (-1.63) 0.003 (0.09)

nkids-co 0.097 (0.60) 0.084 (1.36)

nfem.kids-co 0.349 (1.74) 0.057 (0.89)

nkids-act -0.150 (-1.47) -0.028 (-0.74)

nfem.kids-act 0.010 (0.08) -0.127 (-2.75)

nkids-30 0.040 (0.60) 0.046 (2.05)

nkids-60 0.022 (0.41) 0.049 (2.43)

nkids-120 -0.033 (-0.55) -0.009 (-0.42)

# generations 0.227 (2.92) 0.050 (1.64)
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Table 2 ‘Logit and Quasi-Poisson for y2’ presents the estimates for the first-stage. Since

most disease variables are highly significant but of no direct interest, we omit their results in

Table 2 and in the remaining tables to simplify presentation; also omitted are the intercept

estimates. In Table 2, age2/100 (‘age2’) is used. The main variable of interest are the children-

related variables as they are the IV’s for y2 and thus should be significant in explaining y2.

‘nkids’ and # generations are significant for logit, whereas nfem.kids-act, nkids-30 and nkids-

60 are significant for QPOI.

Table 3: SCL, CFE-additive and CFE-multiplicative for y1

Variables SCL (tv) CFEa (tv2, tv1) CFEm (tv2, tv1)

y2 2.135 (2.40) 1.172 (0.98, 1.05) 1.757 (0.16, 1.71)

y2×hi.bl. pressure -0.275 (-2.08) -0.162 (-1.11, -1.14) -0.248 (-0.28, -1.81)

y2×diabetes -0.686 (-3.81) -0.668 (-3.56, -3.68) -0.673 (-0.52, -3.68)

y2×mental disease -0.605 (-1.88) -0.461 (-1.42, -1.50) -0.575 (-0.86, -1.77)

y2×arthritis/rheuma. 0.125 (0.83) 0.123 (0.79, 0.80) 0.133 (0.19, 0.88)

y2×age -0.026 (-2.32) -0.020 (-1.65, -1.70) -0.022 (-0.19, -1.78)

y2×male 0.191 (1.21) 0.237 (1.41, 1.45) 0.201 (0.39, 1.28)

financial asset 0.047 (3.42 ) 0.046 (3.29, 3.31) 0.047 (2.81, 3.40)

real estate 0.159 (4.64) 0.159 (4.71, 4.76) 0.158 (3.81, 4.62)

own hose -0.029 (-0.30) -0.046 (-0.44, -0.44) -0.032 (-0.28, -0.32)

family income 0.001 (0.03) 0.009 (0.27, 0.27) 0.001 (0.03, 0.05)

pension 0.068 (3.48) 0.068 (3.52, 3.52) 0.068 (3.03, 3.50)

age 0.378 (2.29) 0.348 (2.40, 2.43) 0.380 (1.44, 2.31)

age2 -0.262 (-2.43) -0.239 (-2.49, -2.53) -0.263 (-1.50, -2.45)

male -0.136 (-1.15) -0.115 (-0.93, -0.94) -0.137 (-1.05, -1.16)

married 0.093 (0.91) 0.088 (0.86, 0.86) 0.091 (0.65, 0.89)

Seoul -0.006 (-0.05) -0.031 (-0.24, -0.25) -0.006 (-0.04, -0.05)

work -0.184 (-1.63) -0.213 (-1.83, -1.84) -0.187 (-1.46, -1.65)

kid-par 0.026 (1.78) 0.023 (1.48, 1.49) 0.026 (1.41, 1.77)

v̂2 0.414 (0.97, 1.10) 0.027 (0.03, 0.74)

v̂22 0.230 (1.85, 2.00) -0.001 (0.00, -0.85)

v̂32 -0.069 (-2.06, -2.19) 0.000 (0.00, 1.10)
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Table 3 presents the main estimation results where ‘tv’ stands for t-value, CFEa is the

estimator with the additive error for CF, CFEm is the estimator with the multiplicative error

for CF, and ‘tv2’ is the correct t-value taking into account the first-stage estimation errors

whereas ‘tv1’ is the t-value ignoring the first-stage estimation errors (correct only under the

null of y2 exogeneity). For the sake of comparison, we show the SCL results ignoring the y2

endogeneity in the first column, although we will not interpret the results.

Comparing CFEa and CFEm in Table 3, CFEm does not pick up the y2 endogeneity

as the CF (v̂2, v̂22, v̂
3
2) are all insignificant–the Wald test for H0 : γ1 = γ2 = γ3 = 0 is not

rejected. In contrast, CFEa does pick up the y2 endogeneity, which results in appreciable

differences between SCL and CFEa in the estimates involving y2. In the CFEa column,

among the terms involving y2, only the interaction term with diabetes is significant with a

large effect estimate (67% reduction in formal health expenditure as y2 goes up by 1); there

is also weak evidences that y2 interacts with mental disease, age and male.

Also notable in the CFEa column of Table 3 is that tv2 and tv1 are not much different:

there is no reversal of statistical significance except for v̂22 where tv2 is 1.85 while tv1 is 2.00.

In contrast, tv2 and tv1 are much different in the CFEm column, particularly for the variables

involving y2 and v̂2. This might be due to the division of y2 by the regression function for

the multiplicative residual, as this might result in too big numbers and consequently some

numerical instability. The poor performance of CFEm relative to CFEa is surprising, given

the intuitive appeal of the multiplicative residual in the exponential model. This might be

attributed to two factors: the just mentioned numerical instability, and u containing the

heteroskedastic factor present in the additive residual, but not in the multiplicative residual.

Table 4 presents the estimation results under E(y2|x) = exp(x0β) which does away with

logit. In Table 4, neither CFEa nor CFEm pick up the y2 endogeneity in view of the t-values

for the CF’s. As the result, the estimates and t-values of CFEa and CFEm are not much

different from those of SCL under y2 exogeneity. As in Table 3, tv2 and tv1 are little different

in CFEa, whereas they are substantially different for CFEm, particularly for the variables

involving y2 and v̂2.

Although not shown, we also tried the ‘logit-only first stage’ just to see which part be-

tween logit and QPOI contributes more. The results for the mean squared error N−1P
i(y2i−

ŷ2i)
2 where ŷ2i is the estimated E(y2|x) are, respectively, 0.284 (QPOI only), 0.283 (logit

only), and 0.271 (both QPOI and logit as in the two-stage procedure). This shows that most
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explanatory power for y2 comes from its binary aspect and the positive values contribute only

a little.

Table 4: SCL, CFE-additive and CFE-multiplicative for y1: No Logit

Variables SCL (tv) CFEa (tv2, tv1) CFEm (tv2, tv1)

y2 2.135 (2.40) 1.816 (1.40, 1.57) 1.413 (0.55, 1.31)

y2×hi.bl. pressure -0.275 (-2.08) -0.250 (-1.71, -1.80) -0.223 (-0.49, -1.62)

y2×diabetes -0.686 (-3.81) -0.674 (-3.67, -3.78) -0.680 (-0.94, -3.63)

y2×mental disease -0.605 (-1.88) -0.620 (-1.90, -1.88) -0.550 (-1.03, -1.68)

y2×arthritis/rheuma. 0.125 (0.83) 0.131 (0.82, 0.85) 0.146 (0.26, 0.96)

y2×age -0.026 (-2.32) -0.025 (-2.00, -2.05) -0.019 (-0.69, -1.48)

y2×male 0.191 (1.21) 0.195 (1.15, 1.18) 0.216 (0.53, 1.37)

financial asset 0.047 (3.42) 0.047 (3.35, 3.37) 0.047 (3.13, 3.41)

real estate 0.159 (4.64) 0.159 (4.55, 4.60) 0.158 (4.49, 4.72)

own hose -0.029 (-0.30) -0.033 (-0.32, -0.33) -0.032 (-0.30, -0.33)

family income 0.001 (0.03) 0.004 (0.11, 0.11) 0.002 (0.07, 0.07)

pension 0.068 (3.48) 0.069 (3.52, 3.53) 0.068 (3.23, 3.50)

age 0.378 (2.29) 0.362 (2.03, 2.08) 0.372 (1.77, 2.25)

age2 -0.262 (-2.43) -0.250 (-2.11, -2.17) -0.258 (-1.85, -2.38)

male -0.136 (-1.15) -0.132 (-1.08, -1.09) -0.139 (-1.11, -1.18)

married 0.093 (0.91) 0.097 (0.94, 0.94) 0.090 (0.78, 0.88)

Seoul -0.006 (-0.05) -0.015 (-0.12, -0.12) -0.009 (-0.06, -0.07)

work -0.184 (-1.63) -0.199 (-1.65, -1.70) -0.185 (-1.58, -1.62)

kid-par 0.026 (1.78) 0.025 (1.58, 1.62) 0.026 (1.53, 1.75)

v̂2 0.183 (0.37, 0.50) 0.074 (0.10, 1.47)

v̂22 0.102 (0.92, 1.50) -0.005 (0.00, -1.58)

v̂32 -0.027 (-0.80, -1.44) 0.000 (0.00, 1.76)

4 Conclusions

This paper examined whether informal health care can reduce formal health care, where

the formal care y1 is medical and long-term care expenditures (14% zeros) and the informal

care y2 is the number of family care givers (85% zeros). This task posed a number of diffi-
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culties, because y2 is an endogenous regressor that is a count variable with too many zeros,

in addition to y1 having a non-trivial proportion of zeros.

Facing the difficulties, we proposed a two-stage procedure where the first stage is esti-

mating E(y2|x) as the product of logit (using y2 being positive or not) and an exponential

regression function (using only positive y2’s)–the idea borrowed from ‘zero-inflated Poisson’.

The second stage is applying a semi-parametric censored model estimator for y1 with the

endogeneity of y2 removed by a control function (CF). Two types of CF’s were considered:

one based on the additive residual y2 − E(y2|x), and the other based on the multiplicative

residual {y2/E(y2|x)}−1; the actual CF’s used were polynomial functions of these residuals.

Despite the intuitive appeal of the multiplicative residual as an exponential function

appears, the additive residual CF approach performed much better than the multiplicative

residual CF approach. Also, using only an exponential function for E(y2|x) (i.e., ignoring

the too-many zero problem) was tried, but the outcome was inferior to the procedure with

both logit and exponential functions.

Our empirical result using Korean data for the elderly of age 65 and above showed that

informal care is a substitute only for certain cases such as diabetes. There are weak evidences

that informal care effect on formal care interacts also with mental disease, age and male. That

is, as noted in the literature of informal and formal care trade-off, the effect of informal care

on formal care is heterogeneous.
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