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1 Introduction

With low fertility rates prevailing in most developed countries, the populations age fast,
and this entails a high demand for health care. If the health care cost is borne only by formal
health care, then eventually there may be a point at which the health care system ceases
to be sustainable. If formal health care can be replaced to some extent by informal family
health care, then this may lead to a considerable reduction on the formal health care cost.

In the literature of health economics, there are studies that examined the effects of
informal health care on formal health care, which often find that informal care substitutes
for formal care. Although there are studies such as Charles and Sevak (2005) showing that
informal care (measured by the dummy for any informal care) is a substitute for nursing
home care (measured by the dummy for ever staying in nursing home), in the following, we
briefly review three studies that are the most relevant to our paper: Van Houtven and Norton
(2004), Bolin et al. (2008) and Bonsang (2009).

In Van Houtven and Norton (2004), informal care is the care hours provided by all
children (their spouse and their children), and formal cares including nursing home care and
outpatient care are of eight different types in total (mostly continuously distributed, but
formal home care and outpatient surgery are binary). Only about 19% of the respondents
received informal care. Van Houtven and Norton used U.S. data: 1998 Health and Retirement
Survey (HRS) and 1995 Asset and Health Dynamics Among the Oldest-Old Panel Survey
(AHEAD). Van Houtven and Norton found that informal care is mostly a substitute except
for outpatient surgery.

In Bolin et al. (2008), nine formal care variables are used including formal home care,
visits to doctors and hospitalization days. Their informal care (informal care hours from
children and grandchildren) has the non-zero proportion ranging 19-40% across the countries
in their 2004 European data “SHARE”. Bolin et al. found that informal care is a substitute
for formal home care, but a complement to doctor and hospital visits, and that the effects
vary depending on the region (i.e., informal care interacts with the region dummies).

In Bonsang (2009), informal care is the care hours provided by children of the respondent
(a single-living elderly), and formal cares are paid domestic help (low-skilled) and nursing
care (high-skilled); both formal cares are home cares. Using the 2004 European data SHARE,

Bonsang (2009) found that informal care is a substitute for the low-skilled formal home care,



but a weak complement for the high-skilled formal home care, and that the substitution effect
decreases as the level of disability of the elderly person increases (i.e., informal care interacts
with the disability level).

In terms of methods, Van Houtven and Norton (2004), Bolin et al. (2008) and Bon-
sang (2009) used a ‘two-part approach’. But strictly speaking, the methods used there to
deal with endogenous regressors apply only when the endogenous regressors are continuously
distributed. Probably because of this restriction, least squares estimator (LSE) was used to
estimate the reduced form (RF) model for informal care that is an endogenous regressor for
formal care (the response variable). But the LSE is problematic because the informal care
variable includes too many zeros. Also, the response variable has a non-trivial proportion
of zeros. In short, both the main endogenous regressor of interest and the response vari-
able are not continuously distributed to allow linear models, but either discrete or mixed
(discrete/continuous).

One reason for the endogeneity of informal care is that both formal and informal cares
may be determined simultaneously. Another reason is that both cares may share common
factors—most notably, health status. But controlling for health status is troublesome, be-
cause it may be influenced by both cares. Note that, as instruments for informal care,
distances to children, placement of daughters in the birth order, or the number of (female)
children have been used in the literature.

While there is no particularly good solution for the endogeneity problem, this paper
will show a two-stage procedure to overcome the problems of too many zeros in a non-
negative endogenous regressor (informal care) and a non-trivial proportion of zeros in the
response variable (formal care). For the RF estimation of the non-negative regressor, we
will be using ‘Quasi Poisson’ approach, and for too many zeros, we will be using the zero-
inflated Poisson idea of Lambert (1992). In a nutshell, our two-stage procedure is applicable
to censored models with non-negative endogenous regressors including count variables where
the endogenous regressors have too many zeros.

The rest of this paper is organized as follows. Section 2 shows the details of the two-stage
procedure. Section 3 applies the estimator to Korean data to estimate the effect of informal
care on formal care, where informal care is the number of care givers (thus a count). Finally,
Section 4 concludes. A word on notation before proceeding further: ‘a Il b|¢’ denotes the

independence between a and b given c.



2 Two-Stage Procedure

2.1 Model Assumptions

Suppose that y; > 0 is formal care, yo > 0 is informal care (a count), z1 is a k; X 1
exogenous regressor vector for the y; structural form (SF) equation, and x is the k x 1 system
exogenous regressor vector for (yp,ys) that strictly includes x;. That is, only z; in z affects
y1 “directly”, and x is the collection of the exogenous regressors affecting either y; or ys.
Observed are

(ziyy14,Y2i), © =1, ..., N, which are iid across i.

Our approach below applies not only to a count, also to a non-negative ys. In view of the iid
assumption, we will often omit the subscript 7.
Assume that the observed y; and ys are generated from its latent versions y; and y5 as

follows: for unknown parameters v,, 7,, a and 8, an error term u; and a binary variable g;,

y1i = max(0,y1;) with of; =~,y2 + 27, + ui  and ulz is symmetric around 0;
exp(zia)

i and E(yllg=1,2) = 'B).
1+exp(a:;a) an (y2|q 7x7,) exp(xzﬁ)

Yoi = Giys;, Pq = 1]x;) =

Here yj is modelled as censored at zero with its error term symmetric around zero. This
symmetry assumption is to use symmetrically censored least squares estimator (SCL) of
Powell (1986), and may be replaced by another semiparametric assumption if a different
semiparametric censored model estimator as in Powell (1984) or Lee (1992) is used.

Since z appears for ¢ and y3, the ¢ and y5 equations should be regarded as a RF'. This
RF view is necessary because y; does not appear for the ¢ and y5 equations, and also because
E(yslqg = 1,2) = exp(a’B) is adopted, not the more “structural” E(yj|z) = exp(z’[). There
are two views on RF’s as noted in Lee (2012). One view is that there is a SF for yo with

and cc$2w

as the regressors, and substituting the y; SF and then solving the equation for 3
yields the yo RF with x on the right hand side. The problem with this view is that it is not
clear whether the equation is solvable for yo or not, and if so, whether the solution is unique
(and stable). The other view on RF is to take F (y2|z) as the y2 RF, and use a parametric
function for F(y2|z) as an approximation if desired. The problem with this view is that no
information/structure can be imposed on E(y2|z) and the parametric form may be ad hoc.

Some further remarks about the model are in order. First, a sample selection model holds

for y5 because y; is observed only when g = 1; the binary ‘selection variable’ ¢ is assumed



to follow the logit model whereas 5 given ¢ = 1 is posited to have an exponential regression
function. Second, the key implication of the selection model for yo is

E(yolxz) = P(q = 1|2)E(y3lqg = 1,2) = exp(z’c)

= H—Tp(x’a) exp(2').

Third, the expression ‘too many zeros” may be formally defined as

exp(z’a)

H—ex—p(x’a) eXp($,/8)}2] < E[{y2 _ eXp(w'ﬁ)}Z];

El{y2 —

i.e., the logit function improving the exp(z’3) prediction of yo is defined as “too many zeros
in yo”. Fourth, it may be better to model y; also as a sample selection model rather than
as the censored model which is a special case of selection model, but the censored model is
adopted for simplicity because dealing with a sample selection model is difficult—this would
not matter much though as the proportion of zeros is low for y; in our data (14%).

Define 1[A] = 1 if A holds and 0 otherwise, and call y3 = 0 ‘participation zero’. As
done in Lee (2011), it is helpful to compare three different models for ¢ in relation to the

participation zero possibility:

Model 1 : ¢ =1[y; > 0] where y2 (= qy3) = 0 implies y5 = 0;
Model 2 : ¢ determined by some variables (and y5) with participation 0 possible;

Model 3 : ¢ determined by some variables (and y5) with participation 0 impossible.

Model 1 is the ‘corner solution model’ in which case 4o becomes also a zero-censored model
as y1 is. Model 2 is relevant if ¢ = 1 is only an “attempt/try” for an activity and y; is
a “performance” in the activity following the attempt/try. Model 3 is relevant if ¢ = 1 is
having the actual activity and y3 is the degree of the activity with zero ruled out.

For instance, ¢ = 1 may be an attempt/try to export, where y5 = 0 is possible even if
one tries (¢ = 1). Instead of attempt/try, one may define ¢ = 1 as actually exporting and
Y5 as the actual export volume that cannot be zero. Which one between Models 2 and 3 to
adopt may depend on what is available in the data. If a variable ¢ for ‘whether one desires
to export or not’ is available in the data along with the export volume including zero, then
y2 = qy, is the observed export volume with y5 = 0 possible. If only the actual export
volume including zero without such a variable for g is available, then one has no choice but
to set ¢ = 1[y2 > 0] with participation zero ruled out. In our data, since there is no separate

variable for ¢, we will set ¢ = 1[y2 > 0] to adopt Model 3



One may wonder ‘why not adopt Model 1 that looks simpler than Model 3’. The answer
is that there is really no difference between Model 1 and Model 3 for our empirical analysis.
To see the point, suppose y3 = 2’ + vo with ve being logistic independently of x and Model

1 holds. Then

exp(z’ @)
= 1[y3 =1lz'a+ — K = d
q [y5 > 0] [ o+ vy > 0] (q|) T+ exp(z'a) an

E(yslg =1,2) = E(y3lys > 0,2) = 2'a + E(va|vs > —2'a, ) # exp(2’a).

In this case, the exponential model is only an approximation for '« + E(vs|ve > —2'«r, ),
and consequently we need to allow different parameters a for E(q|z) and g for E(y;|lg = 1,z)

as when Model 3 is adopted.

2.2 First Stage To Obtain Control Function

In our two-stage procedure, the first stage consists of two parts: estimating « in the logit
model for E(g|z) and estimating /3 in the exponential model for E(yj|q¢ = 1, x). For the latter,
one can use Quasi-Poisson (QPOI) maximum likelihood estimator (MLE): maximize the
usual Poisson likelihood function with ¢ = 1 attached to use the “sandwich-form” asymptotic

variance. That is, the QPOI maximand is
1 /
i Z gi{y2ix;b — exp(x;b)}
i
and the asymptotic variance matrix is

E~Y{qza' exp(2'8)} - Elgza’{y — exp(/B)}?] - E~ {qax’ exp(2’B)}.

Denoting the first-stage estimators as & and B, the second-stage is estimating v, and v,
for the y; SF allowing for the endogeneity of y2 in the y; SF. As reviewed in Lee (2012), there
are several different methods to deal with an endogenous regressor in a limited dependent
variable (LDV) model-—the LDV model is the zero-censored model for y; in our case. Among
those methods, the most convenient for our empirical analysis is ‘control function (CF)’
approach, because many interaction terms between yo and elements of x will be allowed.
With the endogeneity of yo removed by a CF, we can freely allow such interaction terms,
which is complicated in the other approaches for the y» endogeneity. Specifically, a residual
v9 for ys is obtained from the first stage, and it is used as an extra regressor in the y; SF. Not

just g, but also 93 and 93 can be used if including those terms removes the yo endogeneity



better by accounting for the additive part of u that depends on vg. Then (92, 92, 93) becomes
the CF, and the y2 endogeneity can be tested by looking at whether their coefficients are all
zero or not. Going further than (v, f)%, f)g), higher order terms or interaction terms between
U2 may be used as well.

For an LDV regressor such as g9, it is not obvious which form of residual will be the
best choice for CF. For a count regressor, there is no “natural” residual. To motivate our
approach to this, consider generating a Poisson regressor y with parameter exp(z’ +¢) where
€ with € Il z is related to u so that y becomes endogenous for y1; e.g., u consists of € and an
additive error. To generate y, many exponential random durations with the same parameter
exp(2'¢ + €) should be generated first. Then the number of the exponential durations that
can be fit into the unitary time interval is the desired y—after this, y; can be generated using
(z and) y and u that depend on e. For the endogenous y, at least the following two types of
residuals can be thought of.

The ‘additive residual’ for y is y — exp(2’€), from which it follows that

E{y — exp(2'€) |z} = E[ E{y — exp(2/¢)le, 2} |2] = B[ exp(a'€)e” — exp(a€) |7]

= Elexp(a¢) - (¢ = 1) [z] =0

which holds by rescaling € such that e = 1 and including the constant scale factor in the
intercept of 2’¢. That is, using y — exp(2’§) amounts to using exp(z’¢)(ef — 1) as a CF in
the y; SF. If ¢ is small, then exp(z'¢)(e® — 1) ~ exp(a’€)e. A better choice than the additive

residual might be the multiplicative residual yexp(—2z'¢) — 1, which leads to
E{yexp(—2'€) — 1 |z} = E[ E{y2 exp(~2'¢) — 1|e, x} [z] = E(e° — 1]z) = 0.

Hence, using y2 exp(—2’¢) — 1 is analogous to using e® — 1 as a CF in the y; SF. If ¢ is small,
then e — 1 ~¢.

The main difference between the two residuals is that the additive residual carries the
heteroskedasticity factor exp(2’€) while the multiplicative residual does not. For yo = qy3,
the two residuals are, respectively,

exp(z’'a)
1 + exp(z'a)

exp(z'a)

1+ exp(2a) exp(¢'A)} — 1.

Y2 exp(z’'B) and s

For our empirical analysis, we will try both residuals, because which is better will be deter-
mined ultimately by how much endogeneity can be picked up by each type of residual; the

more the better.



Since SCL in the second stage needs only the symmetry of u|z, the only parametric
assumption invoked in our two-stage procedure is the logit in the first-stage. Since there is
no practical semiparametric estimator for binary responses, assuming logit does not seem so

restrictive. If we desire to avoid even the logit assumption, then we may assume simply

E(ya|x) = exp(2'B).

This will be also applied to our data later, and as it turn outs, its performance is inferior to

our two-stage procedure allowing for “zero inflation”.

2.3 Second Stage with Symmetrically Censored LSE (SCL)

In our two-stage procedure, the second-stage is SCL with a CF used as an extra regressor
to remove the 42 endogeneity. Here we explain SCL first, pretending that y is exogenous for

a while. To simplify notations, define

w=(y2,27) and v = (v,,7,)

to get y1; = max (0, wiy + u;).
Observe

wy+u>0 <= u>-—wHh.

If w'~y > 0, then the censoring of y; at zero replaces the lower tail of v with a “mass” —w'7y.
The idea of SCL is to artificially replace the upper tail with w’y to restore the symmetry of

u. This leads to a moment condition:
B{ 1wy > 0] - (LJu| < w'yu+w'y1{lu] > w']) - w} = 0.
A minimand with the moment condition as its asymptotic first order condition is
%Z[ {y1i — max(0.5y1:, wi)}? + Lyii > 2wiy] - {(0.591:)* — (max(0,w;7))*} ]
i

and SCL is obtained by minimizing this for ~.
If wly ~ oo Vi, then the minimand becomes the LSE minimand N1, (y1; — wiv)?; in
fact, what is needed is only u > —w'y (—w'7y being smaller than the lower support boundary

of u|w) for which w'y ~ oo is sufficient. The second-order (Hessian) matrix of SCL is

H = E(1[|u] < w'y]ww’)



which becomes E(ww') that is the second-order matrix of LSE when |u| < w'vy always (implied
by w’y =~ 00). If the censoring proportion becomes small, then SCL becomes close to LSE,
and in this sense, SCL is a natural estimator for a censored response with a small censoring
proportion. The main advantage of SCL over MLE’s for the censored model is that SCL does
not specify the distribution of u|w and allows an unknown form of heteroskedasticity because
the above moment condition does not require u IT w.

Powell (1986) suggested an iterative scheme to get 4. Start with an initial estimate 4,

say LSE, and then iterate the following until convergence:
¥ = (Z 1[wiFo > 0] - wiw;) ™ Z{l[wﬁo > 0] min(y1i, 2wiYg) - wi}
i i
This does not guarantee global convergence. Also the matrix to be inverted may not be
invertible. If this problem occurs, then removing 1[wj, > 0] in the inverted matrix may
help. From our experience, however, this algorithm works well.

Going back to the case with endogenous ¥, let v9 be either the additive or multiplicative
residual from the yo RF. Then the second stage in our two-stage procedure is SCL with w
augmented by the CF 99 (and 95 and 93). With the endogeneity of y2 removed by the CF,
SCL can be implement as above. The only modification needed is the asymptotic variance
of SCL because the first stage estimation errors & — o and B — [ affect the SCL asymptotic
variance through o9, which is to be examined in detail in the following subsection. Our two-
stage procedure works well computationally, because all estimators involved (logit, QPOI and
SCL) converge well. This computational advantage should not be downplayed as it matters

greatly in practice.

2.4 Asymptotic Distribution

With w exogenous for y, the first- and second-order derivatives of the SCL minimand

give the following asymptotic linear expansion of SCL:
VN@E =) = JLN D HT - 1wly > 0)(1ui| < wiylui + wiyl[|u] > win])w; + 0p(1)
i
- = S H G+ o), where 6= Luly > (1l < wlojos + uirilu 2 i
From this, it follows that, with ‘~~’ denoting convergence in law,

VN(H =)~ N, H'E(({)H™) where E(((') = E{1[w'y > 0] min(u?, (w')?) - ww'}.



As already mentioned, the first-stage estimation errors & — o and B — 8 affect the SCL
asymptotic variance through 09, which is discussed now.

Redefine w and v as

w = (y2;$/1;{72;{7§>@§), and Y= (7y77;771772773)/

where 09 = 09(&, B) that depends on & and 3 is either the additive or multiplicative residual,
and (7,72, 73) is the coefficient vector for (dg, 93, 93).

The presence of the first-stage estimators & and B matters for the ‘gradient vector’ ¢ in
the above linear expansion of SCL, but not for the second-order matrix H. Hence write the

asymptotic linear expansion as
VR =) = 2= SO H G0 ) + 0y(1)

where ¢, and (g denote the derivatives of ((a, 3) for a and f3, respectively, and 7, and 74,
are ‘influence functions’ for & and B :

exp(xiar)

/
G A2 PV
1 + exp(z}a) yzi

Nei = {E(ss')}_lsi for logit score function s; = {y9; —
ngi = [E{qza’ exp(2’B)}  qimi{ya — exp(z]B)}.

Since the dimension of v is (k; +4) x 1 and the dimension of o and 3 are both k x 1, ¢, and
(g are (k1 +4) x k matrices, which can be obtained by numerical differentiation. See, e.g.,
Lee (2010) for more details on this way of accounting for the first-stage estimation errors.

From the asymptotic linear expansion taking into account & — o and B — B, we get
VNH =) ~ NO, HE(\M)H ™) where A; = ¢(a, 8) + E(Car)nai + E(Ca) M-

E(AX) can be estimated consistently by replacing (o, 3,7) with (&,3,4) and the expected
values in A\ by the corresponding sample means. If E(y2|z) = exp(2’() is adopted, then
the only required change is redefining vo without the logit probability and then removing
E(¢,/)n,; in A. The endogeneity of yo can be tested using (51, 99,%3), as their coefficients
should be all zero under the null of y» exogeneity. Although we toiled to account for the
first-stage estimation errors & — o and B — [, they can be ignored for SCL under the null of

1o exogeneity.
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2.5 Details on Control Function

In practice, it may be enough for a CF to carry a significant estimate, and thus the
results under yo exogeneity assumption differ much from those allowing y2 endogeneity. But
it would be more desirable to know what the CF looks like “underneath” and to justify it
properly. Here we take a detailed look at the CF’s under more assumptions.

For an error ¢ related to u and a parameter vector 3, make an extra assumption

E(y3lg=1,2,6) = exp(e’f+¢) and eIl (z,q).

This implies our earlier model assumptions

By =1r.9) = Pla=1lr) (= 1222

E(yslg=1,2) = /E(yé‘lq =1,7,¢)f(elz,q = 1)de = <%XI>(:JE’B)/6€f(6)d8

— exp(’B) exp{ln B(e°)} = exp(a’B + In E(e®)} = exp(a’)

)7

where f(e|z,q = 1) denotes the density of ¢|(z,= 1) and § differs from 3 only in that the
intercept in 3 equals the intercept in 3 plus In E (e°).

The reason for the extra assumption on E(y3|qg = 1,z,¢) can be seen in

exp(z’) , B exp(z'a) ,
E{ys — T+ exp@a) exp(2'B) |z} = E[ E{ys — 1T exp(@a) exp(z'B)le, v} |z]
= 2l 1 -T—Xifz(z’)a) exp(a'B)e” - 1 ixé))f;):(z’)a) exp('f) |2]
B exp(z’a) o2 BVE (e e B exp(x’a) exn(2'8) |z
= | 1+ exp(z’a) exp(a ) E( )E(ef) 1 + exp(a’a) p(='f) |a]
B exp(x’a) exco(z ) - e o=
- E[l + exp(z/a) p(z'f) {E(eé) 1} ] = 0.

That is, using the additive residual CF amounts to using

exp(x’a) e exp(z’a)

1+ exp(z/a) exp(a’f) - {E(ee) —13{= T+ oxp(@'a) exp(2'B)e if € is small}.

Analogously, using the multiplicative residual CF amounts to using {e°/E(e®)} —1 (~eif e
is small).

In the above extra assumption, since we need to have ys exogenous once ¢ is controlled,
the relation of € to u should be the only source for the yo endogeneity. A natural question
to arise is how restrictive the assumption ‘e II (x, q)’ is. Literally, it is restrictive in requiring

that the yo endogeneity source € be independent of the selection equation ¢ as well as of

11



x. But ‘eIl (x,q)’ does not necessarily imply ‘y3 I ¢|z’ that the ‘outcome equation’ y3 and
the selection equation ¢ are independent given x—an assumption often invoked in practice—
because y; has randomness sources other than . To see this point, think of generating an
uniform random variable to use it (along with (z,€)) to generate both y; and ¢; through the

same uniform random variable, ¢ and y4 become related despite ¢ I (z, q).

2.6 Two-Part Approach in the Literature

It is helpful to compare our two-stage procedure to the two-part approach in the litera-

ture. The two-part approach assumed

first part : 1[y; > 0] = 1[y, 92 + 217, +u>0] and y=2"0+v

second part : y1 =&y2 + 1€, +e; given i1 >0

where 0 and £ are parameters, and v and e are error terms.

For the first part, substitute yo = 2’6 + v to obtain

1yr > 0] = 1], (20 + v) + 2"S~v, +u > 0] = 1[z'Y 4+ y,v 4+ u > 0]

where ¢ =~,0+ Sv, and S consists of 0’s and 1’s such that ry =1'S;

1 is the RF parameters for 1]y} > 0] while (fyy, v, ) is the SF parameters. For the endogeneity
of y2 in the first part, a CF approach combined with minimum distance estimator (MDE)
was used: the LSE residual 0 for the ys equation is used along with x to obtain (@, ¥y), and
then (8,7,) is estimated by MDE using ¢ ~ ¥y0 + S7,—simply imagine LSE of ¥ on Yy, S)
to estimate (9,7,).

Some remarks on the two-part approach are in order. First, (’yy, v,) can be estimated in
the 1[y; > 0] SF with © controlled; no MDE is needed. Second, the linear model for y» is not
plausible as y» has many zeros. Third, the second part of the two-part approach has been
“sold” (relative to sample selection models) for a better prediction of y;; hence the second

part is not suitable to allow for endogenous regressors.

3 Empirical Analysis

Our data was drawn from the elderly of age 65 or above in ‘the Korean Longitudinal

Study of Ageing’ for the year 2008. The information on the variables can be found in Table 1.
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In Table 1, ‘formal’ is the annual medical and long-term care expenditure in about $1000—
the other amounts in the table are all annual amounts in the same unit. The number of care
givers is our informal family care variable, 85% of which are zeros. Table 1 also shows yearly
informal care hours (‘care hours’) of which 85% are zeros again, but this variable will not
be used for yo—the estimation results with care hours as yo is mostly insignificant with no

endogeneity of yo picked up by the CF’s.

Table 1: Descriptive Statistics

Variable Mean (SD)  Min,Max Variable Mean (SD)  Min,Max
formal ($1,000)  1.179 (2.34) 0, 48.4 age 74.6 (6.12) 65, 107
# care givers 0.215 (0.58) 0, 4 male 0.425 (0.494) 0,1
care hours 157 (619) 0, 8760 married 0.636 (0.481) 0,1
fi. asset ($1,000)  4.88 (21.6) 0, 500 Seoul 0.137 (0.343) 0,1
real est. ($1,000) 152 (222) 0, 2948 work 0.213 (0.409) 0,1

own house 0.409 (0.49) 0,1 kid-par ($1,000)  13.5 (28.2) 0, 866
fam.inc. ($1,000)  16.3 (21.0) 0, 700
pension ($1,000) 1.42 (4.44) 0, 94.9 nkids 3.99 (1.61) 0, 10
hi.bl. pressure  0.091 (0.288) 0,1 nfem.kids 1.92 (1.40) 0,8
diabetes 0.048 (0.215) 0,1 nkids-co 0.412 (0.56) 0,3
cancer/tumor  0.013 (0.114) 0,1 nfem.kids-co 0.092 (0.30) 0,3
chronic pulmo.  0.016 (0.127) 0,1 nkids-act 2.61 (1.41) 0,8
chronic liver 0.005 (0.073) 0,1 nfem.kids-act 0.765 (0.97) 0,7
cardio disease  0.035 (0.183) 0,1 nkids-30 0.597 (0.99) 0,6
cerebral bl.vessel 0.038 (0.191) 0,1 nkids-60 0.838 (1.18) 0,6
mental disease  0.016 (0.125) 0,1 nkids-120 0.768 (1.22) 0,9
arthritis/rheuma. 0.195 (0.396) 0,1 # generations 1.48 (1.06) 0,4

‘fi. asset’ is financial asset amount, and ‘real est.” is real asset amount. ‘own house’
is the dummy for owning a house. ‘fam.inc.” is household income, and pension is pension
and other welfare receipt amount. ‘hi.bl. pressure’ is the dummy for high blood pressure.
‘cancer/tumor’ is the dummy for cancer or malign tumor. ‘chronic pulmo.’ is the dummy for
chronic pulmonary disease. ‘chronic liver’ is the dummy for chronic liver disease. ‘cerebral

bl.vessel’ is the dummy for cerebral blood vessel disease. ‘arthritis/rheuma.’ is the dummy

13



for arthritis or rheumatism. ‘male’ is the male dummy, ‘Seoul’ is the dummy for living in
Seoul, and ‘work’ is the dummy for working. ‘kid-par’ is the transfer amount from children
to the parents. ‘nkids’ is the number of children and ‘nfem.kids’ is the number of female
children. ‘nkids-co’ is the number of children cohabiting with the respondent, and ‘nkids-act’
is the number of children economically active. ‘nkids-30’ is the number of non-cohabiting
children living in 1-30 minutes’ distance by public transportation; nkids-60 and nkids-120 are
analogously defined for 31-60 minutes and 61-120 minutes, respectively. ‘# generations’ is
the number of generations living together.

To avoid extreme values in the amount variables, all amount variables are transformed
with In(- + 1) so that 0 remains 0 after the transformation and positive values remain posi-
tive. Other than the variables in Table 1, self-reported health status is also available in five
categories. But when health status was used for estimation, its coefficient was significantly
positive, implying that health status is likely to be affected by formal/informal care, and
thus it cannot be used as a regressor. Although the children-related variables can be used as
instruments (IV) for ys, there is no good IV for health status. Hence health status is dropped
from the regressor list. By omitting health status, the yo endogeneity becomes more likely.

To appreciate the consequence of omitting health status, consider a linear model for

positive health status h and a linear ¢, SF with h explicit:
h=01y1 +0ay2 + 0,z + K (01,02 > 0) and  y1 = y,h +v,02 + @17, +u (v, <0)

where 0’s are parameters and k is an error term; ‘1,605 > 0’ means improving health with
health care, and ‘y;, < 0’ means lesser formal care for the healthier. Substitute the h equation

into the y; equation to obtain

yi = Y01y + O2y2 + 0,2 + K) + v, 02 + Ty, +u

= b1y + (V02 + 7)) vz + Vbt + 217, + (s + ).

Solve this for y; to get

Y1 {(vpb2 + Vy)y2 + 0w + iy, + (yps +u)}

11—y
The interest is on the following effects of y2 on y;:

VhGQ + Yy
1-— ’}/hel

¥y (‘net effect’ with h controlled) vs. ~ (‘gross effect” with h substituted out)

*
Y
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because only v} is identified by dropping h although the desired effect is ,~—but one may
“declare” that vy is the desired effect. Since 1 — 7,601 > 1, the sign of the coefficient of y;
depends on the sign of 7,03 + 7, which consists of the net effect v, of y» on y; and the
‘indirect effect’ 75,02 < 0 of y2 on y; through the improved health. Since 7,02 <0, v, <0
implies v,02+7, < 0; 7, > 0, however, makes the sign of 7,02+, ambiguous. “yy <07 does
not necessarily imply vy, < 0; but v, > 0 implies v, > 0. Since 1 — 7,01 > 1 and 7,02 <0,
the absolute magnitude of -, is smaller than that of vy, when v, > 0; but when v, <0, it is

ambiguous.

Table 2: Logit and Quasi-Poisson for ¥

Variables Logit (t-value) QPOI (t-value)
financial asset  -0.034 (-1.53)  -0.012 (-1.35)
real estate 0.011 (0.26) -0.007 (-0.41)
own hose -0.245 (-1.63)  -0.107 (-1.84)
family income  0.057 (1.06) 0.031 (1.50)
pension 0.026 (0.91) -0.012 (-1.25)
age -0.068 (-0.45)  0.006 (0.10)
age2 0.109 (1.16)  0.000 (0.00)
male 0.661 (4.01) 0.029 (0.47)
married 0.119 (0.70) -0.025 (-0.31)
Seoul -0.707 (-3.68) 0.126 (1.91)
work -0.820 (-3.80)  -0.109 (-1.40)
kid-par -0.052 (-2.54)  -0.006 (-0.70)
nkids 0.225 (2.07)  0.024 (0.63)
nfemkids  -0.180 (-1.63)  0.003 (0.09)
nkids-co 0.097 (0.60) 0.084 (1.36)
nfem.kids-co 0.349 (1.74) 0.057 (0.89)
nkids-act  -0.150 (-1.47)  -0.028 (-0.74)
nfem.kids-act ~ 0.010 (0.08) -0.127 (-2.75)
nkids-30 0.040 (0.60)  0.046 (2.05)
nkids-60 0.022 (0.41)  0.049 (2.43)
nkids-120  -0.033 (0.55)  -0.009 (-0.42)
# generations  0.227 (2.92) 0.050 (1.64)
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Table 2 ‘Logit and Quasi-Poisson for yo’ presents the estimates for the first-stage. Since
most disease variables are highly significant but of no direct interest, we omit their results in
Table 2 and in the remaining tables to simplify presentation; also omitted are the intercept
estimates. In Table 2, age? /100 (‘age2’) is used. The main variable of interest are the children-
related variables as they are the IV’s for y2 and thus should be significant in explaining y».
‘nkids’ and # generations are significant for logit, whereas nfem.kids-act, nkids-30 and nkids-

60 are significant for QPOIL.

Table 3: SCL, CFE-additive and CFE-multiplicative for g

Variables SCL (tv) CFEa (tv2, tvl) CFEm (tv2, tvl)

Y2 2.135 (2.40) 1.172 (0.98, 1.05) 1.757 (0.16, 1.71)
yoxhi.bl. pressure  -0.275 (-2.08) -0.162 (-1.11, -1.14) -0.248 (-0.28, -1.81)
yo Xdiabetes -0.686 (-3.81) -0.668 (-3.56, -3.68) -0.673 (-0.52, -3.68)
yaxXmental disease  -0.605 (-1.88) -0.461 (-1.42, -1.50) -0.575 (-0.86, -1.77)

yoXarthritis/rheuma.  0.125 (0.83) 0.123 (0.79, 0.80) 0.133 (0.19, 0.88)
Yo X age -0.026 (-2.32) -0.020 (-1.65, -1.70) -0.022 (-0.19, -1.78)

Yo Xmale 0.191 (1.21) 0.237 (1.41, 1.45) 0.201 (0.39, 1.28)

financial asset

3
21
0.047 (3.42 )
64
3

(
(-
(-
(-
(
(-
(
(3
(4
-0.029 (-0.30)
(
(
(
(-
(-
(
(-0.
(-1.
(

0.046 (3.29, 3.31)

0.047 (2.81, 3.40)

(- (-
(- (-
(- (-
( (
(- (-
( (
( (
real estate 0.159 ) 0.159 (4.71, 4.76) 0.158 (3.81, 4.62)
own hose -0.046 (-0.44, -0.44) -0.032 (-0.28, -0.32)
family income 0.001 (0.03)  0.009 (0.27, 0.27)  0.001 (0.03, 0.05)
pension 0.068 (3.48)  0.068 (3.52, 3.52)  0.068 (3.03, 3.50)
age 0.378 (2.29)  0.348 (2.40, 2.43)  0.380 (1.44, 2.31)
age2 -0.262 (-2.43) -0.239 (-2.49, -2.53) -0.263 (-1.50, -2.45)
male 20.136 (-1.15)  -0.115 (-0.93, -0.94) -0.137 (-1.05, -1.16)
married 0.093 (0.91)  0.088 (0.86, 0.86)  0.091 (0.65, 0.89)
Seoul -0.006 05) -0.031 (-0.24, -0.25) -0.006 (-0.04, -0.05)
work -0.184 63) -0.213 (-1.83,-1.84) -0.187 (-1.46, -1.65)
kid-par 0.026 (1.78)  0.023 (1.48, 1.49)  0.026 (1.41, 1.77)
B 0.414 (0.97, 1.10)  0.027 (0.03, 0.74)
02 0.230 (1.85, 2.00)  -0.001 (0.00, -0.85)
03 20.069 (-2.06, -2.19)  0.000 (0.00, 1.10)
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Table 3 presents the main estimation results where ‘tv’ stands for t-value, CFEa is the
estimator with the additive error for CF, CFEm is the estimator with the multiplicative error
for CF, and ‘tv2’ is the correct t-value taking into account the first-stage estimation errors
whereas ‘tv1’ is the t-value ignoring the first-stage estimation errors (correct only under the
null of yo exogeneity). For the sake of comparison, we show the SCL results ignoring the ys
endogeneity in the first column, although we will not interpret the results.

Comparing CFEa and CFEm in Table 3, CFEm does not pick up the y» endogeneity
as the CF (92,93,73) are all insignificant—the Wald test for Hy : 7, = 75 = 73 = 0 is not
rejected. In contrast, CFEa does pick up the y2 endogeneity, which results in appreciable
differences between SCL and CFEa in the estimates involving y2. In the CFEa column,
among the terms involving yo, only the interaction term with diabetes is significant with a
large effect estimate (67% reduction in formal health expenditure as y, goes up by 1); there
is also weak evidences that yo interacts with mental disease, age and male.

Also notable in the CFEa column of Table 3 is that tv2 and tvl are not much different:
there is no reversal of statistical significance except for ©5 where tv2 is 1.85 while tv1 is 2.00.
In contrast, tv2 and tvl are much different in the CFEm column, particularly for the variables
involving y2 and ¥9. This might be due to the division of y2 by the regression function for
the multiplicative residual, as this might result in too big numbers and consequently some
numerical instability. The poor performance of CFEm relative to CFEa is surprising, given
the intuitive appeal of the multiplicative residual in the exponential model. This might be
attributed to two factors: the just mentioned numerical instability, and u containing the
heteroskedastic factor present in the additive residual, but not in the multiplicative residual.

Table 4 presents the estimation results under E(y2|z) = exp(z/) which does away with
logit. In Table 4, neither CFEa nor CFEm pick up the y2 endogeneity in view of the t-values
for the CF’s. As the result, the estimates and t-values of CFEa and CFEm are not much
different from those of SCL under g9 exogeneity. As in Table 3, tv2 and tv1 are little different
in CFEa, whereas they are substantially different for CFEm, particularly for the variables
involving yo and 0.

Although not shown, we also tried the ‘logit-only first stage’ just to see which part be-
tween logit and QPOI contributes more. The results for the mean squared error N1 > i (Yo —
{2:)> where jo; is the estimated E(ys|z) are, respectively, 0.284 (QPOI only), 0.283 (logit
only), and 0.271 (both QPOI and logit as in the two-stage procedure). This shows that most
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explanatory power for yo comes from its binary aspect and the positive values contribute only

a little.

Table 4: SCL, CFE-additive and CFE-multiplicative for y;: No Logit

Variables SCL (tv) CFEa (tv2, tvl) CFEm (tv2, tvl)
Y2 2.135 (2.40) 1.816 (1.40, 1.57) 1.413 (0.55, 1.31)
y2xhi.bl. pressure  -0.275 (-2.08) -0.250 (-1.71, -1.80) -0.223 (-0.49, -1.62)
yo x diabetes -0.686 (-3.81) -0.674 (-3.67, -3.78) -0.680 (-0.94, -3.63)
yoxmental disease  -0.605 (-1.88) -0.620 (-1.90, -1.88) -0.550 (-1.03, -1.68)
ya xarthritis/rheuma.  0.125 (0.83) 0.131 (0.82, 0.85) 0.146 (0.26, 0.96)
Yo X age -0.026 (-2.32) -0.025 (-2.00, -2.05) -0.019 (-0.69, -1.48)
yo xmale 0.101 (1.21)  0.195 (1.15, 1.18)  0.216 (0.53, 1.37)
financial asset 0.047 (3.42)  0.047 (3.35, 3.37)  0.047 (3.13, 3.41)
real estate 0.159 (4.64) 0.159 (4.55, 4.60) 0.158 (4.49, 4.72)
own hose 20.029 (-0.30) -0.033 (-0.32, -0.33) -0.032 (-0.30, -0.33)
family income 0.001 (0.03)  0.004 (0.11,0.11)  0.002 (0.07, 0.07)
pension 0.068 (3.48)  0.069 (3.52, 3.53)  0.068 (3.23, 3.50)
age 0.378 (2.29) 0.362 (2.03, 2.08) 0.372 (1.77, 2.25)
age2 [0.262 (-2.43)  -0.250 (-2.11, -2.17)  -0.258 (-1.85, -2.38)
male -0.136 (-1.15) -0.132 (-1.08, -1.09) -0.139 (-1.11, -1.18)
married 0.093 (0.91)  0.097 (0.94, 0.94)  0.090 (0.78, 0.88)
Seoul -0.006 (-0.05) -0.015 (-0.12, -0.12) -0.009 (-0.06, -0.07)
work 20.184 (-1.63)  -0.199 (-1.65, -1.70) -0.185 (-1.58, -1.62)
kid-par 0.026 (1.78)  0.025 (1.58, 1.62)  0.026 (1.53, 1.75)
i 0.183 (0.37, 0.50)  0.074 (0.10, 1.47)
o2 0.102 (0.92, 1.50)  -0.005 (0.00, -1.58)
o3 20.027 (-0.80, -1.44)  0.000 (0.00, 1.76)

4 Conclusions

This paper examined whether informal health care can reduce formal health care, where
the formal care y; is medical and long-term care expenditures (14% zeros) and the informal

care Yo is the number of family care givers (85% zeros). This task posed a number of diffi-
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culties, because yo is an endogenous regressor that is a count variable with too many zeros,
in addition to y; having a non-trivial proportion of zeros.

Facing the difficulties, we proposed a two-stage procedure where the first stage is esti-
mating F(y2|z) as the product of logit (using y2 being positive or not) and an exponential
regression function (using only positive y2’s)—the idea borrowed from ‘zero-inflated Poisson’.
The second stage is applying a semi-parametric censored model estimator for y; with the
endogeneity of ys removed by a control function (CF). Two types of CF’s were considered:
one based on the additive residual y2 — E(y2|x), and the other based on the multiplicative
residual {y2/FE(y2|z)} — 1; the actual CF’s used were polynomial functions of these residuals.

Despite the intuitive appeal of the multiplicative residual as an exponential function
appears, the additive residual CF approach performed much better than the multiplicative
residual CF approach. Also, using only an exponential function for E(yz|x) (i.e., ignoring
the too-many zero problem) was tried, but the outcome was inferior to the procedure with
both logit and exponential functions.

Our empirical result using Korean data for the elderly of age 65 and above showed that
informal care is a substitute only for certain cases such as diabetes. There are weak evidences
that informal care effect on formal care interacts also with mental disease, age and male. That
is, as noted in the literature of informal and formal care trade-off, the effect of informal care

on formal care is heterogeneous.
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