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Abstract

We highlight the role of local instrumental variable (LIV) methods in exploring treatment effect
heterogeneity using an empirical example of evaluating the use versus non-use of prehospital
intubation (PHI) in patients with traumatic injury. We find evidence that effect of PHI on inpatient
mortality vary over levels of unobserved confounders giving rise to a phenomenon known as
essential heterogeneity. Under essential heterogeneity, the traditional instrumental variable (IV)
method, when using a continuous IV, estimates an effect that is an arbitrary weighted average
of the casual effects for marginal groups of patients whose PHI receipt are directly influenced by
the IV levels. Instead, the LIV methods estimate the distribution of treatment effects for every
margin and allows for predictable aggregation to recover estimates for meaningful treatment
effect parameters such as the Average Treatment Effect (ATE) and the Effect on the Treated
(TT). LIV methods also allow exploring heterogeneity in treatment effects over levels of
observed confounders. In the PHI analysis, we estimate an ATE of 0.322 (se=0.16, p=0.04) and
a TT of 0.046 (se=0.07, p=0.61). We find strong evidence of positive self-selection in practice,
whereby patients who were most likely to be harmed by PHI were also less likely to receive PHI.
However, the degree of positive self-selection mitigates in regions with higher rates of PHI use.
We also explore factors associated with the prediction of significant harm by PHI. We provide
clinical interpretation of results and discuss the importance of these methods in the context of
comparative effectiveness research.

Key words: Instrumental variables; local IV methods; heterogeneity; prehospital intubation;
mortality.



Introduction

With enriched resources available for conducting comparative effectiveness research (CER) in
the United States and the continuous development of more comprehensive observational
databases based on electronic medical records, statistical and econometric methods for
estimating treatment effects are in great demand. Treatment effects are the primary parameters
of interest in comparative effectiveness research, albeit some effects are more useful for linking
results to decision making within health care than others. Since the goal of CER is to help make
better decisions within health care [1], two fundamental requirements arise in the development
of such methods: 1) the treatment effect parameters reflect the needs of the specific decision
maker in question, and 2) the estimates for these parameters carry a causal interpretation.

In this paper, we explore the comparative effectiveness of prehospital intubation (PHI)
compared to no PHI on inpatient mortality following traumatic injury among patients who
reached the emergency department alive. The safety and efficacy of PHI in trauma patients is
controversial; there are currently no definitive guidelines as to when it is better to perform
intubation at the scene by first responders, or to defer definitive airway management until after
arrival at a hospital to facilitate the most rapid conveyance to advanced medical care. A registry-
based retrospective cohort study demonstrated increased risk of death and long-term disability
in patients with severe traumatic brain injury (TBI) who were intubated prior to arrival to the
hospital, compared to those intubated in the emergency department (EDI) [2]. In contrast, the
largest single-center study, comparing PHI to EDI, demonstrated no significant difference in
rates of ventilator associated pneumonia or death [3]. It was suggested that the results,
contrary to those of prior retrospective cohort studies demonstrating a higher incidence of
pneumonia in prehospital-intubated patients, may have been influenced by a well-established,
standardized paramedic rapid sequence intubation training program with continuous quality

improvement measures.

The problem with these studies, as is widely recognized as the fundamental challenge of
estimating treatment effects from observational data, is selection bias. Selection bias (i.e.,
confounding by indication) arises when factors that can influence the treatment choice, such as
patient health, resource availability and provider skills, also influence outcomes. The
significance of this well-known limitation was famously illustrated in the case of hormone
replacement therapy in post-menopausal women. As several large-scale observational studies
consistently showed these treatments to be effective for preventing chronic cardiovascular
disease, hormone replacement therapy was widely adopted. Use then plummeted when these
studies were eventually disproven by a large randomized trial [4]. It has been shown



subsequently that the reason for the discrepant results was that the observational studies failed
to consider certain confounders such as socioeconomic status [5] or failed to distinguish
initiation of therapy from prevalence of therapy [6]. The significance of overcoming the
limitations of common observational study designs cannot be overstated as it could lead to
fewer mistaken conclusions regarding treatment effectiveness and a greater use of sound
observational studies to develop the evidence base of comparative effectiveness research.
Unfortunately, a study with a randomized design, which can ideally overcome these selection
biases, may be logistically and/or ethically challenged in the context of many crucial clinical
questions, including the case of when to perform intubation in patients with traumatic injury.
Even in the case of the only RCT performed to date in a traumatic brain injury population,
blinding as to the treatment group amongst providers was not possible (as the intubation could
not be concealed), potentially affecting the results of the study [7].

In order to address selection bias, in line with what a pragmatic randomized design should have
accomplished, we will focus our attention to the use of instrumental variables (IV). In what
follows, we highlight the role of traditional and newer IV methods in comparative effectiveness
research, substantiated with evaluating the effectiveness of prehospital intubation using these
methods.

Overview of Instrumental Variable Methods and Interpretation of Results

Instrumental variable (IV) methods have been a cornerstone method for observational studies in
the economics literature and its origins date back to the 1920s [8]. In the last couple of
decades, these methods have gained popularity in the medical literature on the evaluation of
alternative medical treatments [9,10,11,12,13], the types of evaluations that were by and large
restricted to clinical trials. The instrumental variables determine or affect treatment choice, but
do not have a direct effect on outcomes, except to the extent that they influence the choice of
treatment [14,15,16]. Thus, by using IVs, one can induce substantial variation in the treatment
variable, but have no direct effect on the outcome variable of interest. One can then estimate
how much of the variation in the treatment variable induced by the instrument—and only that
induced variation—affects the outcome measure. In econometric terminology, this induced
variation is called the exogenous variation and identifies the desired estimate. These analyses
constitute an important body of work that have advanced the field of CER by going beyond
establishing associations between treatments and outcomes to estimating causal effects of



treatments on outcomes, such as a RCT conducted on a similar population can inform. The
adoption of these techniques for CER, although limited thus far, appears to be accelerating.

Non-essential heterogeneity

The field of CER is also devoted to estimating heterogeneity in treatment effects [17]. In the
presence of treatment effect heterogeneity, however, results from traditional IV approaches may
suffer from lack of interpretability. An IV estimate of treatment effect using standard methods
(e.g. two-stage least squares) is comparable to that arising from an RCT only under the
assumption that treatment effects are constant for everyone in the population with the same
observed characteristics. Even if treatment effects are allowed to be heterogeneous, IV
estimates assume patients or their physicians do not have any additional information beyond
what the analyst of an observational data possess that can enable them to anticipate these
effects and select into treatment that would potentially give them the largest benefits. In other
words, unobserved confounders are assumed not to be moderators of treatment effects (this
situation is denoted as non-essential heterogeneity [20]).

An underlying data generating mechanism for non-essential heterogeneity is illustrated with a
stylized example of potential outcomes in Figures 1(a) and 1(b). In these figures, the X-axis
represents levels of an unobserved confounder, while the Y-axis represents the potential
outcomes. The line connecting the ‘+’s represents the schedule of potential outcomes in the
population had every patient received the control treatment. As constructed, people respond
differently to the same treatment. This is called response heterogeneity. The line connecting
circles represent the schedule of potential outcomes for the same people had they received the
new treatment. Although there is also response heterogeneity from the new treatment, the
differential responses across alternative treatments (denoted by the grey bars in Figure 1(a))
are held constant across people. That is, treatment-effect heterogeneity is constant across
levels of the unobserved confounders. Technically, treatment-effect heterogeneity is denoted as
non-essential only when it is statistically independent of response heterogeneity." Figure 1(b),
illustrates how Vs produce interpretable results in this situation. In practice, we do not observe
the potential outcomes under both treatments for each patient. Rather, we observe outcomes
for a self-selected group of patients receiving each treatment. An IV helps match the
unobserved level of confounding. Therefore, an IV compares outcomes for a treated and an
untreated group of patients, whose treatment choices are driven by the levels of the 1V, and

! Note that for non-essential heterogeneity, there should be full independence between response and treatment
effect heterogeneity, and not just mean independence.



hence the levels of their unobserved confounders are held fixed at some arbitrary value defined
by the specific instrument used [18]. For example, an analyst using distance to treatment
facilities as instruments would, in effect, hold the levels of unobserved confounding fixed at a
specific level, which may be different that the level held fixed by another analyst using physician
preferences as instruments. However, with non-essential heterogeneity, the level of unobserved
confounder at which an instrument is ‘acting’ is inconsequential, since each IV will estimate the
constant treatment effect, which is also the average treatment effect in the population. The
interpretation of IV estimates in such a situation is straightforward.

Essential Heterogeneity

When unobserved confounders moderate treatment effect in a systematic fashion, treatment
effect heterogeneity depends on response heterogeneity, and becomes known as essential
heterogeneity. This is illustrated in Figure 1(c). Since the marginal patients identified by an IV
are entirely dependent on the specific instrument being used and how this instrument affects
treatment choices [15, 16], the use of different instruments by different analysts will produce
different treatment effects because they represent the effects for different groups of marginal
patients, and IV results become instrument dependent. This key insight, originally highlighted by
Heckman [19], is that it is difficult to interpret and apply IV results to clinical practice, where
patients are often believed to select treatment based on their idiosyncratic net gains or
preferences. In response to this insight, most traditional IV methods estimate a Local Average
Treatment Effect (LATE). This estimate is often substantially different from mean treatment
effect concepts such as the Average Treatment Effect (ATE).

A new genre of IV methods originally developed by Heckman and colleagues [20,21,22] directly
addresses these limitations of traditional methods. Known as local instrumental variable (LIV)
approaches, these methods can relax assumptions, allow unobserved characteristics of
patients that influence treatment choices to also be moderators of treatment effects, and
recover the full distribution of treatments effects across all possible margins of patients choices,
not just the one directly influenced by an IV, by explicitly developing a choice model for
treatment selection. This choice model tries to explain choices based on all observed risk
factors and also all possible Vs that are identified in the data, so that for each predicted level of
probability for treatment choice, we observe some patients who choose treatment and some
who do not. One can then study how the difference in average outcomes, the marginal
treatment effect (MTE), between these two groups varies over levels of the probability of



treatment choice (Figure 1(d)). This approach, known as the local instrumental variable (LIV)
approach, uses control function methods to identify the MTEs and subsequently combines them
to form interpretable and decision-relevant parameters of interest such as the ATE or the Effect
on the Treated (TT) or the Untreated (TUT). ATE estimates the average gain if everyone
undergoes treatment as compared to an alternative treatment or no treatment at all. This has
been one of the most popular parameters of interest for health economists and policy analysts
when making inference about health care policies [23]. Treatment Effect on the Treated (TT)
estimates the average gain to those who actually select into treatment and is one ingredient for
determining whether a given treatment should be shut down or retained as a medical practice or
in the formularies. It is informative on the question of whether the persons, choosing the
treatment, benefit from it in gross terms. For CER, there is strong theoretical reasoning for why
a treatment effect that is averaged over all patients in a population, i.e. the Average Treatment
Effect (ATE), can mislead patient or physician decision making, ultimately affecting welfare in
this population [24,25,26]. Therefore, more nuanced subgroup specific effects, represented by
conditional MTEs, are often more useful.

An LIV method can confirm if the assumption of non-essential heterogeneity is valid. It also
provides a seamless approach to explore treatment effect heterogeneity across observed
confounders. Recently, Basu et al. [27,28] applied these methods to estimate ATE, TT and
MTEs of breast cancer treatments on costs and mortality. A detailed description of the theory
and methods on LIV approaches as it relates to CER can also be found in these works.

In this paper, we apply traditional IV and LIV approaches to estimates interpretable treatment
effects and also to explore heterogeneity in effects of the use of prehospital intubation
compared to emergency department intubation on inpatient mortality following traumatic injury.

Clinical Context of Prehospital Intubation and Mortality

Patients who sustain injuries are susceptible to aspiration and loss of airway due to decreased
level of consciousness, whether due to direct head trauma or other severe injury resulting in
shock. Prevention of secondary brain injury by avoidance of hypoxia and hypotension is a
primary goal in the initial treatment of head trauma, and early intubation has been advocated to
facilitate improved oxygenation [29]. However, in 2007, an expert panel concluded that there
was not sufficient data to promote the standard practice of PHI for patients with traumatic brain
injury [30]. These recommendations were based on the available data, including multiple single-



center retrospective analyses with opposing conclusions as to the harm or benefit of PHI. For
example, a review of severely head injured patients in a statewide trauma registry revealed a 4-
fold adjusted risk of death for PHI versus emergency department intubation [2]. Although the
authors contend they had employed the best available risk-adjustment methods including
propensity scoring, unobserved differences in the two groups may have influenced the decision
to intubate as well as the observed outcomes. A single prospective observational study of
prehospital rapid sequence intubation in 209 patients matched to historical non-intubated
controls concluded PHI was associated with increased mortality, possibly due to inadvertent
hyperventilation, transient hypoxia, or longer time at scene prior to transport [31]. Accordingly,
the panel suggested that all of the studies considered failed to account for potentially important
confounders, among the many methodological issues that hampered their ability to definitively
recommend for or against PHI [30]. It concluded that a randomized control trial was one of the
main goals for future investigation.

While not impossible to accomplish, because of the time-critical factors and the subject’s
inability to consent to randomized treatment, out-of-hospital clinical trials necessitate waiver of
consent and are among the most highly regulated studies. This level of scrutiny may be, at
least in part, the reason it took four years to enroll only 312 patients, despite 1045 screened, in
the only randomized controlled trial of prehospital intubation in adult patients with severe head
injury reported to date [7]. It is widely recognized that RCTs may not allow for real-world
conduct of treatments in these settings, and may significantly vary from what is possible or
practical to perform in practice. In the study by Bernard et al [7], patients who did not receive
rapid sequence intubation medications were excluded. Even in employing the most-highly
trained paramedics already certified to perform advanced airway management, the study
required an additional 16 hours of airway management training for study participants to learn
rapid sequence intubation techniques. It has been previously reported that in addition to
training and maintenance of skills, ongoing quality assurance is required for successful
administration of a PHI program [32]. Whether prehospital trauma provider systems adopt such
measures will undoubtedly be impacted by resource availability and the perceived potential
benefit to the patients served.

The effect of PHI may vary over numerous factors, many of which cannot be measured due to
the current limitations of prehospital data collection and reporting. Variability in the success of
PHI may be influenced by patient factors (both pre-existing and injury-related conditions),
provider skill level and/or experience in decision making, resource availability, and

environmental constraints at the scene of injury. We set out to explore heterogeneity in



comparative effects across both the observed and unobserved factors that also may have
played a role in the choice of intubation in practice. We use data from the National Study on
Costs and Outcomes in Trauma (NSCOT) for this purpose. The planned analyses of this data
examined variation in care delivery between level | trauma centers and non-trauma centers,
determined the extent to which differences in care correlate with patient outcome (including
major functional outcomes at 3 and 12 months after injury), and estimated acute and 1-year
costs, describing the relationship between costs and effectiveness for trauma and non-trauma
centers [47,33,34,35,36,37,38,39]. As a rich source of prospectively collected observational
injury-related data, the NSCOT has also been used for a number of secondary analyses,
beyond the originally intended scope of the study [40,41]. In 2007, Bulger and colleagues used
the NSCOT data to demonstrate significant variation in the conduct of out-of-hospital treatments
[42]. The authors observed variation in the rates of endotracheal intubation across regions,
ranging from 5% to 48% of all patients treated, and noted that the variation persisted after
stratification by severity of injury, suggesting that this wide range in practice was not dependent
upon patient injury heterogeneity observed across regions. To date, an IV analysis has never
been used on this data. Moreover, the comparative effects of PHI versus no PHI on inpatient
mortality have rarely been studied in trauma patients, with most retrospective analyses focusing
on the comparison between patients intubated in the field prior to arrival at the hospital to those
intubated in the emergency department.

Theory of Local Instrumental Variable (LIV) Approach

The theory of local instrumental variable (LIV) approach starts with a formal model for choices.
Let the net (latent) utility for treatment,® A, based on which choices are determined,? is given as

A=u,(X,Z)+U, E(U,)=0 D =1(4>0) (1)

where X represents a vector of observed confounders and Z represent a vector of instrumental
variables. U, =A - 1 ,(X,Z) has expectation of zero while I(.) is an indicator function
representing treatment choice D. Equation (1) expresses the typical random utility framework

for discrete choices in econometrics [43,44]. Following this framework, one can write
D=1(A>0)=1U, >-u,(z,x)) =, 1(FU/1 u,)> FUA (—u (z,x)) & 1(FUA (U,)>1-P(z,x)) where

? Latent utility in this framework is an anticipated form of utility rather than an experienced form and implicitly
accounts for decision maker's preferences which varies over all factors. A factor cannot affect treatment choice
unless it affects this latent utility.

* Decision maker in the intubation context is likely the paramedic attending the trauma patient.



P(z,x) = FUA (14(z,x)) and FUA (U ,)=Up ~Uniform(0,1) by construction. The formulation in (1)

decomposes factors that determine choice of treatment into the observed and unobserved
components (again, by the analyst). The additive separability of (1) in terms of observables and
unobservables plays a crucial role in the justification of instrumental variable methods [20,22].
Hereon, we denote S(z,x) = 1 — P(z,x). Consider for simplicity the single instrument case, i.e. Z
is a scalar rather than a vector of instruments. Given model (1) and the assumed independence
of Z and Uy, changing Z externally from U,, , shifts all people in the same direction (towards or

against D = 1). This produces “monotonicity" in the sense of Imbens and Angrist [18].

If Y1 and Y, represent the potential outcomes for a patient with treatment and control
respectively, the treatment effect for that patient is denoted as 4 =Y, -Y, . A Marginal
Treatment Effect (MTE) [45,16,20] is the average gain to patients who are indifferent between
receiving treatment 1 versus treatment 0 given X and Z. These are the patients at the margin as
defined by X and Z. Formally, MTE can be defined as:

MTE(X,z) =E(4| X =x,Z2=2,A=0)=E(4| X =x,U , = —u,(z,X))
= m(X) = o (X) + E(Uq =Ug |U 4 = —14(2, X))

= m(X) = 4o (X) + E(Uy —=Uq |Up =S(z,x)) (2)

where the last equality follows from the fact that S(Z,X) is a monotonic transformation of the
mean utility s, (Z,X) while Up is @ monotonic function of U,. The mean conditional treatment
effect at each level of Up is the value of the MTE at that level of Up. Evaluation of the MTE
parameter at low values of Up averages the outcome gain for those individuals whose
unobservable characteristics make them less likely to undergo treatment, while evaluation of
MTE parameter at high values of Up gives the gain for those patients with unobservable
characteristics which make them more likely to undergo treatment. For example, a local
average treatment effect (LATE) [15] is a weighted sum of all MTE within the margin at which
LATE is identified. In the limit, as 14, (z,x) — 14 (z,x), LATE converges to MTE under standard

regularity conditions [20,22].

An additional feature of MTE is that all mean treatment effects parameters, including the
Average Treatment Effect (ATE), Effect on the Treated (TT), and the traditional IV effect, can be
calculated from weighted averages of MTE. These weights can be obtained from the data at
hand [22,27,46]. For example, the ATE is the sum of all MTE across all distinct values of Up,
weighted equally (conditional on X).
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If MTEs do not vary over Up, it provides direct evidence on the absence of essential
heterogeneity. In such a situation, the conditional MTEs converge to the conditional ATE or the
TTs. One can then solely focus on exploring treatment effect heterogeneity across observed
confounders.

Estimators for MTEs and other mean treatment effect parameters

The method of local instrumental variable can be used to identify and estimate the MTE
over the support of the propensity score, estimated using 1Vs in the choice equation, for
selecting treatment [20,22,46]. Specifically, the rate of change of the mean outcome with
respect to P(Z) evaluated at a particular value of S(z, x) =1 - P(z ,x) gives

0
oP(z,X) Elv|z=2X= X)1_P(Z’X)=UD =E((Y1-Yo) | X = x,up =1-P(z,x))
- IK(P(z,X)) _
=E{A|X}+ Pax) MTE(x,up) (3)

where E{A | X} is the average treatment effect conditional on X and K(P(z,X)) is a
differentiable function of P(z,X). A formal derivation is given in the Appendix. Equation (3)

shows that the key element for the estimation of MTE is the function K(P(z,x)). This function can
be estimated using different econometric techniques, such as using flexible approximation to
K(P(z,x)) based on a polynomial of the propensity score in a regression estimator or using fully
non-parametric matching techniques. Specifically, in a regression context, equation (3) is
implemented by regressing the outcome Y on all covariates, the estimated propensity score
P(z,x), the interaction of the propensity score with all covariates, and a polynomial on the
propensity score, as needed, to fully capture the non-linearity of the outcome with respect to
P(Z). One then computes the partial derivative of the regression estimand with respect to the
propensity score to get an LIV estimand that estimates the MTEs.

11



Methods
Data

The National Study on Costs and Outcomes in Trauma (NSCOT) was a prospective
observational cohort study of trauma treatment at 27 Level 1 trauma centers and 124 non-
trauma hospitals in 15 US regions, including both urban and suburban centers [47,48].The 15
regions were defined by one or more contiguous metropolitan statistical areas (MSA) in 14
states. Subjects enrolled were treated for moderate to severe injury at participating hospitals
between July 2001 and November 2002. Among the major exclusion criteria were patients who
arrived at the hospital without vital signs and those pronounced dead within 30 minutes of
arrival to the hospital. Further details about the selection criteria and sampling methodology
have been previously described [47,48].

For the purpose of the analysis described herein, the NSCOT data were restricted to a subset of
patients whose injury was severe enough that advanced airway management was a reasonable
possibility during the acute out-of-hospital resuscitation phases (1ISS=16). This was primarily
based on the range of severity of iliness in a review of the available evidence in a published
clinical practice guideline from the time proximate to the study period [49]. Indeed, the rate of
PHI in patients with ISS<16 was less than 2% in the NSCOT data. We did not use inclusion
criteria according to “need” for endotracheal intubation because there are no validated
definitions, scales, or prediction rules for this characteristic. Furthermore, while a Glasgow
Coma Score (GCS) of <9 is generally used as an indication for intubation, it was not used as an
inclusion criterion in the current study because the time of GCS measurement with respect to
drug administration (including muscle relaxants associated with rapid sequence intubation
protocols) was not clear, suggesting that GCS might be a result of the treatment rather than an
indication for it. We also restricted the study population to those patients transported directly
from the scene of injury to the hospital by either air- or ground-based prehospital medical
providers. Failed PHI attempts (n=101, 19% of all PHI) were included in the PHI group, even if
they were subsequently intubated in the emergency department (n=80).

The available dataset allowed us to account for a variety of confounders, including patient
demographics, pre-injury health insurance status, and clinical characteristics such as presence
of prehospital shock, presence of severe head injury (as measured by Head Abbreviated Injury
Scale score 23), admission to a trauma center, and injury severity score (ISS) categories.
Among the potential unobserved confounders were skill level and experience of provider
performing intubation [50,51], scene characteristics that might make intubation particularly

12



difficult (such as intubating in awkward positions, dangerous situations or in a moving vehicle),
ability of the provider to sense the need for intubation (e.g., medics have been previously been
shown to be able to reliably predict whether someone has aspirated [52]), and unmeasured

injury status.

The instrumental variable used was the rate of PHI per metropolitan statistical area (MSA). We
computed this variable from the same dataset as our analyses data. However, for each patient,
the level of PHI use in that patient's MSA was calculated after excluding that patient from both
the numerator and the denominator. The IV was expected to be predictive of PHI intubation use
for individual patients— higher use of this procedure in an MSA would be associated with higher
likelihood of the index patient undergoing PHI if treated in that region. The rates are also
expected to be independent of the potential outcomes in the overall target population, as they
are mostly driven by system-level resources and practice guidelines. However, among patients
receiving PHI, patients in high PHI use area may have different levels of unobserved
confounders than those living in a low use area. This creates dependence between the
instrumental variable and the unobserved confounders among those receiving PHI, even if they
are independent in the overall population. It treatment effects are heterogeneous over these
unobserved confounders, the situation of essential heterogeneity arise, and the traditional IV
effect estimates the effect for a marginal group of patients with a very specific level of the

unobserved confounder.

Statistical Analysis

First, a naive logistic regression analysis, controlling for observed levels of confounders, was
run to study the adjusted effects of PHI. Various goodness of fit tests were used to ensure that
the specification fit the data well.

Next, a traditional two-stage residual inclusion (2SRI) approach was applied using instrumental
variables [53]. In the first stage, a logistic regression was used to predict the propensity to
undergo PHI as a function of both observed confounders and the instrumental variables. A
residual was computed by subtracting that predicted propensity score ( p (x,z)) from the
treatment indicator. In the second stage, another logistic regression was used to model the
death indicator as a function of the PHI, observed confounders and the residual computed in
the first stage. The treatment effect was computed based on the difference in predicted

13



probability of death between PHI and no-PHI. Standard errors were obtained using 1000
clustered bootstrap replicates.

Finally, the local instrumental variables (LIV) approach was employed. In the LIV approach, the
logistic outcome regression was run on all covariates (X), the estimated propensity score (p ),

the interaction of propensity score with all covariates, and a polynomial on the propensity score,
K(p;d):

E(Y)=Logit (B + X - B+ X P +K(B;d)) (4)

The degree of polynomial, d, was selected based on likelihood-ratio tests between nested
models with different degrees of polynomials for (P (x,z)). The derivative (dE(Y)/d p ) of the final

polynomial formulation was used as our LIV estimand to predict MTE(x,up):

MfE(x,ud ) :_di(:)

p=up =(1-p(x.z))

The predicted values of the propensity score allow us to define the values of Up over which
MTE can be identified [54]. The larger the support of the propensity score, the bigger the set
over which MTE can be recovered.

The dimensionality of X was reduced by using deciles of the estimated linear predictor ( X -Bz)

in the LIV estimand that is only a function of the X and not the propensity scores.* These
deciles are denoted as Ty hereon, where q = 1,2,...,10. Thus, using our coefficient estimates
from the above regression (equation (4)) MTE(nq ,Up) were estimated by varying up between 0
and 1 and using average predicted MTE(x,up) for each Mg - Note that MTE estimates using a
value of P(Z,X) = p are associated with up = (1 — p). Using the empirical joint density of (’7q ,Up),
which also represents the weights for MTE( My ,Up) required to calculate the empirical ATE

(estimated over the observed common support), we estimate the MTE(up).

Next, we calculate the weights associated with ATE, TT and IV effect and use them to construct
the respective treatment effect estimates. Standard errors for MTE(up) and all the mean
treatment effect parameters are estimated via 1000 bootstrap replicates. All analyses were
weighted using probability weights and accounted for clustering of patients by hospitals.

* This is implemented by predicting x -3, where 3, corresponds to the estimated coefficients on the
interaction term of X and P(Z,X) in the LIV outcomes regression.
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Results

There were 2169 patients in the NSCOT data who met all the inclusion criteria. Of them, 514
(23.7%) were intubated prior to arriving in the emergency department of the hospital where they
received definitive care (PHI). Table 1 illustrates the differences in observed levels of potential
confounders. Compared to non-PHI patients, patients who underwent PHI were on average 8
years older, but were less likely to be 65 years and older, were more commonly identified as
racially White, and on Medicaid. A higher proportion of patients who underwent PHI had
prehospital shock, severe brain injury but no Charlson comorbidity. PHI was also associated
with the highest category of injury severity scores. There was no difference in the rate of PHI
vs. no-PHI by gender or by admission to trauma center.

Table 2 reports the estimated mean treatment effects based on different estimators. The naive
logistic regression analysis, controlling for observed levels of confounders produced a treatment
effect estimate of 0.188 (se = 0.04, p < 0.001). It indicates that after controlling for observed
confounders, on average, PHI increases in-patient mortality by 18.8% compared to no-PHI.

Next, the instrumental variable methods were evaluated. The instrumental variable was found to
be a significant predictor (p < 0.0001) of PHI. In order to explore whether, at the least, the
observed confounders distributed uniformly over the levels of the instrumental variables (a
necessary test), we predicted the propensity of PHI as a function of IV only and then compared
the levels of observed confounders above and below the median of this predicted propensity.
Because a good instrument does not affect outcomes directly, it should considerably reduce the
imbalance in levels of all confounders across the propensity median compared to the
imbalances across treatment receipts. Table 1 reports the p-values for these comparisons on
observed confounders and shows that the imbalance across levels of observed confounders
were drastically reduced. Though not sufficient, this necessary test supports our theoretical
assumptions that the imbalances in the levels of unobserved confounders should also be
reduced across predicted propensity scores and the instrument should not directly affect
outcomes.

The 2SRI approach estimated the treatment effects to be 0.029 (se = 0.09, p = 0.45) (Table 2).
This estimate was about one-sixth of what was obtained via the naive logistic regression. It
says that the casual effect of PHI compared to no-PHI will increase in-patient mortality by 3%,
which is not statistically significant from zero. This IV effect however, may not correspond to any
interpretable mean treatment effect parameter if essential heterogeneity is present. To explore
this, the local instrumental variable approach was used.
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With the local instrumental variable approach, there was strong evidence of essential
heterogeneity. Figure 3(a) shows how the marginal treatment effects vary over the latent
dimension of unobserved confounding. This is analogous to the stylized situation depicted in
Figures 1(c) and (d). Levels of unobserved confounders that made patients highly likely to
undergo PHI are also associated with negative treatment effects or reduced mortality from PHI
versus no-PHI. Similarly, levels of unobserved confounders that made patients less likely to
undergo PHI are associated with positive treatment effects or increased mortality from PHI
versus no-PHI. This provides strong evidence of self-selection behavior; that is, in practice,
patients who were undergoing PHI were most likely to be benefiting from it. Consequently, the
mean treatment effect parameters estimates were found to be substantially different that either
the naive or the traditional 1V estimates (Table 2). The average treatment effect was estimated
to be 0.322 (se = 0.16, p = 0.04), while the effect on the treated was estimated to be 0.046 (se
= 0.07, p = 0.61). It indicates that had PHI been conducted on all trauma subjects, the average
inpatient mortality rate would have increased by 32.2% points when compared to the situation
where all trauma patients undergo no PHI. However, this estimate may be misleading because
such an all-or-none approach is hardly a pragmatic comparison. Perhaps, more relevant is the
estimate for the effect on the treated, which indicates that those who are undergoing PHI in
practice could have reduced their average mortality rate by 4.5% had they not been subjected
to PHI. This estimate, however, did not reach statistical significance.

Finally, treatment effects heterogeneity was explored based on observed confounders. Figure
3(b) illustrates the average treatment effects conditional on the decile of the portion of the linear
predictor in the LIV estimand that is composed of the observed confounders. It was found that
about 30% of the patient in our sample, which corresponds to 16% of the patient population
(after weighting), would have experienced significant increase in mortality had they undergone
PHI versus no-PHI. These patients constitute the extensive margin [26] of the comparison.
Observed factors associated with this group were explored using a logistic regression on an
indicator variable that took a value of one for patients who belong in this group. Table 3
presents these results. We found that older patients, patients with fewer comorbidities, males,
non-Hispanic Blacks, patients on Medicaid, without prehospital shock or severe head injury,
with lower ISS scores and those going to a non-trauma center were associated with significantly
greater harm from PHI than no-PHI. As evident from Table 1, many of these characteristics also
predicted non-receipt of PHI proving strong evidence of positive self-selection in practice.

Obviously, not all patients who belong in the extensive margin and could potentially get hurt due
to PHI, ended up not receiving PHI. Among PHI recipient population, 12.8% could have
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experienced significant decrease in mortality had they not undergone PHI. In order to
understand characteristics associated with increased mortality with PHI among those who were
undergoing PHI, another logistic regression was employed. Table 4 reports these results. The
factors were similar to those predicting harm from PHI in the overall population (Table 3),
however among PHI recipients, age, comorbidities and gender were no longer significant
predictors of harm.

We also explored whether areas with higher PHI use were associated with less positive self-
selection. That is, we wanted to know whether subjects who received PHI in lower use regions
were less likely to be harmed by PHI than those who received PHI is higher use regions. We
compared regions where PHI use rates were lower than the median rate versus regions where
they were higher. Table 5 reports the results. We find compared to the risk of harm by PHI
among the entire population, the risk of harm by PHI among PHI recipients is significantly
reduced in low use areas (p = 0.02), but not in high use areas (p = 0.07), the difference in risk
reduction between low and high use areas being significant (p = 0.003). These results provide
strong evidence of over-use of PHI in high-use regions.

Conclusions

With the increased investment in developing large observational studies for comparative
effectiveness studies, methods that produce valid and interpretable results are in great demand.
Moreover, as the field of CER moves towards a patient-centered paradigm, understanding
heterogeneity in comparative effects becomes crucial. In this paper, we have highlighted the
recent development of instrumental variable methods to address such challenges. We applied
these methods towards a substantive problem of evaluating the comparative effectiveness of
prehospital intubation versus no prehospital intubation on inpatient mortality in trauma patients.

As the field moves more towards patient-centered approach, and especially trying to align these
analyses to decision making in practice, one critical step is to be able to measure variables/
confounders that are also readily available at the point of decision making, so that conditioning
on them is pragmatic. We attempted to select variables that would be readily available for
decision making from the start of care in the prehospital setting. Demographics are fairly easy
to assess by observation. Calculation of the ISS score is time consuming and requires
information not available to formally assess the extent of injury during the initial evaluation of
the patient, but broad categorization of injury severity (mild, moderate, severe, near fatal) would
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be possible in the moments prior to definitive prehospital treatment. Furthermore, severe head
injury with decreased level of consciousness is estimable, and prehospital shock (as defined by
systolic blood pressure<90 mmHg) is measureable. It is less likely that sufficient history would
be known to estimate the patient’s comorbidities or pre-injury insurance status. The admission
to a trauma center is likely a result of the decision making made at the scene, but may have
been directed by preliminary reports of the level of injury and facilitated specialized prehospital
care from the outset. As prehospital electronic data management improves, better capture of
scene data may inform development of more specific mortality risk assessment. With real-time
decision support, the prehospital provider may be able to improve their patient selection for PHI.

It is remarkable that for the most part, PHI is appropriately used, especially in low-use areas.
Based on the prevailing concern for the safety of PHI due to difficulty with maintenance of
intubation skills in low-PHI use prehospital systems, it is somewhat surprising to find that areas
of limited PHI use actually confer less risk to trauma patients due to PHI. One potential
explanation may be that in low-use regions, the number of prehospital providers trained to
perform intubation is also low and hence these medics may accumulate intubating experience
at a higher rate than those in high-use regions, making them more efficient with the intubation
procedure [55]. In fact, Table 5 reveals that the proportion of patients in the overall population
of trauma patients that gets harmed by PHI is higher in high-use regions (20%) than in low-use
regions (13.5%), although the difference did not reach statistical significance. We believe that
patient case-mix is uniformly distributed over these regions (hence use of regional variations as
an IV in the first place with necessary tests provided to this end) and does not contribute
towards these discrepancies. It is possible that the skill level of the intubating provider, and
therefore, the quality of the PHI procedure in itself is different across the regions. Interestingly,
in the LIV context, this does not invalidate the 1V, as only regions with close but different levels
of use are used to estimate local effects. The estimated average effects from the LIV methods
therefore may capture the plausible gradation in the quality of PHI were its use extended to the
entire population.

Additionally, the difference in the level of PHI risk among PHI recipients between low and high-
PHI regions may be explained by patient selection for PHI. Our analysis also reveals that those
patients without head injury, with lower injury severity and without prehospital shock had a
higher likelihood of significant harm from PHI. Not surprisingly, areas with high rates of PHI use
had a lower risk reduction due to positive self-selection, presumably because the indications for
PHI were liberalized. Ultimately, the positive effects of PHI are more pronounced when it is
reserved for only the most critically ill patients that survive to the emergency department, and
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when the indication for PHI is expanded beyond this, the risk of PHI outweighs the risk of
mortality without PHI. Furthermore, those patients transported from the field to non-trauma
centers after PHI were more likely to be harmed by PHI. It is not clear whether this is a result of
the care subsequently delivered at the non-trauma hospital, or the combined patient and
system factors that would lead prehospital providers to perform PHI and transport to a non-
trauma hospital.

One limitation of our study is that the prehospital death rate is unknown; patients who were
declared dead at the scene, en route, or within 30 minutes of arrival if they arrived at the
hospital without signs of life were excluded from the NSCOT study. If PHI has a differential
effect on pre-hospital mortality than no PHI, then focusing analysis on patients who reach the
hospital may provide biased assessment of PHI. It should also make the case mix of patients
who reach the hospital alive in low-use regions different from that in high-use regions, thereby
invalidating the IV. However, we did not find any evidence of such differential case-mix in our
observed data. Moreover, we believe that even if there may be a differential effect of PHI on
pre-hospital mortality, it is likely to be quite small as the overall rate of pre-hospital mortality in
patients with severe trauma is small (~3% [56]).

Overall, we believe that the methods highlighted in this paper can provide a rich set of tools for
researchers to explore hypothesis on heterogeneity in treatment effects. Obviously, it is
necessary to replicate these results before they are implemented in practice. However, such
results can provide informative priors for designing confirmatory trials/studies in this setting,
thereby making the link between information generation and decision making more efficient,
and in line with accomplishing the goals of CER.
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Appendix:
E(Y|Z=2X=X)=E(DY;+(1-D)Yy|Z=2,X =X)
=E(Yy | X =x)+E(D(Y;-Yy)|Z=2X =X)

—E(Yp | X =X)+Pr(D=1Z =2,X =x)-E((Y;-Yp)|D =1X = x)

1
j E((Y;—Y,)|Up = u,X = x)du
—E(Yy| X =Xx)+Pr(D=1|Z =2,X = x).220)="Pzx)

1
j du
S(z,x)=1-P(z,x)

]
—E(Yo | X =x)+ j E((Y;-Y,)|Up =u,X =x)du,
S(z,x)=1-P(z,x)

where the last equality follows as D = (Up>S(z,x)) and therefore,
1
Pr(D=1|Z=2X =x)= | du .
S(z,X)=1-P(z,x)

Now, if we take the rate of change of the mean outcome with respect to the probability of
receiving treatment evaluated at a particular value of S(z, x) =1 -P(z ,x):

O E(|Z=zX=x) —E((Y;=Yy)| X = X,Up =1~ P(z,x)) = MTE(x,Up )
BP(Z,X) 1-P(z,x)=up

The formal proof of consistency for this estimator can be found in Heckman et al. (2006).



Figure 1: A stylized illustration of non-essential (a & b) and essential heterogeneity (c) and estimation of marginal treatment effect
(MTEs) using the local instrumental variable (LIV) approach (d).
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Figure 2: Distribution of estimated propensity score to receive prehospital intubation for
receivers and non-receivers of prehospital intubation, conditional on observed confounders and
instrumental variables.
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Figure 3: (a): Marginal treatment effect profile with 95% confidence band (averaged over
observed confounders) across the propensity to receive prehospital intubation based on
unobserved confounders (Up). (b) Average treatment effect profile and its 95% confidence band
across deciles of linear predictor from the LIV estimand (eq 3). (Black dots indicate that
treatment effects that are significantly different that zero.)
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Table 1: Characteristics of observed confounders across treatment arms

Characteristics No Prehospital Prehospital p-value
Intubation Intubation across IV
N = 1655 N =514 p-value | levels’
% or Mean (sd) % or Mean (sd)
Age (in years) 39 (18) 47 (20) <0.001 1 0.44

Age 18 — 24 22.9% 33.0%

Age 25 - 34 17.6% 24 1%

Age 35-44 18.9% 14.1%

Age 45 - 54 15.2% 13.1%

Age 55 — 64 9.9% 9.1%

Age > 64 26.1% 12.3% <0.001 ] 0.26
Female 26.4% 29.1% 0.27 0.25
Race/Ethnicity:

Hispanic 20.8% 14.7%

Non Hispanic White 49.3% 67.8%

Non Hispanic Black 29.9% 17.5% 0.07 0.09
Pre-injury Insurance:

Uninsured 32.5% 29.9%

Medicare 17.7% 8.9%

Private only 38.3% 41.5%

Medicaid and Other 11.5% 19.7% 0.02 0.02
Prehospital shock 13.1% 27.2% <0.001 ]0.70
Severe head injury 49.3% 76.3% <0.001 ]0.10
Admitted to a Trauma 86% 88% 0.12 0.64
Center
Charlson comorbidity

No comorbidity 74.0% 86.1%

1 comorbidity 14.6% 5.7%

2 comorbidities 5.2% 4.5%

3+ comorbidities 6.3% 3.7% 0.002 0.05
ISS Score quartiles:

16-24 57.1% 28.6%

25-34 33.9% 39.4%

>34 9.0% 32.0% <0.001 ] 0.81
In-hospital death 24% 65% <0.001 | <0.001

* Comparison of covariate levels between above and below median values of the IV. ISS=Injury

Severity Score.
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Table 2: Treatment effect estimates of prehospital intubation compared to no prehospital
intubation on inpatient mortality, across alternative methods.

Estimator Mean effect (se) [p-value]
Unadjusted 0.410 (0.02) [<0.001]
Regression (Logistic) 0.188 (0.04) [<0.001]
IV (2stage residual inclusion) 0.029 (0.09) [0.45]
LIV-based estimates
IV-effect 0.047 (0.09) [0.60]
Average Treatment Effect 0.322 (0.16) [0.04]
Effect on the Treated 0.046 (0.07) [0.61]
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Table 3: Logistic regression exploring association of observed confounders with likelihood of
significant harm versus non-significant effect (reference) from undergoing PHI versus no-PHI.
Reference categories: For age was age > 64 years; for comorbidities was = 3 comorbidities; for
race was Non Hispanic Black; for insurance was Medicaid or other; for ISS categories was

ISS>34.

Signf.+ve MTE
Age 18-24
Age 25-34
Age 35-44
Age 45-54
Age 55-64

No comorb.

1 comorb.

2 comorb.
Female
Hispanic

Non H White
No insurance
Medicare
Private only
PH shock
Head Injury

Trauma Centr
ISS 16-24
ISS 25-34

Odds Ratio

.3610035
.4645746
.1987791
1.459425
-1426938
4.007541
6.832509
4.088569

.566381
-1621984
-5394264
.4903473
.0857763

.093989
.1840843
-4435504
-1748241
12.29417
17.39305

Robust

Std. Err.

.2287032
.2543745
.1104993
.8036378
-0921639
2.834283
3.379375
2.987609
-1188147
-.0760913
.1418702
.1917467
.0467833
.0419582
.0470659
.1158232
.0663716

5.26669
8.891313

.1042936
.1588496
.0668646
.4959807
-040237
1.00202
2.591636
.976291
.3754436
.0646736
.3221547
.22778492
.0294519
.0391821
.1115283
.2658709
.08307
5.309503
6.386199

1.249584
1.358704
.5909426
4.294366
-5060393
16.02801
18.01302
17.12235
-8544226
-4067863
.9032333
1.055261
.2498169
.2254585
.3038423
. 7399716
.3679242
28.4672
47.37064

Bold face indicates p-value < 0.05
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Table 4: Logistic regression exploring association of observed confounders with likelihood of
significant harm versus non-significant effect (reference) from undergoing PHI versus no-PHI

among those who receive PHI. Reference categories: For age was age > 64 years; for

comorbidities was = 3 comorbidities; for race was Non Hispanic Black; for insurance was

Medicaid or other; for ISS categories was 1SS>34.

Age 18-24
Age 25-34
Age 35-44
Age 45-54
Age 55-64
No comorb.
1 comorb.
2 comorb.
Female
Hispanic
Non H White
No iInsurance
Medicare
Private only
PH shock
Head Injury
Trauma Centr
ISS 16-24
ISS 25-34

.0840663
.2078945
.0403868
1.978708
.1895042
.2468598
.1506004
.1353582
.5384088
-1245016
-1183554
-1273144
.0636736
-0456413
-1452067
-1622299
-1324008
16.27762
21.00515

Robust

Std. Err.

.1572976
.4113418
.0723614
4.000658
.3502777
.4076757
.2345979
.2621266
.2199448
-0654659
.0578364
.0692645
.1151043
-0283607
.0805782
-.0733337
.0642135
12.58291
16.24184

[95% Conf.

.0021475
.0043018
.0012054
.0376163
.0050614
.0096992
.0071099
.0030416
.2417624
.0444215
.0454186
.0438316
.0018417
-0135032

-048937
.0668894
.0511757
3.577635

4.61477

Interval]

3.290921
10.04703
1.353147
104.0847
7.095309
6.282958
3.189967
6.023808
1.199045
-3489447
.3084198
.3698006

2.20139
-1542691
-4308597
.3934635
.3425448
74.06036
95.60963

Bold face indicates p-value < 0.05
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Table 5: Comparing low PHI use regions to high PHI use regions for degree of

positive self-selection of PHI use.

Low PHI use

High PHI-use

Proportion who would get regions regions p—;iiue
harmed by PHI [p-value] (< Median (2 Median
Difference
rate) rate)
. 13.5% 20.7%
Among all patients [<0.001] [<0.001] 0.10
. o 7.2% 16.2%
Among patient receiving PHI [<0.001] [<0.001] 0.02
Risk reduction due to positive -47% -22% 0.003
self-selection [0.02] [0.07] :
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