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Abstract

This research discusses results obtained through formulation and estimation of a dy-
namic stochastic model that captures individual smoking decision making, health ex-
pectations, and longevity over the life cycle. The standard rational addiction model is
augmented with a Bayesian learning process about the health marker transition technol-
ogy to evaluate the importance of personalized health information in the decision to smoke
cigarettes. Additionally, the model is well positioned to assess how smoking, and smok-
ing cessation, impacts morbidity and mortality outcomes while taking into consideration
the potential for dynamic selection of smoking behaviors. This research also provides a
novel approach to the empirical construction of the theoretically common “smoking stock”
that facilitates the estimation of investment and depreciation parameters. The structural
parameters are estimated using rich longitudinal health and smoking data from the Fram-
ingham Heart Survey: Offspring Cohort. Results suggest that there exists heterogeneity
across individuals in the pathways by which smoking effects health. Furthermore, upon
smoking, the estimated parameters suggest a positive reinforcement effect and a nega-
tive withdrawal effect, both of which encourage future smoking. The paper also presents
evidence of health selection in smoking behavior that, when not modeled, may cause an
overstatement of the effect of smoking on morbidity and mortality. Finally, personalized
health marker information is not found to significantly influence smoking behavior relative
to chronic health shocks themselves.

*I would like to thank my dissertation adviser, Donna Gilleskie, as well as Vijay Krishna, Maarten Linde-
boom, Brian McManus, Frank Sloan, Helen Tauchen, and participants in the UNC Applied Microeconomics
Workshop, Second Annual Health Econometrics Workshop, and 7th iHEA World Congress for helpful com-
ments. This paper was formerly circulated under the title “A Dynamic Learning Model of Smoking Behavior”.
Email:mdarden@email.unc.edu

TDepartment of Economics, 107 Gardner Hall, CB#3305, UNC-Chapel Hill, Chapel Hill, NC, 27599-3305.

*The Framingham Offspring Study (FOS) is conducted and supported by the NHLBI in collaboration with the
FOS Study Investigators. This manuscript was prepared using a limited access dataset obtained from the NHLBI
and does not necessarily reflect the opinions or views of the FOS or the NHLBI.


mailto:dgill@email.unc.edu
file:rvk@email.unc.edu
mailto:mcmanusb@email.unc.edu
mailto:fsloan@econ.duke.edu
mailto:tauchen@unc.edu
http://www.unc.edu/depts/econ/workshops.htm
http://www.unc.edu/depts/econ/workshops.htm
mailto:mdarden@email.unc.edu
http://www.unc.edu/depts/econ/

Introduction

The decision to smoke has long interested social scientists and health policy researchers
because of the seemingly irrational nature of such a choice. Why would an individual un-
dertake an activity with such clear negative health consequences? A thorough review of this
debate can be found in Sloan et al. (2003). Ultimately, those authors conclude that individu-
als make decisions within an environment that reflects individual preferences but one that is
also subject to information acquisition costs. Gary Becker describes economic decision mak-
ers: “They (economic agents) are not expected to be perfect optimizers, as evaluated by the
analyst, or dispassionate external observers; rather, people do the best they can, given their
information and their cognitive abilities to understand it (qtd. in Sloan et al. (2003) pg. 25).”
An important question addressed by the smoking literature has been: what determines and
shapes “their information?” Furthermore, how does information influence smoking behavior?
And, to what extent has information regarding the health effects of smoking been free from
selection bias? These questions form the basis for the current paper.

The purpose of this work is to analyze the relationship between the consumption of
cigarettes and health in a dynamic discrete choice framework that incorporates learning. In
addition to assessing the role of personalized health information in the decision to smoke, this
paper evaluates the effects of smoking cigarettes on morbidity and mortality outcomes while
taking into consideration the potential for dynamic selection of smoking behaviors. I estimate
the structural parameters of an individual’s optimization problem with the following trade-off:
current enjoyment of cigarette consumption versus the associated uncertain future utility and
health consequences. I consider two dimensions of health: health markers and chronic health.
Health markers are those factors (e.g., blood pressure, cholesterol, etc.) viewed by the medical
literature to significantly predict the onset of chronic conditions (e.g., cardiovascular disease,
cancer, etc.). Given a history of these health markers and smoking behaviors, an individual is
able to more precisely evaluate the effect of smoking on her health markers levels which, in
turn, helps to determine her chronic health probability. More generally, health markers offer
information as to an individual’s overall health condition. Endowed with this information, an
individual makes the smoking choice that maximizes her present discounted expected utility.
Smoking history is modeled as a capital stock and is measured in a novel way so as to facilitate
the estimation of depreciation and investment coefficients while keeping the model computa-
tionally tractable. The structural parameters of the model are estimated with rich longitudinal
data from the offspring of the original cohort of the Framingham Heart Survey.

The current paper fits into and extends the literature in four ways. First, the struc-

tural model embeds the standard rational addiction model of Becker and Murphy (1988). In



the current paper, forward-looking agents evaluate current smoking alternatives while taking
into consideration the future health and utility consequences associated with past and current
smoking behavior. A major contribution of the current paper is to model how health marker
information may alter smoking behavior prior to major chronic health complications. I extend
the literature on smoking responses to personalized health information that has only consid-
ered chronic health shocks (Smith et al., 2001; Khwaja et al., 2006; Arcidiacono et al., 2007).
This distinction is important if the potential gains from information from a chronic health
shock are “too late”. Furthermore, motivated by the Becker quote above, my model allows
for the possibility of learning about the effects of smoking on health. A second contribution is
the model’s ability to assess the impact of smoking, and smoking cessation, on morbidity and
mortality outcomes while accounting for dynamic selection of smoking behaviors. Using data
from across the life cycle, I measure the role of health and mortality transition determinants by
estimating these production technologies within the structural model of lifetime smoking de-
cisions. I allow the unobserved errors that affect smoking, health, and mortality to be serially
correlated through a common permanent unobserved component. My method improves upon
recent papers that estimate health transitions outside the structural model (Adda and Lechene,
2001). Third, my model extends the empirical smoking literature with a novel construction of
the theoretically common “smoking stock”. Using factor analysis in a method similar to Sickles
and Williams (2008), I create a continuous smoking stock index from several variables that
reflect past smoking behavior. This state variable captures the unique smoking history that
each individual brings into each decision making period. Measuring the smoking stock using
this method also allows for the estimation of depreciation and investment parameters (Adda
and Lechene, 2004). Finally, the model is solved using techniques common in current struc-
tural dynamic discrete choice modeling (Rust, 1987; Keane and Wolpin, 1994; Aguirregabiria
and Mira, 2010). To incorporate learning, I combine several features of other recent structural
papers that have explicitly modeled and estimated Bayesian learning processes (Ackerberg,
2003; Crawford and Shum, 2005; Chan and Hamilton, 2006; Mira, 2007; Chernew et al.,
2008). I incorporate permanent unobserved heterogeneity in a nonparametric fashion (Heck-
man and Singer, 1984; Mroz, 1999) following recent structural examples (Arcidiacono et al.,
2007; Blau and Gilleskie, 2008). This method amounts to a random effects specification of
unobserved heterogeneity that is free from distributional assumptions. Conditional on the un-
observed heterogeneity, I use the model to predict the initial conditions (Khwaja, 2010).

To evaluate the roles of learning and information, I use the model and the estimated
structural parameters to simulate smoking behavior and health and mortality outcomes under

different counterfactual scenarios. The results suggest that there exists heterogeneity across



individuals in the pathways by which smoking effects health. I find that the effect of an ac-
cumulated smoking stock on health markers varies widely across individuals relative to the
mean effect. While the average variance in beliefs regarding this effect decreases by 20% after
the first health exam, the estimated mean of the parameter distribution is small and thus, does
not greatly impact smoking behavior.

Simulations of the structural model at the estimated parameter values suggest that health
outcomes vary considerably by the intensity with which one smokes. Indeed, whereas some
descriptive studies (Doll et al., 1994, 2004) consider only whether one smokes cigarettes, the
current paper finds that average life-expectancy is decreased by four and eight years for light
(< 1 pack/day) and heavy (> 1 pack/day) smoking from age 18 relative to life-long nonsmok-
ers, respectively. Furthermore, my results imply that quitting heavy smoking at ages 30, 40,
50, and 60 years of age increases life-expectancy by approximately 8, 7.75, 7, and 5.5 years,
respectively. While these results suggest that there exist life expectancy gains from smoking
cessation at any age, they are less severe in their overall assessment of the health effects of
smoking than are the unconditional results presented in (Doll et al., 1994, 2004). Indeed, I
find that unobserved heterogeneity plays a major role in the dynamic relationship between
smoking behavior and health outcomes. My results indicate that there exists a strong correla-
tion between smoking tendencies and underlying factors that influence mortality outcomes.

Finally, consistent with the Becker and Murphy (1988) theory of rational addiction,
smoking is found to be reinforcing; that is, the marginal utility of smoking is increasing in
the smoking stock. I also find that the costs of withdrawal can prevent individuals from quit-
ting smoking. The reinforcement and withdrawal effects both drive individuals to continue
smoking.

This paper proceeds as follows. Section I provides background on the literature of the
health effects of smoking, risk perception and subjective expectations as they relate to health,
the econometric literature on structurally estimated Bayesian learning models, and preference
structures in the context of smoking. Section II describes the structural model. Section III
describes the Framingham Heart Survey and provides summary statistics. Section IV discusses
identification and measurement issues as well as my econometric approach. Section V presents
the main results of the paper and examines potential policy measures. Section VI offers a brief

discussion and concludes.

I Background

Cigarette smoking is the single greatest preventable risk factor for mortality and mor-

bidity. According to a 2004 Surgeon General report, cigarette smoking is causally linked to



cancers of the bladder, cervix, esophagus, kidney, larynx, lung, mouth, pancreas, and stomach.
Furthermore, there exists a causal relationship between smoking and coronary heart disease,
cerebrovascular disease, atherosclerosis, various respiratory diseases, and several reproduc-
tive maladies. 440,000 deaths are attributed to smoking in the United States each year. Illness
from smoking is estimated to add $157 billion per year to national health expenditures. In
short, a 2004 United States Surgeon General report on smoking concludes by stating: “Smok-
ing harms nearly every organ of the body, causing many diseases and reducing the health of
smokers in general.”!

Behind much of the Surgeon General Report’s results is the ongoing work of (Doll et al.,
1994, 2004). Those authors use survey data of British physicians over several decades to assess
the impact of cigarette smoking on mortality. Their findings suggest that smoking cessation at
ages 30, 40, 50, and 60 lead to improved life expectancies of 10, 9, 6, and 3 years respectively.
Furthermore, life-long smokers face a roughly 25 percentage point increase in the probability
of death during middle aged (35-69). However, Doll et al. do not control for the endogeneity
of smoking with respect to health outcomes nor do they consider the possibility that doctors
in different health states may select into smoking. If, independently of smoking, smokers are
of a worse overall health status than non-smokers, standard statistical methods may overstate
the effect of smoking on mortality. Indeed, only recently have papers in health economics
begun to jointly model smoking and health outcomes. For example, Adda and Lechene (2001)
show that potential life-span and smoking behavior are correlated along unobserved (to the
econometrician) dimensions.

In the current paper, estimation of the primitive parameters of one’s decision making
optimization problem (e.g., preferences, constraints, and expectation parameters) allows me
to assess the impact of smoking on morbidity and mortality outcomes while considering the
potential for endogeneity of and dynamic selection into smoking behaviors. In addition, the
introduction of serially correlated (permanent) unobserved heterogeneity that affects decision
making over the life cycle (including observed initial conditions) allows for the recovery of pa-
rameters that measure the impact of smoking and health markers on morbidity and mortality
that are free of selection bias. Unbiased estimation of these primitive parameters allows me
to simulate the model and impose different patterns of smoking and quitting to examine the
resulting changes in predicted health outcomes.

The other main goal of this paper is to assess the importance of health learning within the
rational addiction framework of Becker and Murphy (1988). One branch of the rational addic-
tion literature has studied the roles of information, risk perceptions, subjective expectations,

and learning in the decision to smoke. For example, Viscusi (1990) models an individual’s

!Centers for Disease Control and Prevention, 2004. http://www.cdc.gov/tobacco/basic_information/index.htm


http://www.cdc.gov/tobacco/basic_information/index.htm

beliefs regarding her health risk from cigarette smoking as a Bayesian function of three fac-
tors: a prior risk assessment, some measure of risk from experience (perhaps smoking history,
age, etc.), and some new information regarding risk. An important question addressed by the
literature has been: what exactly is this new risk information?

One type of new information can be categorized as any information that is directed to-
ward a general audience. A widely publicized example was the landmark 1964 United States
Surgeon General report that linked smoking to lung cancer and certain birth defects. Luther
L. Terry, then Surgeon General, stated that the report “hit the country like a bombshell. It was
front page news and a lead story on every radio and television station in the United States.”?
Did this information deter individuals from taking up smoking? Did smokers at the time re-
spond to the report by quitting? On this question, the literature has been mixed. While much
of the literature suggests that informational anti-smoking campaigns decrease cigarette de-
mand for light to moderate smokers, Sloan et al. (2003) argue that heavy smokers “do not
appear to update these perceptions (on the probability of illness/death due to smoking) in
response to general information; they need the message to be personalized.”

Personalized health information may be an important motivator to quit if heavy smokers
possess an “it won’t happen to me” attitude. Khwaja et al. (2006), studying individuals from
the Health and Retirement Survey (HRS), show that smokers only “learn” about the risks as-
sociated with smoking, as measured by a change in smoking behavior, from a shock to their
own health. Those authors argue that if any health shock other than one’s own would encour-
age smoking cessation, it should be that of a spouse. The authors however find no significant
effect of spousal health shocks on smoking behavior. “The clear differences in the effects of
smoking-related health shocks for current smokers suggest that personalized messages, rele-
vant to their circumstances, are necessary to get their attention and induce changes in their
beliefs (qtd. in Sloan et al. (2003) pg. 124).”

Nearly all previous work that has examined learning or expectation formation with re-
spect to personalized health messages has studied behavioral changes after a major health
shock to self or spouse (Smith et al., 2001; Khwaja et al., 2006; Arcidiacono et al., 2007).
Additionally, most papers focus on individuals above the age of 50, at which age we begin
to observe the major health implications of smoking. I argue that personalized health infor-
mation does not necessarily have to come in the form of a major health shock after age 50.
Indeed, waiting for a major health shock to incite individuals to quit smoking may be too late
in terms of life expectancy gains. The current paper examines the extent to which personal-

ized health marker data at prime ages might inform. Using Framingham Heart Survey data,

2http:/ /profiles.nlm.nih.gov/NN/Views/Exhibit/narrative /smoking.html
3Italics theirs.
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Garrison et al. (1978) shows that cigarette smoking has a negative impact on high-density
lipoprotein (HDL) cholesterol, or “good” cholesterol. Furthermore, due to the nicotine con-
tent in cigarettes, other studies have shown that smoking increases both heart rate and blood
pressure (Bennett and Richardson, 1984; Omvik, 1996). These health markers, among others,
have been directly tied to the risk of cardiovascular disease. To my knowledge, no study has
examined the impact of personalized health marker information on the decision to smoke.
The extent to which information on these health markers may affect the decision to smoke are
central questions of this research. My model builds on the Bayesian learning structural models
of other papers in pharmaceutical demand (Crawford and Shum, 2005; Chan and Hamilton,
2006), fertility and infant mortality (Mira, 2007), marketing (Ackerberg, 2003), and health
plan report cards (Chernew et al., 2008).

Finally, given the nature of the current paper’s learning model, the issue of how to de-
fine preferences under varying degrees of uncertainty requires further discussion. The von
Neumann-Morgenstern axioms that define the expected utility framework dominate the em-
pirical smoking literature. Under this standard framework, agents are indifferent as to the
timing of the resolution of uncertainty. Furthermore, a common criticism when empirically
testing hypotheses derived from the expected utility framework has been the inverse relation-
ship between the coefficient of risk aversion and the intertemporal elasticity of substitution.
Kreps and Porteus (1978) deviate from the expected utility framework by incorporating pref-
erences over the timing of the resolution of uncertainty. A strand of theoretical and empirical
literature has flowed from Kreps and Porteus (1978). (See Kreps and Porteus (1978), Kreps
and Porteus (1979), and Epstein and Zin (1991)) In the current paper, uncertainty over the
individual specific match value is never resolved, rather just lessened (i.e., reduced posterior
variance). Implementing nonexpected utility preferences is currently beyond the scope of this
paper. Interesting future work might consider several preference specifications (e.g., expected
utility, Kreps Porteus preferences, hyperbolic preferences & la Gruber and Koszegi (2001), etc.)

in the context of smoking and addiction.

II Theoretical Model

I specify a dynamic stochastic model of smoking behavior that incorporates learning.
This section outlines the basic theoretical model. Given the limitations of the data, changes
to the model in the empirical implementation are discussed in section IV. Furthermore, the
appendices provide derivations and details of my solution method.

Consider a mixed discrete/continuous-state, discrete-time model of smoking behavior.



The model has a finite horizon in the sense that, while an individual may die prior to period
T, the probability of death equals one in period T. A period is indexed by subscript t and is
assumed to be one year in length. Each period, a forward-looking individual makes a smoking
decision to maximize her lifetime discounted expected utility. Let the decision for individual i

be given by d;, = d, where smoking alternative d is:

0 Do not smoke
d=1{ 1 Smoke <1 Pack/day
2 Smoke > 1 Pack/day

The set of factors that influence individual i’s smoking decision in period t are given by the

state space S;,. Define S;, as follows:
Sy = {AitﬁRit’ Tits 1pit:I_Iit:Xit}

where A, is individual i’s smoking stock entering period t; R;, is her health marker index; 7;,
and 1);, are her mean and variance respectively of her posterior belief distribution; H;, is her
chronic health status; and X, is her set of demographic characteristics. Additionally influenc-
ing behavior, but not listed here, are a preference error €;, and a permanent heterogeneity
term u that are both assumed to be known to the individual but unobserved to the econometri-
cian. Assumptions about these error terms that aid estimation are discussed in section IV.

At the beginning of period t, an individual undergoes her period t health exam and re-
alizes her period t chronic health state H;,, health marker index R;,, and smoking stock A;,.
Using the information from the period t health exam, an individual then updates her beliefs
regarding the evolution of future state variables. The smoking decision is then made and util-
ity (to be defined below), as a function of the decision and period t state variables, is realized.

In the subsections below, I expand upon each of the observed state variables and prefer-

ences.

II.1 Smoking Stock

Following the rational addiction literature, A;, represents the accumulated smoking “stock”.
The concept of a smoking stock is not immediately intuitive. Broadly speaking, the rational ad-
diction literature treats the stock as a measure of past smoking. Medically, however, we might
consider the stock as some accumulation of tar in the lungs that influences health. Alterna-
tively, we might think of the stock as a measure of dependence on nicotine. For the purposes of
this paper, the stock may be interpreted as a continuous summary of an individual’s smoking

history. Here, the extent to which A;, influences health is an empirical question to be discussed



in section IV. Formally, the stock is defined as:

A, =] P {511n(Ait—1) +651[djy =11+ 831[d;—1 = 2] + ' + nit} if o dip >0 D
it 0 otherwise

Equation 1 says that individual i’s time t smoking stock is normalized to O if she has not
smoked in any previous period. Conditional on any past smoking, the stock is specified as a
function of the previous period stock and the previous period decision. 6, can be interpreted
as one minus the depreciation rate of the stock in percentage terms. The nonlinear investment
of light and heavy smoking into the smoking stock are captured by 6, and 65, respectively.
Unobserved permanent heterogeneity is captured by the u term and its factor loading p”.*
Also influencing the stock is an i.i.d. white noise term, 7);,, which is distributed .A4(0, O'n).s
Consistent with the interpretation of the stock as a summary of an individual’s smoking history,

the stock is assumed to be known by the individual in each period.

II.2 Health Marker Index

Define R;, as a continuous scalar summary of a variety of health markers (e.g., blood
pressure, cholesterol, etc.) that is realized by the individual in each period. Similar to the
smoking stock (A;,), R;, is a scalar representation of numerous health factors. I assume that
R;, evolves as follows:

Rie = (Rye—y +X;: ¢ + 5 + pRus. (2)

Here, X, is a vector of sociodemographic characteristics of individual i. I assume that the tech-
nology associated with these characteristics (i.e., ¢») is known by the individual. { captures
the dynamic aspect of the health markers and is also assumed to be known to the individual.
Time invariant and unobserved (to the econometrician) heterogeneity is captured by the u
term and its factor loading p®. Let x;, represent the input from the smoking stock plus an

idiosyncratic, i.i.d. error term that is defined as:
Kit = QiAit + Vit' (3)

Because the individual observes or knows R.,, {, X;,¢, and pRu, x;, is also observed by the
individual. The medical literature suggests that there exists heterogeneity across individuals
in the health effects of smoking. I theorize that each individual is endowed with a time invari-

ant, unknown (to both the individual and econometrician) match value 6; that captures the

4See section IV for a discussion of estimation and interpretation issues regarding the permanent unobserved
heterogeneity.
>Given the exponential stock evolution equation, 7 is a log normal shock.



idiosyncratic effect of the smoking stock, A;, on the health marker index, R;,. I assume that 6,

is drawn from a known population distribution given by:
91' ~ :/V(G 5 O-g ).

K;. therefore serves as an information signal. Over time, by having health exams and thus
observing a sequence of signals, 0; is learned in a Bayesian fashion. Learning is, however,
confounded by the i.i.d. noise term, v;,. Indeed, without v;,, an individual would perfectly
learn their match value 6; at the first health exam (i.e., the first realization of «;,). While v;,

is unknown, its distribution is known and given by:
2
Vi ~ A(0,07).

Because 6; is time invariant, and because the distributions of 6; and v;,, as well as the stock

A,,, are known, over time, an individual can learn their idiosyncratic value of ,.°

II.3 Learning

Let an individual’s period t posterior beliefs, those with which she forecasts future health
markers, be given by 7;,, her posterior mean, and v;,, her posterior variance. I assume ratio-
nal expectations such that an individual’s initial belief, prior to any health exams, regarding
her true 6; (the marginal effect of one’s smoking history, A;,, on health markers, R;,) is the

population distribution.” Initial beliefs (t = 0) are:
Tio = Eo(6;) = 2

Yio = Vo(6;) = 03~
Expectations about future health marker transitions evolve in the current model with the re-
ceipt of personalized health information. In deriving posterior beliefs, consider an individual
in period t with smoking stock A;,. This individual has two fundamental sources of infor-
mation: her prior beliefs, (7;,_1,%;,_;), and the observed results from her period t health
exam, k;,. Appealing to the assumption of conjugate prior and signal distributions, the period
t beliefs have closed form solutions that are given via Bayes’ Rule. The posterior mean and

variance are :®

Ay P
T = E(O;|;1,Ai, Tiom1, Yiro1) = L 0, + — Tit—1 4
o? Y,
v it—1

®The assumption that an individual knows the technology of the health production function is ubiquitous in
health economics. That is, typically 6; = 6 Viand oo =0. 0 is then estimated and assumed to be the marginal
product that all individuals use to solve optimization problems.

’The rational expectations assumption is what is typically made in most models of health transitions.

8Derivations of these equations can be found in Appendix B.
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2
’L/)i[—lo-q/

—_—. (5)
A?L-,l)bit—l + 0-12/

Qpit = Var(eilAitn Qpit—lz Gv) =

Here, 6;, is the least squares estimate of k;, on A;, from the within individual variation of the
t'" health exam. Note that these beliefs have the following appealing properties. First, the
posterior mean is a weighted average of 6,, and the original prior mean 7;_;. Second, the
weight placed on the period t signal (i.e., 0,,) is increasing in the smoking stock. Finally, the
posterior moments of an individual for whom the stock equals zero (i.e., A;, = 0) collapse to

the prior moments.

I1.4 Chronic Health

Let H;, represent an individual’s overall health state. An individual’s overall health state
is determined by the presence of any chronic conditions. Let H;, = h, where outcome h is as
follows:

he 1 if Chronic Condition
“ | 0 if No Chronic Condition

What differentiates H;, and R;, is “reversibility”. While R;, changes each period, I assume
that upon diagnosis of a chronic condition, an individual has the condition forever.’ Let the

probabilities of transiting to different chronic health states in period t + 1 be:

h=0 _ [1- P(Hit+1 = 1|Sit1ditJ uu)] if H;=0
O if Hit = 1

it+1

=l — P(Hj 11 =1S;, dyp, ) ifHy =0
it+1 1 ifH, =1
Define the relevant probability, P(H;, ., = 1|S;,,d;;, ), with the following binary logit equa-

tion:
exp(Ag+Aq Ry +2AoR% +A31[1980s]4R; +A4 1[1990s 4R, + [ A5+ ARy, Jedir + 27 X +pT 1)

(6)

1+exp(Ag+A R+ AR +A31[1980s1%R; +A4 1[1990s]%R;, +[As+AgR; 1%di +A7X i +p" 1)

Here, R;, is the health marker index defined above, X;, is a vector of exogenous individual
characteristics, d;, is the smoking choice and u is an individual, time invariant unobserved
heterogeneity term. The factor loading superscript H simply differentiates it from other factor
loadings in the model. A4 and A, capture changes over time in how health markers affect
the probability of chronic disease incidence (perhaps due to advances in medical technology,
pharmaceuticals, etc.).

In forecasting future chronic health transitions, I follow the literature and assume that

an individual has rational expectations and that she understands the technology associated

This assumption captures the fact that upon having an heart attack, for example, an individual is in a funda-
mentally different health state even if they don’t have repeated heart attacks (Khwaja et al., 2006).
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with the chronic health transition probability. A natural question becomes, why do individuals
in the model learn about how smoking affects health markers but not chronic conditions? By
modeling learning about the effect of A;, on R;,, however, individuals are indirectly updating
their expectations about future chronic health transitions because the health marker index
enters the chronic health transition probability. Furthermore, the purpose of this paper is to
explore the importance of health information prior to major health shocks. Imposing that
individuals understand the technology (i.e., the As) associated with covariates in the chronic
health transition equation is the standard approach. While future work may incorporate learn-

ing about health transition probabilities, such learning is currently beyond the scope of this

paper.
II.5 Mortality

While an individual may die prior to period T, death is assumed to occur with probability
one in period T. Define an indicator for death at the end of period t, M;,.;=1, and let its

corresponding probability, ¢;,,; = P(M;,; = 1|S;;, d;;, ), be given by:

exp(wo+wRi +woR2 +w3H; 41 +[wa+wsRi +weHi 1 1#d; +@71[1980s 1#H; 1 +wg 1[19905]%H 41 +woX; +0M 1)

(7)

1+exp(wo+w Rir+woR2% +w3Hip 1+ g+ wsRi+w6H 41 1%d; +w71[1980s1%H; 1 +wg 119908 1+H, 1+ woX i +p™ 1)

Here, H,,,,, is individual i’s chronic health state at the end of period t.!° Again, the superscript
on the factor loading simply differentiates it from other factor loadings. The technology for
the death transition equation is assumed to be known by the individual. wg and w, capture
the fact that, conditional on having some chronic illness, the probability of death from that
illness may have changed over time due to medical advances. Furthering the discussion above,
because the health marker index enters the death transition equation directly (and indirectly
through the chronic health term H,,), individuals are indirectly updating their expectations
about death transitions conditional on their smoking choice through the learning process.
Assuming that the ws are known by the individuals is the standard approach and one that can
be relaxed in future work.

19The timing convention here is due to data aggregation. Clearly, any chronic health event occurring in period
t must occur at or before the time of death, if death also occurs in t. Therefore, to accommodate the frequent
observation in the data of an individual dying from a chronic health event, the appropriate chronic health data
point in this equation is H;; ;.
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I1.6 Preferences

Following the standard expected utility framework, the deterministic portion of per pe-

riod utility associated with health state h, (h = 0, 1), and smoking alternative d;, = d is:
—h
U, (A, di = d,R;, X, u) = agp + (g + agdy + agR; + agAge; ) * [dy, = 1]
+(as, + agpdic + anR; + agAge; ) * [d;, = 2]

+agy * [diy_y # 0] % [d;, = 0] + oy + 1A% + pU"u
(8)

The specification accommodates any nonlinearity in the effects of light and heavy smoking on
utility. While ;. (as.) is the direct marginal utility of light (heavy) smoking, a,. (a.) captures
the extent to which past consumption reinforces current consumption. a,. (a4.) captures a part
of the intertemporal trade-off in utilities. The extent to which the health marker index affects
the marginal utility of smoking is captured by as. (a,.). Note that higher values of R;, and A;,
imply worse health and a higher smoking stock respectively. The sign and magnitudes of a,.
as., Ag., and a,. are empirical questions. a,. (ag.) captures changes in the marginal utility of
smoking across the lifespan. Specific withdrawal costs from quitting, which also capture part
of the intertemporal utility trade-off, are captured by a,.. Finally, a;,. and a,,. capture toler-
ance in smoking. That is, the extent to which a given level of stock affects utility is captured
here regardless of smoking behavior.

Relative preferences over smoking alternatives hinge on two main factors. First, prefer-
ences vary by the chronic health state (H;, = h). The extent to which the marginal utility of
smoking varies across chronic health states remains an open question. Generally, the marginal
utility of consumption of any normal good is thought to be lower in worse health states (Vis-
cusi and Evans, 1990; Gilleskie, 1998). If however smoking provides relaxation and comfort
when stricken with a chronic illness, the overall marginal utility of smoking may be larger in
worse health states. Estimation of the structural parameters will therefore empirically test for
the sign of the marginal utility of smoking across health states. Second, as seen in equations
1, 2, and 3, current period smoking affects the size of the next period smoking stock, which
in turn affects the next period health marker index and next period utility. Given the dynamic
nature of the model, individuals evaluate smoking alternatives while considering the future
marginal utility of smoking as well as the future consequences of a higher A;,.

Following Rust (1987), let the total current period utility be the sum of the determin-
istic utility from equation 8 and an additive i.i.d. preference shock that is alternative and

health-state specific:

1

—h
Uiht(Ait: dit = d’Rit:X't: u, eit) = Uit(Ait: dit = dJRit’Xit’ nu’) + E?th'
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In the empirical implementation below, efth is simply an additive econometric error; however,
in the theoretical model, efth is given a structural interpretation as an unobserved state variable
(Aguirregabiria and Mira, 2010). The alternative specific lifetime value function in health state

h, conditional on unobserved heterogeneity u, is:

1
7 a a
th(sit’ GfthW) =U, (A, die = d:Ritjxit:M)+€?th+/3 [(1_git+1)2 T B [V (Sicn l)ldye = dl].

a=0
Here, V%(S,;,|u) is the maximal expected lifetime utility of being in health state a in period
t + 1. The value function is conditional on the unobserved heterogeneity component u. The
expectation operator is taken over the time t posterior distribution of 6, as well as other shocks
that determine future state variables and preference shocks. Given the unitary dimension of
the posterior distribution, as well as the i.i.d. nature of other shocks to the model, I use a
Monte Carlo method to evaluate the expectation within solution to the model .!! Let VZ(-) =

V() - e?. If we assume that €

: ¢ has an Extreme Value Type I distribution, then the maximal

(EMAX function) expected lifetime utility has the following closed form solution:

—h
Vh(Sit+1|u)=EC+ln(Zf;:1 exp(Vd(Sl-tHIu))) V¢, Vh. 9)

Here, EC is Euler’s constant. Furthermore, because the error term ef is additively separable,

the conditional choice probabilities take the following dynamic multinomial logit form:

exp (V3(Si:1w))
> exp(Vy(Silw)

To preview the empirical implementation, the conditional smoking choice probability in equa-

p(d;, = dlsit: u) = Vt, Vh (10)

tion 11 enters the likelihood function. The parameters that dictate the choice probability are
structural in the sense that they are follow from the above maximization problem. Also to en-
ter the likelihood function are the health and death transition probabilities, as well as health

marker index and smoking stock transition equations.

III Data: The Framingham Heart Survey

The Framingham Heart Survey is one of the longest running panel studies in the world.
With the stated goal to “identify the common factors that contribute to cardiovascular disease”,
the survey contains repeated observations of individuals over a 50 year period.!?> Beginning
in 1948, the Framingham Heart Survey began collecting biennial health data from 5107 indi-

viduals living in Framingham, Massachusetts. These individuals formed what became known

1See Appendix A for additional details.
12The Framingham Heart Survey: http://www.framinghamheartstudy.org/index.html
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as the Original Cohort. In 1971, the Framingham Heart Survey began following the offspring
of the Original Cohort to form the Offspring Cohort. Each cohort represents a different panel
study that has continued into the 21st century. The main drawback of these data is that all
participants in the survey are from Framingham. Therefore, there is no geographic, and lim-
ited demographic, variation. Another drawback of these data is the lack of income measures.
However, the data contain a wealth of health and smoking information that are ideal for ana-
lyzing the trade-off between smoking and the potential for future health shocks.

The structural model above is estimated with data from the Framingham Offspring Co-
hort.!® The decision to focus on data from the Offspring Cohort stems from the consistency
with which the health exams were administered. Smoking and health questions changed over
time in the Original Cohort; thus, constructing uniform measures of smoking history, per-
period behavior, and health variables (especially health markers) proved to be difficult. In
constructing the sample used in estimation, I drop all individuals with a missing exam and
all those lost to attrition.'* Table 1 explains my process of sample construction.’® The final

sample consists of 19,461 person/year observations.

Table 1: Sample Construction

N Description

4989 Framingham Heart Survey Offspring Cohort Participants - Restricted Sample

3730 Sample after dropping those individuals that skipped one or more of the health exams
3008 Sample after dropping all person/year observations of individuals who attrit

3008 unique individuals yields 19461 person/year observations.

Source: The Framingham Heart Survey, Offspring Cohort.

III.1 Ssample Statistics

The sample statistics given in this section are by Framingham Heart Survey exam. Indi-
vidual range in age from 13 to 62 at the first exam (between 1971 and 1975). Offspring Cohort

health exams have been administered at roughly four year intervals from 1971 to the present.

131n another study, I am examining the intergenerational transfer of smoking preferences between Original and
Offspring Cohort participants.

14671 individuals are lost to attrition (i.e., some reason other than death) at some point during the seven
exams. This constitutes approximately 18% of my sample. The decision to drop these individuals is based on
the computational tractability of modeling attrition. Simple t-tests for difference of means suggest that those
that attrit are slightly more likely to be women, have a three point lower level of systolic blood pressure on
average, and have a statistically insignificant difference in coronary heart disease incidence than their nonattriting
counterparts. Those that attrit are on average slightly more likely to smoke.

15The full sample contains 5124 individuals. For this work, I only have access to data for those individuals
from whom consent for distribution was granted.
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While variation in the timing of the health exams may seem detrimental to implementing the
structural model above, as I discuss in section IV, in estimation I exploit this variation to help
identify key parameters of the model. Indeed, section IV provides the majority of the sample
statistics for data used in estimation. In the empirical implementation of the model, I expand
these data to reflect the yearly decision making model presented above. I therefore postpone
the presentation of smoking and health transition statistics by age until the empirical imple-
mentation description in section IV.

I have data for each individual in the Framingham Heart Survey Offspring Cohort for
up to seven health exams. Initial health exams were conducted between 1971 and 1975. For
each participant, subsequent exams occurred at varying time intervals. Table 2 provides in-
formation on the average timing of each exam across individuals, in addition to demographic

information. Because attrition has been eliminated, the number of individuals at each exam

Table 2: Sample Characteristics by Exam

Exam | Mean Year Mean Age St. Dev. Age % Female % Married # Individuals
1 1973 37.0 (10.28) 50.0 80.5 3008
2 1981 44.3 (10.05) 50.1 82.9 2921
3 1985 48.3 (9.99) 51.1 83.0 2849
4 1988 51.5 (9.99) 51.5 80.6 2796
5 1992 55.0 (9.83) 52.1 79.9 2709
6 1996 58.6 (9.69) 52.7 77.2 2613
7 1999 61.5 (9.58) 53.1 74.7 2565

Ages in the sample range from 13 in exam 1 to 88 in exam 7.

reflects only those that have survived. Over the health exams, the sample becomes slightly
more weighted toward female and non-married individuals. For confidentiality reasons, all
survey participants are white. Table 2 also shows the great variability in ages across the sam-
ple. At the first exam, there are individuals who are as old as the average age at the final exam.
Indeed, over the entire sample, ages range from 13 to 88. Table 3 gives sample percentages
of the maximum number of years of education by category. The sample reflects a rather well
educated cohort for the time period. Nearly 89% of the sample has a high school degree or
better.

Table 4 breaks down the sample by smoking prevalence over exams. Over the seven
exams, the sample smoking prevalence drops from roughly 41% to 11%. Interestingly, at the
first exam, smoking prevelence in the sample is roughly consistent with that of the United
States average prevelence (37% of Americans smoked in 1973). However, by the final exam,
the sample percentage of smokers has decreased to roughly 11% whereas the national average
fell to only 23.3%. The sample is also clearly older than the general population by the seventh
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Table 3: Education

Education Years % of Sample
0-4 3.2%
5-8 1.0
9-11 6.1

12 32.8
13-16 43.2
17+ 13.8

N = 3008. Percentages reflect highest attained level of education.

exam.'®

Table 5 shows the percentage of the sample living with a chronic condition at each health

exams. I define a chronic condition to include a wide variety of cardiovascular diseases (e.g.,

Table 4: Smoking Behavior by Exam

Exam | Nonsmokers Light Smokers Heavy Smokers
< 1Pack/Day > 1 Pack/Day
1 59.0% 26.7% 14.3%
2 61.3 24.4 14.2
3 77.2 14.3 8.5
4 81.2 12.8 6.0
5 85.2 11.0 3.9
6 87.9 9.5 2.6
7 88.9 8.7 2.5

coronary heart disease, myocardial infraction, cerebrovascular accidents, congestive heart fail-
ures, etc.) and cancers (lung, larynx, tongue,esophagus, etc.). The decision to aggregate the
data to this level stems from the computation burdens of estimating additional parameters in
the structural model. As in the theoretical model, I assume that upon transiting to a chronic
health state, an individual remains in that state for life. The incidence of new chronic condi-

tions is in column 3 of table 5.

IV Empirical Implementation

In implementing the model described in section II, there are four main hurdles. First,
state variables A;, and R;, must be constructed from the Framingham data in such a way as
to capture an individual’s smoking history and health markers respectively. For each of these

variables, I employ principal component analysis in a method similar to that of Sickles and

16Centers for Disease Control and Prevention: http://www.cdc.gov/tobacco/basic_information/index.htm
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Table 5: Chronic Health by Exam

Exam | Chronic Condition Newly Chronically Ill
at Exam at Exam
1 0.2% 0.0%
2 4.0 3.8
3 7.0 3.4
4 9.6 3.1
5 12.2 3.9
6 16.0 5.0
7 20.3 4.8

Williams (2008). The second hurdle lies in the timing of the health exams. While the data
contain only (at most) seven exams over a 40-year period, the theoretical model is based on
a yearly decision making process over a finite time horizon. As explained below, I exploit ret-
rospective questions in the data to construct a dataset that mirrors the timing of the model. I
use predictions from solution to the model to integrate over “off years” and to explain the ini-
tial condition for each individual. The third hurdle involves modeling permanent unobserved
heterogeneity and resolving any initial conditions problems. A final hurdle is identification of

the key parameters of the model.

IV.1 Continuous State Variable Construction

For the model to both remain computationally tractable and be consistent with the
assumption of conjugate distributions, I need continuous, scalar representations of both an
individual’s smoking history and her health markers. My solution is to employ principal com-
ponent analysis (PCA) in the construction of each variable. PCA is a nonparametric technique
that summarizes the total variation in a set of variables into an ordered set of continuous,
scalar principal components. The first principal component is constructed as a linear combina-
tion of data and of factor loadings from the highest eigenvalue eigenvector from an eigenvector
decomposition of the variables’ correlation matrix.!” The trade-off with PCA is accuracy and
completeness. Only considering the first principal component implies that any remaining vari-
ation in the data (i.e. the second, third, fourth, etc. principal components) is lost. In the
context of most structural models, however, reducing the dimension of the data is clearly ad-

ventageous.

7For example, given a set of k variables, employing PCA will yield k principal components. If, however, the
first two principal components account for 70% of the total variation in the k variables, and k > 2, the researcher
may find it adventagous to only use the first two principal components as data.
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In constructing R;,, the health marker index, I use PCA with the following (standard-
ized) variables: systolic blood pressure, diastolic blood pressure, total cholesterol, high-density
lipoprotein (HDL) cholesterol, and a diabetes dummy.'® These health markers are identified
by the Framingham Heart Survey as significant predictors for coronary heart disease (Wilson

et al., 1998).'° Table 6 provides summary statistics of these variables at each health exam.

Table 6: Health Markers by Exam

Exam Systolic Diastolic High-Density Total Diabetes
Blood Pressure Blood Pressure Lipoprotein (HDL) Cholesterol

1 122.3 79.0 50.8 197.1 1.8%
(16.1) (10.7) (15.0) (39.4)

2 122.3 78.2 48.6 203.9 2.6
(16.5) (9.8) (13.6) (39.1)

3 123.7 79.0 51.1 212.2 3.5
(16.7) (9.6) (14.8) (41.2)

4 126.8 79.1 49.9 207.5 4.8
(18.8) (10.0) (14.8) (38.5)

5 126.4 74.5 49.9 205.6 6.9
(18.8) (10.1) (15.2) (36.5)

6 128.2 75.3 51.0 206.0 9.6
(18.4) (9.5) (16.0) (37.7)

7 127.2 73.8 53.3 200.6 11.1
(18.7) 9.7) (16.8) (36.6)

Standard deviations are in parenthesis.

The first principal component of these variables explains approximately 33% of the total
variation. Admittedly, this is not high. I do however now have a continuous index of health
markers. I see two main justifications for using the first principal component as my measure
for the health markers. First, the theory places no restriction on the amount of information
that R;, must convey, only that it conveys some information. Any computationally tractable
definition of R;, will have to be an approximation. That I can explain a third of the variation
in the variables that the medical literature view as signficant will at least inform to some de-
gree. Second, most papers that use PCA use first principal components that explain between
20% — 40% of the total variation.?

To provide intuition as to the weights used to create the health index, Table 7 presents

18pCA is most effective when there exists significant correlation between the variables. As one might expect,
the correlation between these health markers is high.

19The Framingham Heart Survey: Risk Score Profiles:http:/ /www.framinghamheartstudy.org/risk/index.html

2011 the context of socioeconomic indices, see Vyas and Kumaranayake (2006) for a good overview of PCA.
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results from an OLS regression of the health index on the above health markers.?! In

Table 7: Health Index Regression

Variable Coefficient (Std. Err.)
Systolic Blood Pressure 0.657 *** (0.000)
Diastolic Blood Pressure 0.637 *** (0.000)
Total Cholesterol 0.306 *** (0.000)
High-Density Lipoprotein (HDL) -0.177 **  (0.000)
Diabetes 0.193 *** (0.000)

Significance Levels: **1% Level, **5% Level, *10% Level

this context, the continuous health index can be interpreted as a measure of bad health (i.e.
higher values of the index imply worse overall health). Note in Table 7 that only HDL, or
“good” cholesterol, negatively affects the health index.

As discussed above, the smoking stock summarizes all past smoking decisions prior to
period t. Again using PCA, I define the index A;, as the first principal component of the fol-
lowing four standardized variables: total number of years smoking at time t (experience),
number of years smoking at time t since last year not smoking (tenure), number of years at
time t not smoking since last year smoking (cessation), and the intensity of smoking in the
previous period, t — 1.2 I term these variables experience, duration, cessation, and intensity
respectively. Table 8 gives sample averages by exam of the number of years of duration, tenure
and cessation. The first principal component explains nearly 52% of the total variation in these
four variables.

To aid in interpretation of both the resulting smoking stock and the associated parame-
ters to be estimated, I normalize the smoking stock as follows. First, I run PCA on just those
with some smoking history. That is, individuals with any observed or reported past smoking
in each period are included in the PCA. For example, if an individual takes her first exam at
age 18 and begins smoking at age 22, all observations from this individual after age 22 are
included in the PCA, whereas observations prior to 22 are not included. Second, I shift the
distribution of the resulting index such that the person with the lowest value has a stock ap-
proximately equal to zero. Finally, for individuals with no smoking history, I assign a stock
value of zero. Table 9 reports the results of a regression of the smoking stock index on the

four variables of interest (excluding a constant).?® Notice that while experience, duration,

21 The regression is run without a constant. Point estimates correspond to the eigenvector values from the first
principal component for the corresponding variables.

2Intensity is measured as the average number of cigarettes per day. Each of these smoking variables is mea-
sured as the value entering the examination.

BPpoint estimates correspond to the eigenvector values from the first principal component for the corresponding
variables.
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and smoking intensity of an individual all increase the stock index, cessation from smoking
decreases the stock. I therefore interpret higher values of the index as more accumulated
smoking stock capital.

Table 8: Smoking History by Exam

Exam | Experience Duration Cessation
1 10.6 7.3 1.9
2 13.0 7.9 4.1
3 14.1 7.6 4.8
4 14.7 6.2 6.1
5 15.1 5.3 7.9
6 15.1 4.4 9.8
7 15.3 3.8 11.3
Table 9: Smoking Stock Regression
Variable Coefficient (Std. Err.)
Experience  0.309"** (0.000)
Duration 0.589*** (0.000)
Cessation  -0.517"* (0.000)
Intensity 0.540*** (0.000)

Significance Levels: **1% Level, **5% Level, *10% Level

IV.2 Solution and Timing

While I only observe individuals at seven health exams over a 40-year period, the theoret-
ical model is based on a yearly decision making process. To reconcile this difference, I proceed
in the following steps. First, in solution to the model, I specify the final period, T, to be at age
100. That is, the probability of death at the end of period T equals one. The yearly model is
then solved recursively back to age 7, at which point I assume that all individuals have a smok-
ing stock of zero (i.e. A;; =0, Vi).2* Second, the data from section III are expanded based
upon retrospective questions. With the exception of the health marker information needed to
construct the health marker index, R;,, data are available to construct a yearly dataset from
age seven until an individual either dies or completes their seventh exam.> Figure 1 shows

the sample probabilities for each smoking choice by age. Furthermore, Table 10 shows general

24The solution appendix gives greater detail on my solution method

25Data in years prior to an individual’s first exam were constructed based on questions at the first and second
exams that asked, if applicable, the first age at which one started smoking and the age at which one stopped
smoking. For later years in between health exam years, smoking data were imputed based on history and
adjacent health exam data. Specific dates are available in the data for any chronic health and mortality events.
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Sample Probabilities of Smoking Alternatives

20 30 40 50 60 70 80
age
Not Smoking ~ ————- Light Smoking
-~ Heavy Smoking

Figure 1: Sample Choice Probabilities by Age

smoking summary statistics from the expanded data. Table 11 reports smoking behavior tran-
sitions around three events: health exams, chronic health shocks, and transiting to a health
marker index at or above the 75th percentile. Conditional upon an individual’s smoking be-
havior one period prior to each event, the table reports percentages in each smoking option
one and three years after the event. For example, of those individuals smoking heavily one

Table 10: Smoking Summary Statistics

Mean (Median) S.D. Min Max

First Age Smoking (Conditional on Ever Smoking) 19.57 (18) 7.45 7 67
Total Years Smoking (Conditional on Ever Smoking) 24.78 (24) 14.07 1 68
Tenure Smoking (Years) (Conditional on Ever Smoking) 21.13 (19) 14.85 1 68

Last Age Smoking (Conditional on Ever Smoking and Quitting) 44.76 (45) 12.84 13 76

period prior to a chronic health shock, 70.24% continued to smoke heavily one period after
the shock and 47.06% were still smoking heavily three periods after the shock. The table
provides at least antidotal evidence that each event alters smoking behavior. I compare these
descriptive statistics with predictions from the model in section V.

I conduct the smoking stock PCA from the preceding section on yearly experience, dura-
tion, cessation, and intensity questions and thus, generate a yearly stock variable. Conditional
on parameters and data from years with a health exam, I integrate over the health marker
index distribution in solution to the model in “off years” (i.e. those years with no health exam
and thus no health marker information). Consistent with the learning process in the model,
I only allow updating of the posterior distribution in periods in which an individual had a
health exam. Therefore, from the individual’s perspective, when forecasting future health, an

individual uses the updated posterior distribution from the most recent health exam.
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Table 11: Observed Transitions

Behavior One Period Post Behavior Three Periods Post

Behavior One Not Light Heavy Not Light Heavy
Period Prior Smoking Smoking Smoking Smoking Smoking Smoking
Transitions Around Health Exams

Not Smoking 96.38% 3.20% 0.42% 97.00% 2.55% 0.45%

Light Smoking 21.40 70.29 8.30 29.45 63.50 7.06

Heavy Smoking | 14.50 16.47 69.03 20.62 16.48 62.90
Transitions Around Chronic Health Shocks

Not Smoking 98.94 0.89 0.18 97.18 2.59 0.24

Light Smoking 24.78 73.45 1.77 39.36 54.26 6.38

Heavy Smoking | 21.43 8.33 70.24 39.71 13.24 47.06
Transitions Around Health Marker Index Shocks: 75" Percentile

Not Smoking 97.49 2.33 0.18 98.02 1.79 0.20

Light Smoking 24.52 62.50 12.98 33.33 54.87 11.79

Heavy Smoking | 17.12 23.29 59.59 25.18 23.74 51.08

IV.3 Permanent Unobserved Heterogeneity and Initial Conditions

Permanent unobserved heterogeneity enters the model in a linear fashion through the u
term and the associated factor loadings. The factor loadings allow for a different effect of the
unobserved u term everywhere it enters. Rather than placing a distributional assumption on
the underlying unobserved heterogeneity, I approximate its distribution with a step function
and estimate the factor loadings and mass point probabilities with other parameters in the
model (Heckman and Singer, 1984). This discrete factor method has been shown to approxi-
mate both Gaussian and non-Gaussian distributions well (Mroz, 1999).

I first observe individuals at various points in their life cycle (i.e., different ages at the
first health exam) and with a variety of health histories. Failing to properly model these histo-
ries would lead to an initial conditions problem. Furthermore, the initial conditions problem
may lead to an issue of dynamic selection into smoking behaviors. That is, individuals in some
permanently lower (unobserved) health state may select into smoking. However, solution to
the model generates individual probabilities of choice behavior and health/death transitions
for all ages beginning at age seven. Recall that data exist for all smoking, chronic health, and
death events from age seven until either death or the final health exam (exam 7 in the data).
At age seven, I assume that each individual has a smoking stock of zero and has no chronic
health problems. The only remaining initial condition is the initial health marker index upon
entering the sample. Using the model, I can simulate a health marker index for each period
from age seven until the first observed health exam. Hence, I use the model to generate prob-

abilities of an individual’s health history when they are first observed in the sample. (Khwaja,
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2010).2% Furthermore, individual variation in the data at the first exam (the initial condition)

helps to identify parameters of the model.

IV.4 I1dentification

The following sets of parameters are estimated.

Utility Parameters: Oy = { o -+ > A}y
Health Transition Parameters: ©y, = {A,,..., A0}
Death Transition Parameters:  ©,, = {wq,..., w15}

Smoking Stock Parameters: ©,=106,,0,,03, Un}
Learning and Risk Parameters: ©,=1{60,0,,0,,¢,( }

2
Factor Loadings: e,= {{{p”hd};zo}d_o ,pH,pM,pR,pA}

Additionally, I estimate the probability weights of the mass points for the discretized distri-
bution of the permanent unobserved heterogeneity, u. Let © = {@U, B, 0,04, Op, ep}. In
order to identify the preference parameters, I normalize the utility of death to be zero. Rel-
ative to this normalization, identification of the preference parameters comes mainly from
variation in smoking behavior and health and death transitions over time. For example, dif-
ferent smoking choices across in smoking stock, health marker index, and age levels identifies
the interaction preference parameters. Furthermore, while the withdrawal parameter, a,., is
identified off of variation in the choices of individuals after a period of smoking, the direct
impacts of the stock on utility, a;,. and a;;., reflect tolerance in smoking and are identified by
individuals that progress from light to heavy smoking.

In the absence of subjective expectation data, the structure of the model is needed to
identify the presence of learning. Mira (2007) notes that learning can no more be identi-
fied than can rational behavior. If, however, the prior distribution of beliefs is proved to be
degenerate (i.e., if the null hypothesis that o, = 0 is not rejected), then the results would
suggest an absence of learning. The identification strategy of the specific learning parameters
is therefore quite subtle. While identification of & comes from variation in the smoking stock
and health marker index, variation in smoking by individual over time identifies o, (Crawford
and Shum, 2005). If, indeed, individuals are learning over time, choices at the end of the time
frame relative to the beginning should better reflect an individual’s true match value, 6;. An

additional source of variation that helps to identify the learning parameters is the variation

26Individuals enter the sample aged between 13 and 62 years. At age seven, I assume that the lagged value of
the health marker index is in the 90th percentile (e.g., good health) of each health marker that is used to construct
the index. I then use the weights from the principle component analysis to construct the lagged value. Recall
that the simulated health marker index is scaled by demographic characteristics, X;,, as well as the unobserved
heterogeneity, u, term and its factor loading.
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across individuals in the timing of health exams. There exists considerable variation in the
number of years between exams across individuals; thus, two similar individuals that receive
health information at different frequencies may develop different smoking patterns. Finally,
the identification of chronic health and death transition parameters comes from variation in

the state variables and the observed incidence of chronic health and death.

IV.5 Likelihood Function

Consider first the contribution of individual i to the likelihood function. Given that
Nie ~ (0, 0727) and v;, ~ A(0,02), we can express the probability density functions of A;,

and R;, respectively as:
N = FO iy s, 00 = - (08, — 81087, = ad, s~ il /0,) (1D
and
Qi = 8yt Xy, Kies Uy PR, OR) = Giv(.b ([Riy —CRyy 1 — Xy — ;. — pRul/o,) (12)

where ¢(-) is the standard normal distribution. Recall, however, that the health marker index,
R;,, and only the health marker index, is unobserved in periods in which a health exam was
not taken.?” I must, therefore, integrate over R;, in all periods with no health exam. For ease

of exposition, define the dummy y as follows:

[ 1 if Anexam was taken in year t
Yit 0 if No exam was taken in t

Define Ziyfl |u as individual i’s likelihood contribution in period ¢t when y;, = 1 and conditional

on unobserved heterogeneity term u:

2 1 1 1[d; =d]

=1 1[H;41=h] m 1[Mjt41=m]
Z u= l_[ (p(dit =dlsy, “)*Ait*git*l_[ (ﬂiﬂﬁu) " *l_[ (g;it-l—llu) e ) :
d=0 h=0 m=0 (13)

h  represents the probability of transiting to health state h in period t + 1 and Giriq 18

it+1
the probability of transiting to death state m in period t + 1. Unless a health exam was taken

Here,

in the period directly before ¢, the lagged value of the health marker index in equation 13 is

unobserved. In practice, I use the expected health marker index given the model parameters

27 All right-hand side terms in the health marker equation are observed in these “off” years due to retrospective
questions and/or imputation with the exception of the lagged value of the health marker index when the previous
period did not contain a health exam.
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as the lagged value. In periods in which y;, = 0, define the expected health marker index,

conditional on the model parameters as:

RJit =E,(R;¢|Og,S;;) (14)

Here, the expectation operator is taken over the i.i.d. noise term, v. Other probabilities in the
model are conditional on R;, for years in which y;, = 0.%% In the period directly after a health
exam, the lagged value of the health marker index (i.e., from the exam and not the simulated
0
|

term) is used in the construction of R,,. Therefore, define Z}7"|u as individual i’s likelihood

contribution in period t when y;, = 0:

2 1 1 1[d;;=d]
D dh D 1[H;p41=h] dm |p 1[Mje11=m]
l_[ (p(dit = d|s;, Ry, M)*Aidfzit*l_[ (TcitﬂlRit, U) i *l_[ (gitrillRin ,LL) o ) .
h=0 m=0

d=0
(15)
The total conditional (on wu) likelihood contribution from individual i for all time periods

7,...,T;, where T; is either the period of an individual’s death or their final exam, is:

T;

Ll =TT [TT(zm)" ™). ae)

t=7 y=0

Because of the discretized distribution of the unobserved heterogeneity, each individual’s un-
conditional contribution will be a finite mixture of likelihoods. Given K points of support in the
estimated distribution of u, the unconditional likelihood function contribution for individual i
is:

K
L(©) = &L (Ol (17)
k=1

Where &, is the estimated probability weight placed on mass point k. The full sample log-
likelihood function is:

N
L(©) = [ZlogLi(G))] (18)
i=1

V Results

This section begins with a description of the parameter estimates. It then discusses
model fit and examines the predictions of lifetime smoking behavior under alternate smoking,

learning, and health scenarios.

281n practice, I numerically integrate over v;,. For each draw of v;,, all other probabilities in the model are
constructed. The resulting probabilities are then averaged over the draws. See the solution appendix for further
details.
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V.1 Parameter Estimates

The parameter estimates in © are estimated via a nested solution method (Rust, 1987).
The inner algorithm solves the dynamic model for each individual conditional on a given set
of parameters and for all mass points of the unobserved heterogeneity distribution. Using the
resulting probabilities, the outer algorithm calculates the unconditional likelihood function,
L(©), and attempts to improve the likelihood value via a BHHH gradient method. The BHHH
method is standard in estimating dynamic structural models because, as opposed to traditional
gradient methods such as Newton-Raphson that explicitly construct the Hessian matrix of the
likelihood function. BHHH approximates the Hessian by exploiting the fact that the likeli-
hood function (L(©)) is the sum of individual log-likelihood contributions. Calculating the
second derivatives of the likelihood function would be computationally infeasible for nearly
all dynamic structural models. At the parameters that maximize the log-likelihood function,
however, the average outer-product over individuals is the covariance matrix of the scores of
the sample. Furthermore, at the true parameters, the covariance matrix of the scores is equal
to minus the expected Hessian matrix (Train, 2009).

Table 12 reports the main parameter results. The estimated utility constants, a,, and a;,
for the absence of a chronic health condition and a chronic health condition respectively, are
quite intuitive given that the utility of death has been normalized to zero. The total marginal
utility of current period light and heavy smoking is a function of a;....as.. A key component
of rational addiction theory, indeed the defining feature of an addictive good under rational
addiction, is that past consumption reinforces current consumption. That is, the marginal util-
ity of smoking is increasing in the smoking stock. My results are consistent with this adjacent
complementarity defined in Becker and Murphy (1988). In the absence of a chronic illness,
both light and heavy smoking are found to be reinforcing (i.e., a,,, a¢>0). Indeed, I find
that heavy smoking is much more “reinforcing” than light smoking. My results also suggest
that the marginal utility of light smoking in the absence of a chronic condition is invariant
to the health marker index but increasing in age. Interestingly, the marginal utility of heavy
smoking is decreasing in the health marker index and invariant to age when free of a chronic
condition; however, when chronically ill, the marginal utility of heavy smoking is increasing
in the health markers (a,; = 0.001) and decreasing in age. Withdrawal from smoking, (i.e.,
smoking in period t — 1 and not smoking in period t) is negative for all health states and
larger in magnitude when free of a chronic illness. The withdrawal effect, in addition to the
strong reinforcement effect, both drive smokers to continue smoking. Finally, the tolerance
effect (a,,.) flips sign across health states. In the absence of a chronic condition, smoking is
found to have a tolerating effect (i.e., lower utility from a larger smoking history).

Several interesting trends emerge from these results. First, note that baseline marginal
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utility of both light and heavy consumption is negative with the exception of heavy smoking
with a chronic condition. As suggested by the rational addiction literature, the model cannot
explain why individuals start smoking. Consider that over 90% of smokers in the data start
smoking before age 25 and no individuals in the data under the age of 25 have a chronic con-
dition. The estimated preference parameters in the absence of a chronic illness suggest that,
for a never smoker under the age of 25, there is no incentive to begin smoking because the
marginal utility of smoking is negative. Furthermore, the dynamic considerations of the model
suggest that smoking will increase the probability of future chronic illness and death through
the smoking stock and the health marker index. However, upon commencing smoking, the
resulting positive smoking stock drives the dynamics forward. Competing effects for a new
smoker include the reinforcement and withdrawal effects, which both encourage more smok-
ing, and the increased probability of chronic disease and death, which encourage cessation.

The second main trend from the estimated preference parameters is the reversal in sign
of several preference parameters upon succumbing to a chronic illness. The baseline marginal
utility of heavy smoking when in the chronic health state (as;) flips to positive. Along with
the positive reinforcement (a,;, ag; > 0) and the flip in the sign of the effect of the stock on
utility (a,4; > 0), individuals now face a positive marginal utility from heavy smoking.

The model finds evidence of a small degree of individual variation in the effect of the
smoking stock (4;,) on the health marker index (R;,) as the estimated standard deviation of 0,
0y, is nonzero. Recall further that the null hypothesis of o, equaling zero is my explicit test
for the presence of learning. While the results do suggest the presence of learning, the signals
received at each health exam are quite noisy. The estimated standard deviation of the random

error term (o,) is large relative to 0 and Ty.
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Table 12: Main Parameter Estimates

Description Chronic Condition Parameter Estimate ASE
Utility Parameters
Constants
No Qoo 25.947 1.808
Yes Ao 1.364 0.272
Consumption - Light Smoking
Constant No Qg -6.128 0.117
Consumption*Smoking Stock No Ay 0.001 0.000
Consumption*Health Marker Index No Q3g 0.000 0.000
Consumption*Age No Qo 0.070 0.001
Consumption Yes aqq -7.479 0.194
Consumption*Smoking Stock Yes (o2 2.479 0.018
Consumption*Health Marker Index Yes Qs -0.005 0.001
Consumption*Age Yes 041 0.002 0.001
Consumption - Heavy Smoking
Constant No Uso -18.753  0.043
Consumption*Smoking Stock No Ao 1.704 0.010
Consumption*Health Marker Index No a7 -0.001 0.000
Consumption*Age No Qg 0.000 0.000
Consumption Yes Qs 0.015 0.004
Consumption*Smoking Stock Yes Qg1 2.483 0.018
Consumption*Health Marker Index Yes an 0.001 0.000
Consumption*Age Yes Qg1 -0.068 0.004
Withdrawal
No Qg -6.927 0.046
Yes Aoy -1.539 0.133
Smoking Stock
No Q100 -0.025 0.007
Yes 01 2.636 0.051
Smoking Stock Squared
No a110 -0.002 0.001
Yes o -0.596  0.005
Learning Parameters
Mean Effect 2 0.003  0.000
Standard Deviation of 6, Og 0.098 0.004
Standard Deviation of v o, 1.024 0.004
Additional Health Marker Index Parameters
Lagged Health Marker Index 4 0.807 0.001
Age in Years ol 0.005 0.000
Female b, -0.122  0.003
Education in Years ¢4 -0.011 0.001
Married oM 0.000 0.000
Constant s 1.039 0.013

Table 13 provides estimates of all other estimated model parameters. These estimates
are not marginal effects and therefore are difficult to interpret because each outcome (health
marker index, chronic health, death, etc.) is a complex function of entering period states and
per-period decisions. In the simulation subsection below, I describe the results of simulations

that isolate the effects of each variable on the system. However, a casual interpretation of

29



the results in Table 13 does yield some interesting insights. The parameter estimates of the
smoking stock evolution equation indicate that an individual’s stock of smoking depreciates
faster than suggested by the medical literature. 6, suggests that, given cessation from smoking
over the cycle of one year, the smoking stock is reduced by approximately 57%.2° In the
context of the model, 57% depreciation implies that after about six years of smoking cessation,
an individual may have roughly the same health marker index and chronic health and death
tranistion probabilities as a lifelong nonsmoker, all else equal. Additionally, the estimated
magnitude of investment return in the smoking stock is greater for heavy compared to light
smoking (6, < 63).

As noted above, the estimated mean effect of the smoking stock on the health markers
is positive (6 = 0.003). A greater smoking history therefore implies a higher, and thus worse
health marker index. According to Table 13, a higher health marker index implies a higher
probability of chronic illness (through the positive sign on A,), albeit at a decreasing rate
(A,<0), and death (through the positive signs on w, w,, w3, ws, and we. Furthermore, given
a chronic illness, the probability of death is lower during the 1980s (w,<0) and 1990s (wg<0)

both relative to before 1980 to capture exogenous advances in medical technology over time.

2Note that while this suggests a large amount of depreciation, the factor loading on unobserved heterogeneity
for the stock equation slows that depreciation.
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Table 13: Other Parameter Estimates

Description Parameter Estimate ASE
Smoking Stock Parameters
Depreciation Rate 6, 0.430 0.002
Investment, Light Smoking 5y 0.335 0.001
Investment, Heavy Smoking 6, 0.411 0.002
Standard Deviation of 1) oy 0.134 0.000
Chronic Health Parameters
Constant Ao -12.040 0.057
Health Marker Index A 0.207 0.016
Health Marker Index Squared Ao -0.010 0.001
1980s*Health Marker Index Ag 0.000 0.000
1990s*Health Marker Index Ay 0.000 0.000
Choice As 0.336 0.024
Choice*Health Marker Index Ag -0.008 0.002
Age Ay 0.119 0.001
Education Ag 0.007 0.001
Gender Ag 0.019 0.005
Married Ao -0.070 0.005
Mortality Parameters
Constant wq -8.805 0.104
Health Marker Index w1 0.001 0.000
Health Marker Index Squared Wy 0.001 0.000
Chronic Health State w3 4.868 0.094
Choice wy 0.000 0.000
Choice*Health Marker Index ws 0.013 0.002
Choice*Chronic Health State we 0.503 0.021
1980s* Chronic Health State wy -0.086 0.017
1990s* Chronic Health State wg -0.214 0.030
Age wg 0.041 0.002
Gender w1g -0.061 0.014
Education w1y -0.135 0.005
Married w1y -0.204 0.028

Heterogeneity Parameters
Utility: No Chronic Condition

Not Smoking Pu00 0.066 0.018
Light Smoking Puo1 2.664 0.161
Heavy Smoking Puo2 8.619 0.103
Utility: Chronic Condition
Not Smoking Pulo 0.964 0.148
Light Smoking Pull -0.081 0.021
Heavy Smoking Pui2 0.132 0.033
Stock oa 0.647 0.002
Health Marker Index PR 0.000 0.000
Chronic Health PH 0.001 0.000
Mortality om 1.027 0.122
Mass Points and Probabilities
Mass Point 1 uq 0.000 -
Mass Point 2 Uo 1.270 0.122
Mass Point 3 Uo 1.000 -
Coef. Weight on Mass Point 1 6, -2.622 0.688
Coef. Weight on Mass Point 2 0, -1.231 0.204
Miscellaneous Parameters
Discount Factor B 0.950 -
Log-Likelihood Value L(®) -30481.266
Mass points 1 and 3 are fixed at 0 and 1 respectively. Mass point 2 is estimated and

its location is % = 0.781. The corresponding probabilities of mass points 1

through 3 are 0.053, 0.214, and 0.733.

The model is estimated with three points of support for the discretized unobserved het-
erogeneity distribution. Heterogeneity located to the right of the distribution is associated with

a greater likelihood of experiencing both chronic health and mortality shocks. Furthermore,

31



the health and smoking alternative specific factor loadings in the utility function suggest that,
when free of a chronic illness, the marginal utility of smoking is shifted upward for individuals
with higher values of the unobserved heterogeneity. These effects are exacerbated by the fact
that this type of heterogeneity also implies a smoking stock that depreciates less rapidly and
never fully depreciates. Even worse, this heterogeneity characterizes continued future smok-
ing (through the reinforcement and withdrawal effects) which also effects chronic health and

death shocks (through the positive signs on A; and w,-wyg).

V.2 Model Fit

Figure 2 summarizes the relationship between the model’s predicted probabilities and
the observed data by age. Each pane of the figure represents one specific smoking option. For
each individual, I compare observed smoking decisions and predicted smoking probabilities
for periods up to either her final exam (exam seven) or death. I then average the results
across individuals at each age.*® The model predictions generated from the solution routine
fit the data well even at ages for which there are not many observations.

Table 14 reports sample and predicted smoking probabilities by health exam and health
state. I do not include a table on model fit by exam conditional on being in the chronic health
state because less than one, three, and seven percent of individuals have a chronic condition
in exams one, two, and three respectively. Note however that the average predicted choice
probability across all health exams conditional on being in the chronic health state mirrors the
observed probabilities in the data fairly well. Table 14 suggests that the model does a good
job of predicting whether or not an individual smokes at all. The model slightly under predicts
light smoking and slightly over predicts heavy smoking.

30Despite the fact that the model is solved from age 7 to 100, the figure only presents results for ages 20 to 75.
Outside of the 20 to 75 age range, there are insufficient data for an informative comparison.
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Figure 2: Smoking Behavior by Age: Predicted and Sample Probabilities

Figure 3 compares the observed sample probabilities of chronic health with the predicted
health probabilities, as generated by the model at the estimated parameter values. As in Figure
2, Figure 3 averages predicted and sample probabilities across individuals by age only for those
individuals with an observation at that age. Figure 3 reflects both transitions to and surviving
members of the chronic health state. This is because solution to the model yields a predicted
probability of transiting to a chronic health state of one for individuals already in that state.
Note that for most ages, the model slightly over predicts the probability of being in a chronic
health state.
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Table 14: Model Fit: Choice Probabilities

Not Smoking Light Smoking Heavy Smoking
Exam  Predicted Observed Predicted Observed Predicted Observed

Unconditional on Chronic Health State. # Person/Year Obs.=19,461

1 60.68 59.01 25.68 26.70 13.64 14.30
2 68.74 61.35 19.97 24.44 11.29 14.21
3 71.32 77.22 18.64 14.25 10.03 8.53
4 78.35 81.22 14.50 12.77 7.15 6.01
5 82.53 85.16 12.00 10.96 5.47 3.88
6 86.72 87.87 9.30 9.53 3.98 2.60
7 90.21 88.89 6.82 8.65 2.97 2.46
Mean 76.94 77.25 15.27 15.33 7.79 7.43

Conditional on No Chronic Condition, (H;, = 0). # Person/Year Obs.=17,601

1 60.68 58.99 25.71 26.72 13.61 14.29
2 68.91 61.43 20.07 24.24 11.02 14.33
3 71.64 77.31 18.76 14.23 9.60 8.46
4 78.38 80.93 14.77 13.02 6.85 6.05
5 82.47 84.91 12.45 11.10 5.08 3.99
6 86.58 87.42 9.80 9.85 3.61 2.73
7 90.01 88.22 7.25 9.14 2.75 2.64
Mean 76.95 77.03 15.54 15.47 7.50 7.50

Conditional on Chronic Health, (H;, = 1). # Person/Year Obs.=1,860
Mean 75.69 79.27 11.03 13.64 13.28 7.09

Probability of Chronic Health
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4 5
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T T T T T T T
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Age

Predicted
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Figure 3: Chronic Health State by Age: Predicted and Sample Probabilities
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V.3 Model Simulation

In this section, I simulate smoking behavior and health outcomes using the structural
model and the estimated parameters. I address how smoking affects morbidity and mortality
outcomes as well as how learning from personalized information may impact these behaviors
and outcomes. My simulations proceed as follows. First, I construct a simulated sample of
1000 individuals that mirrors the joint distribution of observable demographic characteristics
(education, gender, marriage, and initial age upon entering the Framingham survey) of the
Framingham sample. Next, for each simulated individual 7, I construct 50 sets of match value,
unobserved heterogeneity, and error draws over the estimated time frame.

2 100 ) 50
{Qika Wik, {Vikt: Nikes {eiktd}d:o}t:7}k_1

Smoking behavior and health outcomes are then simulated for each of the 50,000 observations
from age seven until death.

First, I reconstruct Table 11 using the simulated smoking behavior to evaluate the model’s
performance in capturing smoking transitions around significant events. These results are re-
ported in Table 15.3! For those simulated to be not smoking prior to a health exam, a chronic
health shock, or transiting to at least the 75th percentile of the health marker index distribu-
tion, the simulated smoking probabilities one and three periods after these events mirror those
from the data. The model does less well in simulating behavior conditional on lagged light or
heavy smoking. While the simulated probabilities of not changing behavior after one of the
three events reflect those from the data, the model tends to under predict the probability of
quitting and over predict the probability of switching to a different smoking intensity. How-
ever, the model does capture the general trend that more individuals have quit three years

after an event when compared to one year after.

31 Transitions around health exams and transiting to the 75th percentile of the health marker index distribution
are unconditional on chronic illness.
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Table 15: Predicted Transitions

Behavior One Period Post Behavior Three Periods Post

Behavior One Not Light Heavy Not Light Heavy
Period Prior Smoking Smoking Smoking Smoking Smoking Smoking
Transitions Around Health Exams

Not Smoking 98.73% 1.22% 0.05% 97.75% 1.98% 0.27%

Light Smoking 11.76 63.81 24.43 21.75 54.01 24.24

Heavy Smoking | 4.66 37.90 57.44 9.91 42.49 47.60
Transitions Around Chronic Health Shocks

Not Smoking 99.16 0.50 0.34 98.92 0.65 0.43

Light Smoking 32.78 44.09 23.13 55.86 27.55 16.59

Heavy Smoking | 11.49 34.65 53.86 24.22 27.97 47.81
Transitions Around Health Marker Index Shocks: 75" Percentile

Not Smoking 99.04 0.93 0.03 98.18 1.65 0.17

Light Smoking 11.66 62.62 26.22 21.33 54.94 26.73

Heavy Smoking | 4.22 33.12 62.66 8.87 3791 53.22

Next, I use the simulated model to address how smoking impacts the age of chronic
health onset and death. Figure 4a reports, by age, the percentage of the simulated sample
with a chronic condition while forcing individuals to 1.) never smoke, 2.) smoke lightly from
age 18, and 3.) smoke heavily from age 18.3? Under these same forced behaviors, Figure 4b

shows, by age, the percentage of the simulated sample that remains alive. The results in Fig-
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Figure 4: Percentage of simulated sample a.) in the chronic health state and b.) remaining, by age and
quit status

ure 4 confirm the findings in Sloan et al. (2003) that the detrimental effects of smoking occur

largely after the age of 50. Indeed, the gap in the percentage of the sample in the chronic

32Recall from the structural model that I assume that, upon transiting to a chronic health state, an individual
remains in that state for life.
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health state between never smokers and heavy smokers widens from less than 10% at age
50 to more than 17% at age 70. Similarly, while the difference in those surviving to age 50
between heavy and never smokers is five percentage points, that gap widens to 30 percentage
points at age 70. These results are roughly inline with those of Doll et al. (2004). Those
authors find a difference of approximately 28 percentage points at age 70 when considering
never smokers and smokers. The first half of Table 16 reports the mean age of onset for var-
ious health outcomes. Individuals who are forced to smoke lightly and smoke heavily from
age 18 onwards face a mean age of chronic health onset that are approximately two and four
years earlier than those forced to never smoke. While Doll et al. (2004) report that smoking
shortens the lifespan by ten years, my results suggest the reduction is approximately four and
eight.®3

While Doll et al. (2004) only condition their results on decade of birth and gender, I
report results that are conditional on both observed and unobserved factors. Here, I high-
light the importance of incorporating unobserved heterogeneity. Figure 5 plots the same two
graphs as in Figure 4 but now conditions each result by unobserved “type”. Panels a. and b.
report health outcomes under the baseline rational choice simulation whereas panels c. and d.
report health outcomes assuming that all simulated individuals never smoke. Note that while
unobserved heterogeneity does not play a significant role in chronic health transitions, the
model predicts that type three individuals face lower expected longevity in both the baseline
and nonsmoking simulations. Recall that the alternative specific factor loadings in the util-
ity function greatly increase the marginal utility of smoking for individuals of a higher type.
Indeed, the model predicts that only individuals with the largest mass point, type three, will
ever smoke. Therefore, Figure 5 demonstrates that, independent of smoking, individuals of a

higher type face lower expected longevity.

3Doll et al. (2004) do not take into account intensity of smoking in these calculations. My results indicate that,
conditional on smoking, the intensity with which one smokes is an important factor explaining health outcomes.
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Figure 5: a.) Simulated chronic health state by age at baseline. b.) Simulated longevity by age at
baseline. c.) Simulated chronic health state by age assuming no smoking. d.) Simulated
longevity by age assuming no smoking.

Next, I use the model to simulate chronic health and death outcomes under different
lifetime smoking paths to assess the impact of smoking cessation on these outcomes. I simulate
health outcomes assuming that an individual smokes heavily from age 18 and quits forever at
ages 30, 40, 50, and 60. The results, reported in Table 16, imply that quitting smoking at ages
30, 40, 50, and 60 years of age increases life-expectancy by approximately 8, 7.75, 7, and 5.5
years, respectively. These results suggest clear life expectancy gains from quitting at all stages
of the life cycle.
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Table 16: Age of Chronic Health Onset and Death

Variable Mean Age of Mean Age of
Chronic Health Shock Death
Never Smokes 70.75 77.60
(10.72) (11.60)
Smokes < 1 Pack/day from Age 18 68.91 73.32
(10.89) (11.19)
Smokes > 1 Pack/day from Age 18 66.79 69.58
(10.87) (10.94)
Smokes > 1 Pack/day from Age 18 and
quits at Age 30 70.77 77.58
(11.00) (11.85)
quits at Age 40 70.54 77.32
(11.33) (12.28)
quits at Age 50 69.98 76.60
(11.83) (11.02)
quits at Age 60 66.55 74.99
(10.91) (13.85)

Figure 6 shows the survival percentages by age for the different smoking patterns. Note
that for individuals that quit at age 30, their expected longevity is roughly identical to never
smokers. Similarly, quitting by age 40 has minimal effects on mortality probabilities. Individu-
als that smoke into their fifties and sixties, however, have a much more likely chance of dying
prematurely.

Given the other main focus of this paper on the value of personalized health infor-
mation, I next evaluate policies that alter either the timing or the frequency with which
information is received. First, to demonstrate the speed at which individuals learn, Table
17 reports the change in the average posterior variance after each health exam of the baseline
simulation. Note that after the first exam (i.e., the first signal of information) the posterior
variance decreases by nearly 20%. By the seventh exam, the mean posterior variance has
been decreased by 40%. In spite of the “honing in” on individuals’ true match values, smok-
ing behavior appears to only slightly be influenced by learning. As a natural benchmark, I
compare the predictions of the baseline model to results from specifications with no learning
(i.e., oy = 0), complete information (i.e., 7;, = 6; Vt), and a situation where an individ-
ual undergoes yearly health exams as opposed to every four years. Figure 7 presents the
mean percentage difference of simulated individuals choosing each smoking option for each

information scenario relative to the baseline prediction. Somewhat counter intuitively, the
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Figure 6: Percentage of simulated sample remaining, by age and quit status
Table 17: Posterior Variance by Exam: The Speed of Learning
Exam Mean Posterior Variance % Decrease Cummulative % Decrease
Initial Prior 0.0095 - -
1 0.0076 19.9% 19.9%
2 0.0069 8.7% 26.9%
3 0.0066 4.7% 30.3%
4 0.0064 3.6% 32.8%
5 0.0061 4.0% 35.5%
6 0.0059 3.8% 37.9%
7 0.0057 2.9% 39.7%

simulations suggest that the effect of more information, that is, yearly exams, is only to en-
courage individuals to smoke lightly in later life. In the extreme, with complete information,
individuals are more likely to smoke lightly at all ages. In both cases, there is no apparent

change in heavy smoking. One possible explanation for this finding is that, because the effect
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Figure 7: Average difference in smoking probabilities, relative to baseline choices, by age and across
different policy scenarios

of the smoking stock on the health marker index is small (5 = 0.003) and because the esti-
mated standard deviation of the effect is large relative to the mean, upon learning their true
match value, individuals feel that the health effects of smoking are manageable.®* Ultimately,
the effects of different information regimes are quit small. Even with yearly exams, by age
70, the difference in average smoking rates relative to the baseline model predictions are only
approximately 0.06% higher.

34For match values that are negative, there may be an incentive to continue to smoke because an increased
smoking stock will decrease the health marker index, which in turn, will lower chronic health and death proba-
bilities. Other experiments in which health signals where positively amplified, that is, while the health marker
index evolved according to the estimated structural parameters, individuals received signals that suggested “scary”
results, induced individuals to quit significantly more rapidly than the baseline results.
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VI Discussion

This study formulates and estimates a dynamic stochastic model of smoking behavior.
The model extends the classic rational addiction model to allow for health learning. Estimates
of the structural parameters suggest that there exists heterogeneity in the effect of the accumu-
lated smoking stock on an index of health markers. Significant reinforcement and withdrawal
effects both drive smoking dynamics by altering the future marginal utilities of smoking. The
theoretically well-known smoking stock, empirically constructed using principal components
analysis, is found to depreciate at approximately 57% per year. Simulations of the structural
model suggest that, when controlling for unobserved heterogeneity, the effects of smoking on
chronic health and mortality outcomes may be slighly less extreme than previously estimated.
I find that smoking heavily from age 18 can reduce life expectancy by eight years relative to
life-long non-smokers and by four years relative to those smoking only lightly (< 1 pack/day)
from age 18. Furthermore, quitting smoking by age 30 implies relatively few chronic health or
mortality differences, on average, from life-long non-smokers; however, waiting to quit until
age 60 implies that the health consequences may be severe. Indeed, as suggested by the litera-
ture, the major effects of smoking on health are realized after age 50. Finally, health markers,
at least in this setting, do not appear to significantly inform smokers about the long-term
health consequences of smoking. In fact, learning about how smoking effects health markers
may actually increase moderate smoking in older individuals.
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Appendices

A  Solution

Given the long time frame of the model and the mixed discrete/continuous nature of the
state space, I employ a variant of the Keane and Wolpin (1994) value function interpolation
method for approximating the value function. The iterative solution method proceeds in two
main steps. First, I solve the model generally for each possible age at which an individual may

have taken her first health exam.* Starting in the final period T, the method is as follows:

e Beginning in period T, I draw n state vectors and sequences of past smoking behavior
D;r_y ={ds,..,d;jr_; }.>° For each of the n draws, I construct the main equations of the
model.

e Next, I posit a relationship between the n calculated value functions and a set of re-
gressors. The regressors include the drawn state variables in addition to interaction and
higher-order terms. Using the calculated regression coefficients, I can calculate predicted

values of the lifetime value function for any value of the state vector.?”

e I then repeat the above steps for period T — 1. When calculating the value function in
period T —1, I use the regression coefficients from period T to approximate the expected

future value function.

e [ repeat the above process for all periods back to t = 7. That is, I solve the model for all
ages between 7 and 100.

The above first-stage process yields value function regression coefficients at every time period
and for every possible initial age upon entering the sample. These coefficients are conditional
on the parameters used to solve the model. The second main step, conditional on the same
parameters and using the above regression coefficients, involves solving the model for each in-
dividual. The resulting probabilities enter the likelihood function. The total process continues,

updating parameters at each iteration, until the likelihood function is maximized.3®

35In the data, the ages range from 13 to 62.

361n practice I set n = 100.

37Note that because the probability of death in period T equals one, each of the choice specific value functions
in period T simply equals the current period utility from the choice.

38To maximize the likelihood function, I use the BHHH numerical maximization technique. I assume conver-
gence at the maximum of the likelihood function when the percentage change of the likelihood value over an
iteration is at or below 0.000001. The model is solved and estimated using parallel processing techniques for
Fortran 90 code. In practice, I use 51 64-bit processors.
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B Bayesian Updating

Here, I derive the posterior beliefs discussed in the main text (Equations 4 and 5). I
assume rational expectations such that an individual’s initial belief upon entering the sample

regarding their true 6; is the population distribution:
Eo(0) =Ty = 0

Vo(6:) =0 = 0'3-
Consider an individual in period t with smoking stock A;,. For ease of exposition, assume that
an individual takes a health exam each period. When deriving the posterior beliefs in period
t, an individual considers only her prior beliefs (7;,_;,%;,_1) and her signal of information k;,.

According to Bayes’ Rule, the posterior distribution, f,, of 6; is given as:

fi(BilKn, Tio1, WYiem1) o fr-1(0,)g (1A, 6;,0,). (B.1)

Note that while g(x;|A;,, 6;,0,) conveys information about x'‘, an individual knows A;, and,
because 6; is time invariant, can therefore infer information about 6; over time. This will
become more clear in the interpretation of the posterior mean and variance. First consider
g(xi Ay, 6;,0,):

1

(xilAy, 0;,0,) =
E il (27'503)%

1
exp (—2 (ki — QiAit)z). (B.2)
207
Note that because we are concerned with the distribution of 6;, any term that does not include
0; can be treated as part of the normalizing constant. We can ignore the first term within the

parenthesis:
-1
o exp(—( —20,x;, Ay, + 07A7 ))
20_3 Nt t

Simplifying and completing the square yields:

A? K A,
t ittt N2
ocexp(—z(;z(ei— v ))
v

it

Notice that the term subtracted from 6; is the within (individual i) variation ordinary least
squares estimate of 0; from the n" signal of information. Define 0;, = K’Z—f”. Substituting for
it
6,., we have that:
2

A2 .
g(KitlAitJ 91': O-v) X exp( - zol_tz (91 - Git)z) . (BB)

Now consider the prior probability distribution of 6;:

1
fe—1(6) = T exp( (6; — Tit—l)z)- (B.4)

(27 _q)2 2¥i
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The nice aspect of the conjugate distribution assumption is that we can characterize the poste-
rior distribution sufficiently with closed form expressions for the posterior mean and variance.
Therefore, we only have to characterize that part of the posterior density that captures the
mean and variance. In that light, consider the product of the exponential portions of Equa-
tions B.3 and B.4 after rearranging terms and absorbing those without 6, into the normalizing
constant:
1 <

fe(6;) o ( 2 0? (Qiz (A2 i1 +07) — 26, (A3 ;-1 6 + Uiﬂt—ﬂ)) - (B.5)

After rearranging and completing the square, we have the kernel of a normal distribution

representing the posterior distribution:

A?t it—1 T 0-3 ( _ (A?tlljit—léit + 03%-1 )2))
2; 107 l A2y + 02

The posterior mean and variance is:

= E(6,| Y )= ﬂ 0. + 0—3 (B.6)
Tit = ilKes Tie—1Wie—1) = A?t¢if—1+03 it Ai‘#itﬁ"‘“% Tit—1 .

£,(6) (—

’\/)it—lo'ﬁ
Alz't'l/"it—l + 03

Rearranging these equations yields the posterior mean and variance equations above.

Y, =Var(6|Y;-1,0,) = (B.7)
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