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Abstract

When event data are retrospectively reported, more temporally
distal events tend to get “heaped” on even multiples of reporting units.
Heaping may introduce a type of attenuation bias because it causes
researchers to mismatch time-varying right-hand side variables. We
develop a model-based approach to estimate the extent of heaping
in the data, and how it affects regression parameter estimates. We
use smoking cessation data as a motivating example to describe our
approach, but the method more generally facilitates the use of retro-
spective data from the multitude of cross-sectional and longitudinal
studies worldwide that already have and potentially could collect event
data.

1 Introduction

The primary goal of this paper is to provide methods to estimate the effects of
heaping in retrospective studies on parameter estimates in regression models,
to quantify the degree to which heaping affects statistical inference, and to
provide a method by which to recover parameter estimates of interest that
are less biased.

*Cornell University
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As a motivating example, we use retrospectively reported data on smok-
ing behavior from the Panel Study of Income Dynamics (PSID) and the
Current Population Survey - Tobacco Use Supplements (CPS-TUS). With
those data we analyze the effect of certain covariates on a smoker’s decision
to quit smoking. To obtain the smoker’s quitting time, there are three com-
mon ways to phrase the question in the survey. The PSID survey used the
question “How old were you when you quit smoking?” Other surveys (like
the CPS) used one of “How long ago (in years) did you quit smoking?”, while
some surveys use: “In what year did you quit smoking?” These prototypical
questions often result in “heaped” responses — reported answers that tend
to have non-smooth distributions with peaks at multiples of five and ten
years. It is conceivable that heaped responses may result in biased estimates
in linear regression models. For instance, if we convert the reported ages to
calendar years and let p; be the probability that a smoker quit in Year=t,
then we may be interested in fitting the logistic model
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where X is a design matrix, containing covariates such as age, health status,
and cigarette prices. In this example, we may be interested in testing the
hypothesis that increased taxation on tobacco products causes an increase in
smoking cessation rate, and we need to know how heaping might affect the
estimation and significance of the coefficient on tax.

We take a model-based approach and assume that the distribution of
quit-times (expressed either in terms of age, or time elapsed since quitting,
or calendar years) mixes outcomes generated by two processes. The first
is a stochastic process, representing the smokers who would eventually quit
smoking randomly, while the second normally distributed component results
from decisions of smokers who quit in response to some external conditions,
such as serious health issues, changes in family or employment status, or,
perhaps, due to changes in cigarette prices. We fit the mixture model using
the Expectation Maximization (EM) algorithm (Dempster et al., 1977) or
a Monte Carlo Markov Chain (MCMC) simulation, and obtain a smooth,
parametric distribution of quit-times. To estimate whether and how heaping
biases regression parameter estimates, and the misclassification rate in the
responses, we sample from this mixture distribution and fit the linear model
to obtain parameter estimates for the regression model. We then compare



the average estimates with the ones obtained from the observed (heaped)
data, to obtain an estimate for the bias that is due to heaping.

We also use the fitted distribution to directly compute the probability
of two types of misclassification errors that are (potentially) present in data
on smoking behavior. These errors reflect the probability that a person re-
ports he has quit when in fact he currently smokes, and the probability that
a person erroneously reports he is currently a smoker when in fact he quit.
Hausman et al. (1998) label these errors as ag and «; respectively. They show
that, in models with limited dependent variables, these types of measurement
error are not innocuous and they develop a method to parametrically adjust
for the presence of such errors. Here we use our fitted and the empirical dis-
tributions of start and quit ages to directly estimate the average error of each
type at each age at which smokers are at risk to quit. With those computed
error probabilities we can then directly adjust the likelihood function in the
Hausman et al. framework to recover the true parameters of interest.

We use Monte Carlo methods to simulate data with subjects that re-
spond to a change in a single covariate of interest in a known way. We then
introduce heaping into the data using (a set of) heaping rules that replicate
the pattern of heaping in the observed distribution of quit ages. With these
data we test whether our bias adjustment factor recovers the true underlying
distribution. We also explore whether bias is mitigated by two alternative
methods developed in Lillard et al. (2009) and another widely known method
developed by Heitjan and Rubin (1990).

The example we study epitomizes the bias that heaping (potentially)
introduces in all models of event data. Studies that use events as either
dependent or independent variables data abound. For example, a Google
Scholar (http://scholar.google.com/) article search yielded thousands of hits
for “age at marriage,” “time of marriage,” “age at birth of first child,” etc.
Because event data are the focus of so much attention, there is great value
in developing methods to reduce potential bias that heaping introduces.

Several studies identify factors associated with respondents’ recall accu-
racy. Recall duration or time since event is a strong predictor of the quality
of retrospective reports on marital history in the US Panel Study of Income
Dynamics (PSID, Peters (1988)), age at first sex in the National Longitudinal
Survey of Youth 1979 (NLSY79) Wu et al. (2001), and post-partum amen-
orrhea (the interval after a pregnancy before menstruation returns) in the
Malaysian Family Life Surveys (MFLS) Beckett et al. (2001). Researchers
also agree that respondents more accurately report when an event occurred



if the event is more salient to the respondent. Kenkel et al. (2004) find that
smokers are more likely to report the same starting age across different waves
of the NLSY79 if they are or were heavier smokers. Although marriage and
divorce are both salient life events, Peters (1988) shows evidence that dates
of divorce are reported less consistently than dates of marriage and conjec-
tures that the difference may arise because divorce is less socially acceptable.
Researchers have also linked with recall accuracy with demographic char-
acteristics such as education and race/ethnicity Kenkel et al. (2004), Peters
(1988), question wording Peters (1988), and even arithmetic facility Wu et al.
(2001).

The paper is organized as follows. In Section 2 we review the extant lit-
erature and briefly review methods suggested there to mitigate the bias due
to heaping. In Section 3 we provide graphic illustrations and several obser-
vations from the PSID data set. In Section 4 we describe two parametric
mixture models for smoking cessation data and derive parameter estimates
using the EM algorithm or MCMC simulations. Section 5 contains a simu-
lation study, and in Section 6 we show how one may use our model-based
approach to estimate the bias in regression parameter estimation, and the
misclassification rate in the response and the set of people who are ‘at risk’
to quit smoking. We conclude with a discussion in Section 7.

2 Background

Our analysis follows and builds on the work of Little (1992), Torelli and Triv-
ellato (1993), Heitjan and Rubin (1990). Each of these studies recognized
the potential problem that heaping might cause. Little (1992) provides a
succinct review of event history analysis and missing-data methods. Torelli
and Trivellato (1993) propose solutions to heaping in data on unemployment
spells of Italian youth that involve the specification of a parametric model
of the errors in the reformulated likelihood function, adding a dummy vari-
able to flag ex-smokers who heap or do not heap, and smoothing the data
as recommended by Heitjan and Rubin (1990). Heitjan and Rubin (1990)
attempt to solve the problem of heaping by coarsening data over broad inter-
vals centered around the heaping unit. They use a simple framework in which
survey respondents use a single heaping rule. In more recent work, Forster
and Jones (2001) model smoking initiation and smoking cessation using UK
data in discrete-time hazard models with and without controls for heaping.



They implement solutions proposed by Torelli and Trivellato (1993) but find
little evidence that heaping biases coefficients on cigarette tax in models of
smoking duration. Pudney (2007) focuses on heaping in consumption ex-
penditure data, and changes in heaped responses between consecutive waves.
Similar to our findings, he notes that in any group of survey respondents,
multiple heaping rules are used. His analysis focuses on patterns of transition
between heaping points for the same individual.

The working paper of Lillard et al. (2009) is the first study, of which we
are aware, to compare side-by-side estimates of the coefficient on price in 4
specifications of a model of the probability of smoking cessation. Using a
naive treatment of the data (OLS) as the reference the three other specifi-
cations each attempt to account for heaping with semi-parametric (sample
selection) or parametric methods. They show that, relative to the OLS esti-
mates, each specification with heaping controls yields substantially different
coefficient estimates. Unfortunately Lillard et al. (2009) cannot evaluate the
extent to which each method reduces bias because they do not observe the
true underlying distribution of quit ages. Consequently one cannot evaluate
which method is preferred or even if any of the methods reduce the apparent
bias. In a new working paper, Kenkel and LeCates (2010) attempts to fill the
gap by simulating the distribution of quit ages with Monte Carlo methods,
generating heaping to replicate observed patterns of heaping in actual data.
They then examine how well 6 different correction methods perform in re-
covering the parameters of interest, including variants of the three methods
examined by Lillard et al. (2009).

Our model-based approach is similar to that of Wright and Bray (2003),
where a hierarchical model is used to estimate the effect of heaping (via
MCMC simulations). Crockett and Crockett (2006) deal with the conse-
quences of heaping in the British religious census of 1851, and they point out
that it is not plausible that the “coarsening” occurs at random, and hence, it
is not ‘ignorable’ in the sense of Heitjan and Rubin (1990). Lambert (1992)
deals with a special case of heaping, where there is excess in observations
of 0 in count data. In her analysis, she shows that one has to account for
heaping in Poisson regression, in the presence of ‘zero-inflated’” data.
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Figure 1: The distribution of reported quit ages in the 1986 PSID survey.

3 Data Explorations

Before going in detail into our model-based approach to assess the effect of
heaping on parameter estimation, we begin with a number of examples.

Figure 1 shows the distribution of reported quitting age of 2,269 respon-
dents in the 1986 wave of the PSID survey. The labels ‘T5” and ‘“T'10’ corre-
spond to ages that are multiples of five or ten years, respectively. It may be
argued that at least some of the heaping observed in the data is real, and not
a result of respondents rounding to the nearest multiple of five or ten years.
We see evidence in the data that this is not the case (see Section 4), but our
proposed model-based approach allows to account for “true heaping.”

We see in Figure 2 that older respondents tend to heap their start-smoking
age much more than the younger cohort. There is no obvious reason that
a higher proportion of older people would have started to smoke at age 25
that similar people who happen to be younger. To check whether reporting
heaped values is related to age, we fit a logistic regression model

P,
log (ﬂ) = [o + 1 x CurrentAge
1 — Prrs)

where [ [T'5] takes the value 1 if the reported start-age is a multiple of five,
and 0 otherwise, and test the null hypothesis that 3; = 0. Figure 3 shows the
fitted logit function and the parameter estimates for this model. The odds
for reporting a T5 age increase exponentially with age (p < 6.1e —9). The
horizontal dashed line represents the expected proportion of people starting
to smoke at an age that is a multiple of five (20%).
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Figure 2: Reported start-smoking ages for two current-age groups.
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Figure 3: The probability of a heaped start-smoking age, as a function of
current-age.

In the surveys we analyzed we find that among people whose age at the
time of the survey was less than or equal to 50, the starting age appears to
be distributed approximately normal, as in the right panel of Figure 2, with
mean =~ 17.5 and variance = 11.

Before we proceed with parametric modeling of quitting ages in the pres-
ence of heaping, we analyze the distribution of a related quantity. Clearly,
quitting age can be written as the sum of starting age and the number of
years a person has been smoking. The former can be estimated empirically
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Figure 4: The distribution of pys/100 for different subsets from the sample.

by considering the subset of younger respondents whose starting ages will e
less error prone. Because the number of years a person has been smoking
depends on the person’s current age, we transform it into percentage terms,
ie.

pys/100 = YearsSmoking

CurrentAge

where pys =Percent Years Smoking, the result is much less sensitive to the
choice of the cohort. Figure 4 shows the distribution of the variable pys/100
for different subsets.

A natural choice for fitting this distribution is the generalized beta distri-
bution with support (L,H) where L = min(Y earsSmoking/CurrentAge) >
0 and H = max(YearsSmoking/CurrentAge) < 1, with the probability
distribution function

(x— L) " (H —2)"!
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Figure 5: Fitting the distribution of pys/100.

where B(,) is the Beta function. Figure 5 shows the fitted generalized Beta
distribution (left) and a quantile-quantile plot (right).

Interestingly, if we consider the subset of quitters who are at least 49
years old at the time of the survey and plot the percentage of years smoking
starting from age 49, i.e.

YearsSmokingA fterd8

49/100 =
pys49/100 CurrentAge — 48

then the distribution of pys49/100 is almost uniform, as can be seen in Figure
6. A possible explanation for the difference between the two distributions is
that quitting age is actually a mixture of two distributions. This is the basic
idea behind the model-based approach in the following sections, which can be
summarized intuitively as follows. A certain fraction of smokers will decide
to quit randomly, according to some stochastic process (or will die without
ever quitting), while the rest of the population will quit smoking following a
major life-changing event (such as heart attack, birth of a child, retirement,
etc.), regardless of when they started smoking. Alternatively, the mixture
distribution can be within each person so that, in a steady state, smokers quit
according to a random process that is independent of external events. When
a shock occurs, some smokers are pushed into the second distribution. Quit
decisions for this group are distributed as described above. More generally
this structure allows for the presence of a large number of smokers who are
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Figure 6: The distribution of pys49/100.

not subject to shocks but who still quit according to a random process - a
point to which we return later.

4 Statistical Models

We propose a parametric model approach to fit smoking cessation data in or-
der to assess the effect that heaping has on regression parameter estimates.
We fit a mixture in which the first component represents the population
of smokers who quit randomly, and the second component represents the
population of smokers who quit as a response to certain events. The first
component may be modeled differently, depending on the form of the smok-
ing cessation question in the survey. The second component allows us to
incorporate covariates of interest and assess their effect on people’s decision
to quit. We use two methods to estimate the mixture-model parameters,
namely, the Expectation-Maximization (EM) algorithm, and Monte Carlo
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Markov Chain (MCMC). The EM algorithm is particularly well suited for
fitting parametric models to such data, since the model involves missing ob-
servations. Specifically, missing data include which mixture component each
subject belongs to and quitting ages, which are censored for people who still
smoke at the time of the survey. The MCMC approach, while more com-
putationally intensive, allows us to modify the assumed underlying mixture
model more easily. Here, we present both as viable approaches, and while
they have different implementation considerations, they both benefit from
the parsimony of our model-based approach. Here, we propose a family of
parametric models for fitting quitting ages. We describe how we use these
models to estimate the attenuation bias due to heaping in Section 6.

4.1 Model 1 — a Beta/Normal Mixture

The first model is motivated by the observations in Section 3 where we saw
that the distribution of percentage of time smoking is different for the older
cohort. In the first mixture component, in which smokers quit randomly, we
use the trivial identity:

YearsSmoki
QuitAge = StartAge + Current Age X earsSmoking

CurrentAge )
As discussed in the previous section, the distribution of StartAge is approx-
imately normal, and its mean and variance can be estimated using a subset
of younger respondents, and YearsSmoking/CurrentAge can be estimated
using (1).

For the second mixture component, we assume that quitting ages are
distributed normally with mean @ and variance 0. Hence, given the starting
age s; and the current age ¢;, the probability distribution function of the
quitting age ¢;, is

flailsisci) = bifs (qi s, 8, L, H) +(1=b) fv (¢::0,0%),  (3)

(3

where the unobserved indicator variables b; are distributed Bernoulli (p).
Notice that the normal component allows us to incorporate covariates
into the model, since it can be written in the usual form in normal linear
regression, as X[ + ¢, where [ is a vector of effects, and ¢ is the random
error. In the next section, we describe in detail how we perform the regression
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analysis while accounting for heaping. Briefly, we take a hybrid approach
where in the first step (the EM algorithm) we include only the overall mean
and variance of the normal component in the mixture (3), and in a second step
we use a Monte Carlo approach to estimate the regression parameters. This
approach has the advantage that the EM estimation is more parsimonious,
and does not depend on the number of covariates in the regression model.

The complete-data likelihood for one observation, given the starting age
Si, 18

) 1-b;
(el 252))

so the complete-data log-likelihood for a sample of m independent subjects
is

Zb [10gp+ (a —1)log (ql‘sl L>+(5_1)10g(H gi— s)]
— —log B(o,8) — (a+ 3 —1)log(H — L)

=1

1 q2—92
) |log (1 — )—ilog(2ﬂ02)—%l.

To construct the @) (\I/; \I/(k)) function for the EM algorithm, where

Q (\Dv \Ii(k)) = E\Il(k) [ZC' (\Ij) |87Q] ) U= {pa Lv H>a7ﬁ79702} ) (4)

we need to replace the missing data variables with their expectations, given
the current parameter estimates. For the Bernoulli variables, b;, we simply
use Bayes rule to find the posterior probability that subject ¢ quitting age is
distributed according to the generalized binomial distribution:

pfs (%5206, L. H)
pr( ~ o, 3, L, H>+(1—p)fN(Qz’;9>U2)

E(b;) = ()

The parameter estimates are obtained by maximizing the () function with
respect to W. We obtain the following formulas for the estimates from k-th
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iteration of the EM algorithm:

k—1)
(k) _ Zz lbz(
m

s (1= g,
2t (1 - bf.k‘l))
s i (1 - bﬁk_”) (g — 0%)?
U 2t (1 - bg’“—U) ’

and for L, H,a, we obtain the estimates by solving the following set of
equations numerically:

L®).
b(k 3 a(k 1) +/6(k 1) -1 Oé(k_l) -1 0
Z (k) 1)_L _QZ Sz_L o
H )
ib(’f‘” e S et §
p ( H — qzc.sz H — (k-1 o
o®
Zbl(-k_l) |:10g (qz — S5 _ L(k—l)) . log(H(k—l) o L(k_l)):| —
&
i=1
() = p(a+ 4Y)
B

where 9() is the digamma function.
If the distribution of quitting ages is truly a mixture in which some frac-
tion of the population quits randomly, then including these people in the
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regression model may diminish the power to detect significant effects. Fur-
thermore, when a survey is conducted in waves, this model makes it possible
to compare the proportions of people who quit randomly. These properties
are important for policy makers, since they can estimate which proportion
of the population may be persuaded to quit smoking, and estimate the effect
of their policy (e.g. higher cigarette taxes, advertisement campaigns, etc.).

4.2 Model 2 — an inverse-Gaussian/normal mixture

Our second model also corresponds to questions of the form “How old were
you when you quit smoking?” We assume that the population of smokers is
a mixture of two groups, but in this case, in the first group the response is
assumed to follow an inverse Gaussian distribution, with probability distri-
bution function

Fr (i, \) = A < _,\M
I x?/”L? - 271'.']:36 p 237/,1/2

for x > 0. The inverse Gaussian distribution (IG) is related to ‘first passage
time’ in Brownian motion: given a stochastic process X; with X, = 0 and
X; = vt+7W,; where W, is a standard Brownian motion with a positive drift
v, the first passage time, defined as

T, = inf{0 < t|X, = a}

is distributed IG (%, ‘j—j) In the context of smoking cessation, ‘first pas-

sage time’ refers to a smoker’s decision to quit. The definition of the IG
distribution and its intuitive interpretation make is a natural candidate for
modeling event occurrences in general, and smoking duration in particular.
This distribution has been used to model the emptiness of dams (Hasofer,
1964), purchase incidence (Banerjee and Bhattacharyya, 1976), and duration
of strikes (Lancaster, 1972). The IG model is quite popular in the field of
finance, where strategies for buying or selling portfolios are often determined
using a ‘first passage time’ rule (buy/sell when the price of a stock reaches
a certain threshold). Recently, the IG distribution was also used to model
time until the first substitution in soccer games (Del Corral et al., 2008).
Folks and Chhikara (1978) provide a detailed description of the distribution,
its origin, properties, and applications. They noted that for several data sets
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which were modeled using the IG distribution, the log normal, the Weibull,
and the gamma distributions seemed equally adequate. However, they rec-
ommend using the IG distribution in lifetimes applications because of “its
considerable exact sampling distribution theory” and because it is preferable
to base the choice on the relation to an underlying physical mechanism. In
the case of smoking cessation, the “underlying physical mechanism” may, in
fact, be a psychological or social one, but at any rate, the ‘first passage time’
interpretation seems to make the IG model a natural choice to model the
stochastic process component of our data.

For the second group, we assume that quitting ages are distributed nor-
mally, as in Model 1. We assume that the population of smokers is a mixture
of these two distributions, so that given the starting age s;, the probability
distribution function of the quitting age ¢;, is

F(ailsi) = bifr (¢ — si 0, N) + (L= b;) fv (@:36,0°) (6)

Asin Model 1, b; are unobserved indicator variables, distributed Bernoulli (p).
Note that among those in the sample who still smoke at the time of the
survey, ¢; is censored, and we only observe their current age, ¢;. To estimate
the parameters in the model, we consider only the quitters (i = 1,...,m),
and we use the EM algorithm with b; playing the role of missing data. The
complete-data likelihood for one observation, given the starting age s;, is

b;
_ A (g — si) — ,U)2
be= (p 27(q; — si)? P {_A 2(qi — si)p? }) .

9 1-b;
(o 52)

so the complete-data log-likelihood for a sample of m independent subjects
is

m 1 1 qi — S8i) — W ?
— i i

m 1 i — 9 2
+Z (1-1b) [log(l —p) — §log (27?02) _ (g " ) ] )

=1
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Collecting the constant terms, we get

m

1 3 ((% Sz) /~")2
le = g b; |logp+ = log)\——log( Si) — A
i=1 2(gi — si)u?
S 1 2 (¢ — ‘9)2
;:1 (1—1) llog (1-p) 5 log (0%) 52 +K. (7)

Again, we replace the missing data variables with their expectations,
given the current parameter estimates:

_ M

E(b) = py/ma o { N )
i) — s 2 _2)
p\/mexp{ )\%}—F(l—p)\/gmzexp{—%}

(8)

Note that the EM algorithm allows us, in principle, to include the subset

of still-smokers, when fitting the model. For the censored ¢;, i =m+1,....,n

we can find the expected value, given that the subject still smoked at the
time of the survey, which is given by

E (g — silci, s:) Z/._ '931_}{8)_ S')d:)s (9)

where ¢; is the person’s age at the time of the survey, and f, F' are the
probability distribution function and the cumulative distribution function,
respectively, obtained from (6).

The M-step of the EM algorithm involves taking the derivative of () (\If; \If(k))
with respect to U = {p, i, A, 0,0%}. The maximum likelihood estimators in
the k-th step are

p(k) _ 221 b;
m
O iz b
m oy (gi=s)-w)?
2 b (qi—si)?

B Doie bilgi — si)
2 Zm
o _ Dt (1—5)
>oimy (1=1bi)
S20 iz (1) (q: — 0)°
>oimy (1=1b;)
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4.3 Model 3 — an exponential /normal mixture

The third model corresponds to questions of the form “How long ago did
you quit smoking?” As before, we assume that the population of smokers is
a mixture of two groups, but in this case the response in the first group is
assumed to follow an exponential distribution, with probability distribution
function

fo(z;)) = e ™

for x > 0. Let r; be the response of the i-th subject. The complete data log
likelihood in this case is

lo = Y biflogp+logA— Ar]
i=1

— 9)2

+> (1—b) [log (1- )—§log(a2)—(rT + K. (10)
i=1

Again, we order the observations so that the smokers are the m+1,...,n ob-
servations and replace the missing data variables, b;, with their expectations,
given the current parameter estimates:

E ) = phe . (11)

_pn\2
pAe™ 4+ (1= p) /57 exp {_—(Téag) }

The maximum likelihood estimators in the k-th step are

p(k) _ Z:il i
m
AR — Zi:l b;

iy biri
om Z% (I—bi)r
>icg (1=1b;)
s20 _ 2im (=0 (ri — 0)°
> (T=1by)
The left panel in Figure (7) shows the distribution of 14,142 quitters in

the 1995 Tobacco Use Supplement to the Current Population Survey (CPS).
Notice that there seems to be significant heaping at A5 and A10 points
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(corresponding to multiples of 5 and 10, respectively, in terms of number of
years since quitting smoking.) Interestingly, when the response is converted
to quitting ages, the heaping in T5H, T10 ages is much less pronounced than
in the PSID data (Figure 1).

While it is conceivable that people may have a greater tendency to quit
smoking at round ages (which we may consider as ‘true heaping’, as opposed
to misreporting), evidence and logic suggests it is not the case. There is no
reason to believe that the populations in the PSID and CPS surveys will have
different distribution of quitting ages, and therefore it seems that the heaping
at age 50, for example, in the PSID data is mostly a result of the form of
the question in the survey. In the case of data that are reported in terms
of calendar time (e.g. in what calendar year did you last smoke regularly)
heaping presents itself by excess reports of quits in calendar years divisible by
5. To evaluate whether there might be “true” heaping, consider the available
evidence about the process smokers follow when they quit and what patterns
in behavior would have to hold. In the case of calendar year heaping and age
heaping a person must be able to identify years in which the calendar year or
their age is evenly divisible by 5. This is plausible when quits are reported in
terms of calendar year or age. It is implausible for elapsed time because, at
the time a smoker is deciding to quit, he cannot know that in five or ten or
fifteen years time he is going to be surveyed and asked about whether he quit
or not. At the time a smoker is deciding, nothing differentiates one year from
another in the distribution of elapsed time. Therefore, all heaping on T5 and
T10 years is true rounding. In the case of quits reported in calendar years or
age years, smoking relapse makes it unlikely that a smoker hits a quit target
that is a T5H year (age). On average, smokers attempt to quit three to four
times before they succeed and the period between relapses is approximately
three to four months (”Center for Disease Control and Prevention [CDC]”
(1993), DiClemente et al. (1991), Hatziandreu et al. (1990), Prochaska and
DiClemente (1983)). To generate heaping of the magnitude shown above,
smokers would have to accurately forecast how many attempts they would
make and how long the periods of relapse would be in order to exactly hit
the quit (years) ages that are evenly divisible by 5. Such planning is logically
implausible.

Empirically one can also ask what would have to be true if the heaping in
Figure 1 reflected true behavior. Figure 1 implies that a person is between 3
to 5 times more likely to have successfully quit at age 30 than at age 29 or
age 31. Such large differences in quit rates would almost surely be commonly
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Figure 7: The distribution of the response to the question ‘how long ago did
you quit smoking’ in the CPS survey (left), and the inferred quitting ages
(right).

known. We are unaware of any such differences reported in any literature on
smoking cessation.

Despite the above, it is important to note that our model-based approach
allows us to incorporate a prior belief that certain ages are more likely to
prompt smokers to quit. One way to do it, is to add point-mass mixture
components to the model, and estimate their probabilities. A simpler way is
to add these ages as dummy variables to the regression model (e.g. Ij;s50i5] =
1 if subject ¢ was 50 years old in time period j, and 0 otherwise). More
details about the estimation of regression parameters are provided in the
next section.

In some surveys the question about smoking cessation is asked in the
form “In which calendar year did you quit smoking?” This is equivalent
to the question “How long ago did you quit smoking?” since we can simply
subtract the calendar year at the time of the survey from the response. Note,
however, that the heaping that occurs depends on the form of the question,
and more precisely, on the time units being used. So, for instance, if a survey
is conducted in 2002, and the question has the form of “in which calendar
year”, then after the transformation to the form “how long ago” we expect
the heaping points to be 2,7,12, etc.
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4.4 The EM Algorithm — Estimating the Heaping

In the previous subsections we described three possible models for retrospec-
tive event data and the EM framework for fitting such data. However, in the
presence of heaping the parameter estimates are expected to be biased, and
indeed, our simulations show that this is the case. For example, when we fit
data generated according to the exponential/normal model, the parameter
estimates obtained by the EM algorithm are very accurate as long as the
total percentage of heapers is less than 10 — 15%, and when the percentage
of heapers increases, the estimate of the (normal component) variance, o2,
as well as the estimate of the mixture parameter, p, are inflated. In these
simulations, by the way, the rate (\) and the mean of the normal component
(0) are estimated quite accurately even in the presence of significant heaping.

The EM algorithm framework allows us to account for heaping by incor-
porating other unobserved variables, in a way similar to the inclusion of the
Bernoulli variables in the previous subsections. In this subsection, we discuss
the idea in detail.

The hierarchical nature of our model-based approach is depicted in Fig-
ure 8: as we described in the previous subsections, subject ¢ may quit smok-
ing according to a stochastic process with probability p, and we denote the
probability distribution function generically by fr(r;;1) where 1) is a set of
hyper-parameters; or, it is distributed normally with mean p and standard
deviation o with probability 1 — p. Note that b; is a Bernoulli random vari-
able, so either b; = 1 (in which case the subject belongs to the group of
people who quit randomly), or 1 — b; = 1 (which corresponds to the group
of people who quit in response to certain conditions whose overall effect has
mean g and variance o2.) Hence, r; represents the true response of subject
1.

However, there is some probability that this subject is a “heaper” and
instead of reporting r; he reports H.(r;), where ¢ is a multiple of the time units
(e.g., in Model 2 we denote the heaped ages by T5 or T10 for multiples of 5
or 10 years, respectively). The probability that a subject heaps is distributed
according to a generic function, F, with a set of hyper parameters ¢. Note
that ' may depend, for instance, on the the current age of the subject. As
we have shown in Section 3, there is evidence that the current age affects the
probability that the subject will report a heaped quitting age.

This framework can be extended to allow for multiple heaping rules, and
each one can be modeled with a different probability distribution function, F,
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(e.g. T5 and T10 may have different probabilities in Model 2.) Furthermore,
the distribution function F' of the indicator variables h; is not assumed to
have certain properties. For instance, it does not have to be symmetrical
around the heaping points. In the simplest case, we might assume that h;
are drawn from a Bernoulli distribution such that person ¢ heaps his response
(h; = 1) with probability ¢ (regardless of their age, or any other covariates).
Alternatively, we can assume that ¢; depends on a person’s age, and use a
logistic regression as we did in Section 3 (Eq. 3), to estimate a subject-specific
heaping probability.

In the above discussion we assumed that the covariates that affect a per-
son’s decision to quit are independent of the covariates that affect their prob-
ability to heap. We recognize that this assumption may not always be true.
For example, a person may have quit smoking following a heart attack, the
timing of which he recalls perfectly, and as a result he will also report the
correct quitting age, and does not heap, regardless of his current age. How-
ever, having analyzed multiple data sets, we believe that our assumption is
reasonable, since a person’s current age (or the amount of time since quit-
ting) is the strongest predictor for heaping, and other covariates, like major
life events, seem to have a much smaller effect the probability of heaping.

To obtain the parameter estimates for the generic model in Figure 8, we
write the complete data likelihood as before, except in this case it contains
two sets of unobserved variables, {b;},{h;}. Let Fr(Hc(r;)), En(He (1)) be
the (discrete) probabilities of observing the heaped value y; = Hq(r;) rather
than the true value r;. Let H be the set of all the possible heaped responses
and HY is its complement.

Le = [T Apfe) (1 =p)fn(y)] ™"}

< TT (0= Al (1 = i)
(alpFr(u ) (1~ p) P )" (12)

We proceed with the EM algorithm as before, but the main difference is
that now we also plug-in the posterior probability that subject ¢ is a heaper,
E(h;), in the E-step. Given the parameter estimates in the k-th step of
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Figure 8: Graphical representation of process generating observed smoking
cessation ages

the algorithm, we can express Fl, Fr in terms of the continuous cumulative
distribution functions, and take the derivatives in order to find the current
iteration’s maximum likelihood estimates.

For example, under Model 2, f; is the exponential p.d.f, and if we as-
sume that the probability of heaping to, say, 25 is symmetrical in the range
[22.5,27.5), then we can write

27.5
Fy(25) = / Aexp{—Az}dr = 2258 _ ,—275A
2

2.5

We can similarly express Fiy(y) using the normal cumulative distribution
function.
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4.5 Using MCMC to Fit Parametric Models to Quit-
ting Ages

The model-based approach presented in this paper lends itself quite nat-
urally to a fully-Bayesian framework. While the EM algorithm provides
tractable expressions for parameter estimates, and is therefore computation-
ally efficient, it requires one to obtain the derivatives with respect to each
parameter of the complete data likelihood function. Hence, when a different
underlying mixture model is assumed, a new program is needed, and as we
demonstrated in the previous subsection, when we account for heaping (and
in particular when we allow for multiple heaping rules), the derivations be-
come more tedious. The Bayesian approach is similar to the one in Wright
and Bray (2003), except that in our case the response is not only heaped,
but it is also a mixture of two components.

In the fully Bayesian approach which employs Monte Carlo Markov Chain
(MCMC) simulations, changing the specification of the distribution functions
in the model (which is displayed generically in Figure 8), or implementing
different heaping rules, is much simpler. In fact, the specification of the
model is determined by the directional acyclic graph in Figure 8. However,
choosing the MCMC estimation approach trades off simplicity for speed.
Although the models described here are parsimonious, an MCMC sampling
approach tend to be slow since it involves a random sampling part, whereas
the EM algorithm with its analytically derived estimates tends to converge
much faster. Furthermore, MCMC sampling may require multiple runs to
assess convergence and to tune up initial values or prior distributions.

Both methods (EM and MCMC) are viable options for recovering the
assumed (“true”) underlying distribution of responses, which is a critical
step toward bias estimation, which we describe in the next section.

5 Simulation Study

We stated earlier that two factors can contribute to biased estimates in re-
gression models. First, we assume that some of the population quits smoking
according to a stochastic process that does not depend on the covariates in
the regression. It is important to separate out the two groups, in order to
assess what impact certain policies can have on smoking habits. For exam-
ple, in the extreme case in which all the subjects quit at random, we cannot
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Parameter True Value Estimate

p 0.9 0.857(0.024)
q 0.34 0.336(0.023)
1 14 14.235(0.444)
o 2 2.425(0.451)
A 0.1 0.092(0.003)

Table 1: Posterior means and standard errors of the simulation parameters

expect any policy to affect people’s decision to quit smoking. The second
factor, which is the focus of this paper is heaping. Heitjan and Rubin (1990)
coined the term ‘ignorable coarsening’, but as stated here and other places
(e.g., (Wright and Bray, 2003)), heaping cannot always be ignored. Our goal
is to estimate the extent of heaping in data sets, and use the smooth para-
metric model to quantify to what degree regression parameters are biased as
a result of heaping.

In Section 4 we described two approaches to recovering the underlying
mixture model, one using the EM algorithm, and the other using a Bayesian
approach (MCMC simulations). We simulated 1000 subjects who reported
their quitting time in terms “how long ago”. We set p = 0.9, meaning that
900 subjects quit according to a stochastic process (exponential distribution
with rate A = 0.1), and 100 subjects quit because of external conditions,
according to a normal distribution with mean p = 14 and variance % = 4.
We also set g5 = 4, that is, 40% of the people reported a heaped response
(rounded to the nearest multiple of 5 years). Note that in this simulation
we set it so that only people who quit more than three years ago can heap,
so the actual number of heapers in this simulation is 295 (out of 867 whose
response is greater than 2), so effectively ¢ = 0.34.

Using the WinBUGS MCMC sampler (Spiegelhalter et al., 2003), we were
able to obtain very good estimates for the simulation parameters. Figure 9
shows the simulated data, with substantial heaping at multiples of 5 years.

Table 5 summarizes the results of the MCMC simulation. The posterior
means of the five parameters in the model are very close to the true values,
even in the presence of significant heaping, and a relatively small proportion
of the normal component in the mixture.
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Simulated data, ~30% heaping
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Figure 9: Simulated data with a mixture of 0.9 exponential(0.1) and 0.1
normal(14,4), with 34% heaping.

In a similar simulation, we generated a data set as in the first example,
but with 02 = 0.25, which represents a “one-time shock”, which we think of
(simplistically) as the effect of tax. The (Bayesian) 95% Highest Probability
Density Intervals for the tax effect parameters, u,o? are: i € (13.96,14.4)
and 6% € (0.197,0.32) where the true values are u = 14,0% = 0.25. The
95% HPD Interval for the proportion of people who quit due to the tax is
p € (0.079,0.1276) and the true value is 0.1.

Figure 10 shows the sampling properties of the posterior distribution of
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MCMC simulation Posterior sample of o’
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Figure 10: Sampling from the posterior distribution of o

o?. The left panel shows a trace plot of the last 1000 MCMC iterations (sug-
gesting good mixing and convergence), and the right panel shows a histogram
of the sampled values, which demonstrates the accuracy of the estimation
procedure, as was also summarized in the HPD Interval above. Similarly,
Figure 11 shows the sampling properties of the posterior distribution of the
mixture parameter p.

6 Bias Estimation

Our main goal in this paper is to estimate to what extent heaping in surveys
can affect parameter estimates in regression models. We begin this section
with a brief review of discrete time survival analysis regression. Our notation
below follows that in Singer and Willett (1993), which we summarize here
for completeness.

6.1 Discrete-Time Survival Analysis — Brief Review

Let Gij = P’T’{ZE = ]|T‘z Z j, Zlij = Rlijy e Zpij = Zpij} be the discrete time
hazard function, which is defined as the conditional probability that person
1 quits smoking in time 7, given that he did not quit before time j, and given
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Figure 11: Sampling from the posterior distribution of o

some covariates Z;;. We use the model proposed by Cox (1972) and assume
that the log-odds of quitting follow a linear model:

log (1537;) =a1Dyij + ...+ ayDyij + b1 Zuj + ...+ BpZpij,  (13)
i.j
where the data is stored on person-years format: suppose that the earliest
year reported in the survey is t(;) and the last one is £(;). For example, £
can be the earliest birth year in the survey, and ¢(;) can be the year in which
the survey was conducted. The first index in Dy;; represents the range of time
periods in the sample, 1,...,J. The second index, i, represents the subject.
For each subject, the data set contains s; rows, where s; is the number of
years the subject reported to have been smoking. The variable Dy;; is set to
1 if subject ¢ has been smoking for j years at time period ¢, and 0 otherwise.
Note that for a fixed ¢, for each pair ij at most one dummy variable Dy;; can
be 1. The parameters a; represent the baseline hazard in each time period.
The variables Z,;; record the values of P covariates for each subject 4, in
each time period j in which he was ‘at risk’ for quitting. These covariates
may be fixed for all time period (e.g., sex, race, etc.) or time-varying (e.g.,
cigarette price, or major events such as marriage, heart attack, etc.) The
parameters (3, describe the effect of the P predictors on the baseline hazard
function (on the logit scale).
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The response Yj; is either 1, if subject ¢ quit in his j-th year as a smoker,
or 0 if he was still smoking.

Hence, the design matrix X for the logistic regression consists of J + P
columns where the first J correspond to the smoking duration indicators,
Dy;j, and the last P correspond to the linear predictors. The number of
rows in X is S = > | s;, the total number of person-years. To estimate

the parameters ¢ = {a1,...,ay,01,...,0p}, we maximize the likelihood
function .
L= HHgy” (1— gy) v (14)
=1 j=1

where g;; is obtained from (13).

Assessing the significance of the predictors is typically done by comparing
—2LL of the complete and reduced models, where the latter includes only
the intercept parameters, a;, and —2LL is —2 times the log-likelihood. The
drop in —2LL is compared with a Chi-square distribution with P degrees of
freedom.

6.2 Estimating Heaping-Induced Bias and Misclassifi-
cation Probabilities

Using the notation in 6.1, it is obvious that heaping (or for that matter,
any type of error in reported ages in retrospective surveys) will result in a
different design matrix X and response vector Y, and hence may result in
biased estimates for (3,.

To estimate the heaping-induced bias we use Monte Carlo simulations: re-
call that in Section 4 we provided a model-based approach to estimate the dis-
tribution of quitting ages. We use these estimates to construct random design
matrices and response vectors, X Y™ respectively, and for each such
pair we obtain the regression parameter estimates, ¢, (for m =1,..., M).
Specifically, we take the birth years of subjects in the survey, and draw start-
and quit-smoking ages according to the fitted distribution for the appropriate
model from Section 4, and convert them to calendar years, which we then
use to construct X ™ Y (™ as described in the previous subsection.

For each predictor p=1,..., P we then estimate the bias by

M

Bias, = Z ﬁp,

m=1
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where 3, is the maximum likelihood estimator of (3, obtained from the survey
data (without accounting for heaping), and (3, ., is the estimator from the
m-th random pair X, Y™,

Using the Monte Carlo simulation approach we can also estimate the
response misclassification probabilities, defined for each time period j, as in
Hausman et al (1998), by

where ffij is the true response (subject ¢ quit in time period j), and Yj;
is the reported response. Similarly, we can estimate the misclassification
probabilities of the ‘at-risk’ set at time ¢,

50,t = PT(th'j = 1|Dtij = 0)
51715 = PT’(DtZ‘j = O|Dtij = 1)

7 Discussion

The above exercise shows that our method recovers the parameters of the
underlying distribution in our simulated data. With these estimated values
of the underlying parameters, we can then estimate the bias. Our method is
similar to the one developed by Wright and Bray 2003 with two important
extensions. Those authors assume there is one underlying distribution and
that respondents all use a single heaping rule. Here we assume a mixture
of two distributions (that replicate the observed data very well) and we al-
low for multiple heaping rules. Our approach also relaxes two very strong
assumptions of Heitjan and Rubin 1990 - that respondents only use a single
heaping rule and that reported quits are coarsened at random (they term
this “ignorability”). In most data both assumptions probably do not hold.

As of this writing we have made significant progress toward our goal of
developing a method for measuring and correcting for the attentuation bias
that heaping introduces to models of the probability that events occur. This
problem arises principally when the timing of the event is related to factors
that also vary over time. In such cases, misreported outcome data will be
less correlated with the time-varying explanatory factor.

Our method depends on two key assumptions. First, we assume that
observed data result from the mixture of two distributions that reflect distinct
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and separate processes. In one we assume that the behavior of interest occurs
stochastically. In the other we assume that observed behavior responds to
external shocks. We also assume that respondents to surveys fall into two or
more groups, each of which uses a different heaping rule. We fit distributions,
show that we can replicate the observed data, and we recover the parameters
of an underlying distribution in data with heaping that we simulated.

Our next steps are to extend the simulation to the distribution of quits,
compute the bias correction factor for different underlying distributions, and
then apply those correction factors to actual data.! We will also develop
formal tests of our fitted parameters from the simulated data.
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A The PSID and CPS Data Sets

The Panel Study of Income Dynamics (PSID) (United States)

The PSID began in 1968 with a sample of about 5,000 households, rep-
resenting a disproportionate number of low-income individuals. All current
PSID families contain at least one member who was either part of the orig-
inal 5,000 families or born to a member of one of these families. Although
the original sampling scheme disproportionately selected individuals from
low-income families, a representative sample of the United States population
can be obtained by excluding the original over-sample from the data or by
applying sample weights. Starting in 1997 the PSID administers its survey
every other year. Only the head and “wife” (a PSID term designating the
household member with whom the head has a “significant” relationship) are
asked about their cigarette consumption. Retrospective smoking questions
were asked in 1986, 1990 (for those age 65+), 1999, 2001, 2003, 2005, and
2007 and are scheduled to be asked in all currently planned surveys (2009
and 2011). The PSID data is the world’s longest running panel study. As of
2007, it has followed individuals for up to 38 years. It also has data on up
to three generations.

Current Population Survey - Tobacco Use Supplements (CPS-
TUS)

The Tobacco Use Supplements to the Current Population Survey, spon-
sored by the National Cancer Institute and administered as part of the U.S.
Census Bureau’s continuing labor force survey, have been collected since 1955
(Haenszel, Shimkin, Miller 1956, Hartman et al. 2002). In the more recent
CPS-TUS surveys, data on smoking behavior of a large, nationally repre-
sentative sample of about 240,000 individuals 15 years of age and older is
collected in a three-month survey cycle. These cycles were conducted in
September 1992, January and May 1993; September 1995, January and May
1996; September 1998, January, and May 1999; and June and November
2001 and February 2002. A separate TUS “Special Topics supplement” was
administered in 2003. The CPS-TUS are supplemental surveys given on top
of the monthly survey the CPS is administering.
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