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A Profile of Obesity in Ireland, 2002-2007

Introduction

This paper provides a profile of the change in obesity in Ireland between 2002 and

2007, using the Slan surveys for those years. There are two dimensions to the profile

provided. First of all we analyse the total distribution of body mass index (BMI) for

both years and use stochastic dominance techniques to examine changes across the

complete distribution of BMI. Secondly we employ a series of decompositions to

obesity and the change in obesity over time. Obesity typically does not fall randomly

across the population. It may differ by age, gender and education. We carry out

decompositions of obesity measures along these three dimensions. We also employ

decomposition techniques to examine the change over time. The Shapley

decomposition breaks down the change in obesity into that part accounted for by a

change in the average level of BMI and that part accounted for by a change in the

distribution of BMI. Finally, we estimate a reduced form model of BMI and apply

the semi-parametric decomposition approach of Dinardo, Fortin and Lemieux,

(henceforth DFL, 1996) to examine the role of various factors in the change in obesity

observed over the 2002-2007 period. This approach enables us to construct

counterfactuals of the total distribution of BMI under different scenarios.

The remainder of the paper proceeds as follows. In the next section we make some

general observations concerning the measurement of obesity and we motivate the

stochastic dominance approach for examining the change in obesity between 2002

and 2003. We then discuss our data and present the stochastic dominance results.

The next section carries out decompositions by age, gender and education while we
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then explain and present results for the Shapley decomposition. We then present

results for the DFL decomposition while the final section presents concluding

comments.

Measuring Obesity

Obesity is clearly one of the most pressing health issues in the developed (and

increasingly in the developing) world. For example, a recent edition of the New

England Journal of Medicine is devoted to the topic with one article suggesting that:

“Unless effective population-level interventions to reduce obesity are

developed, the steady rise in life expectancy observed in the modern era

may soon come to an end and the youth of today may, on average, live

less healthy and possibly even shorter lives than their parents” (Olshansky

et al., NEJM, 2005).

Meanwhile an editorial in The Lancet stated:

“Excess bodyweight is one of the most blatantly visible, yet most

neglected, risk factors contributing to the overall burden of disease

worldwide. At least 1.1 billion adults and 10% of children are now

overweight or obese, leading to decreased life expectancy due to

cardiovascular disease, type 2 diabetes and some types of cancer” (The

Lancet, 2006).
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Given this extent of concern regarding obesity, it is important that we measure it

accurately. The most common measure of obesity used is derived from body mass

index (BMI). BMI is obtained by dividing weight (in kilos) by height (in metres)

squared. The World Health Organisation defines overweight and obesity with respect

to BMI as follows:

Range of BMI Weight Definition

<20 Underweight

20-24.9 Normal Weight

25-29.9 Overweight

30-39.9 Obese

≥40 Severely Obese 

Thus obesity is defined as a value of BMI greater than or equal to 30.

Note that there is criticism of BMI as a measure of obesity with some authors

suggesting that other measures such as total body fat, percent body fat and waist

circumference are superior measures of fatness (see Cawley and Burkhauser, 2006).

Since much of the contribution of this paper is primarily methodological, while

acknowledging the importance of this issue, we still feel it is useful to apply our

approach to BMI as the likelihood is that it will remain the most commonly used

indicator of obesity for the foreseeable future. Also, the approaches to analyzing

obesity which we suggest here could in principle be applied to measures such as total

body fat etc.

Most analysis of obesity usually proceeds by calculating the fraction of the population

with BMI above the obesity threshold and proceeding from there. There are a number
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of problems with this approach, however. First of all, using the simple fraction of the

population with BMI above a particular threshold ignores much of the available

information. It is a crude aggregate measure which is insensitive to how far above the

threshold obese people are and is also insensitive to the distribution of BMI above the

obesity threshold. These issues, and suggestions to overcome them, have been

discussed in Jolliffe (2004) and Madden (2006) and are briefly reviewed again in

section 4 below.

A second problem with the WHO approach to measuring obesity is the potential

sensitivity of the measure to the choice of 30 as the obesity threshold. An individual

with a BMI of 29.9 may be observationally indistinguishable from one with a BMI of

30. Yet one will count as obese and the other will not. Thus a comparison of obesity

between two populations may be sensitive to the (arbitrary) choice of BMI threshold.

Ideally, we would like to be able to compare obesity between two populations in a

manner which is not sensitive to choice of BMI threshold. This is where stochastic

dominance can help.

Probably the main application of stochastic dominance in economics is in relation to

assets with monetary payoffs where it is used to rank the payoff distributions of assets

in terms of their level of return and the dispersion of the return i.e. the level of risk

attached to the asset. It can also been used in poverty and income distribution

analysis and it is extremely useful when making non-parametric comparisons between

distributions of continuous variables such as BMI.
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Suppose we have two distributions of BMI with cumulative density functions (CDF)

)(BMIF and )(BMIG respectively. Then CDF )(BMIF first-order stochastically

dominates )(BMIG if and only if, for all monotone non-increasing functions

)(BMI :

  )()()()( BMIdGBMIBMIdFBMI 

where the integral is taken over the whole range of BMI. Thus the average value of

 is no greater in distribution F than in distribution G, as long as the valuation

function is such that lower is better i.e. it is monotone non-increasing.1 In this sense

distribution F stochastically dominates distribution G. An equivalent way of

expressing this is to say that for all BMI,

)()( BMIFBMIG 

so that the CDF of distribution G is no greater than that of distribution F i.e.

distribution F always has more mass in the lower part of the distribution.

In figure 1 we show two cumulative distributions of BMI, F(BMI) and G(BMI). Here

F stochastically dominates G in the sense referred to above. The relevance of this in

the context of obesity can be shown as follows: suppose we decide there is a critical

level of BMI, BMI*, which is the level denoting obesity. In figure 1, the value of the

CDF at BMI* for distribution F is higher than that for distribution G. Thus the

fraction of the population in distribution F with BMI less than the critical threshold is

lower than that in distribution G. In other words the fraction with BMI in excess of

BMI*, i.e. the fraction which is obese, is higher in distribution G than in distribution

F. And because we have stochastic dominance in the sense that )()( BMIFBMIG 

1 In the case of BMI we can regard the  function as being similar to a health utility function which is
non-increasing in BMI.
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this will be true no matter what critical value of BMI is chosen to indicate obesity.

Obesity is higher in G regardless of the chosen threshold.

Figure 2 shows an instance where stochastic dominance is not observed. At BMI* we

have F(BMI*)>G(BMI*), but at BMI** we have F(BMI**)<G(BMI**). Thus the

ranking of the distributions in terms of obesity is sensitive to the choice of threshold.

In this instance there are two choices open to the analyst. One is to put a restriction

on the range of BMI over which we look for stochastic dominance. Thus suppose we

decide that a value of BMIL is a reasonable lower bound for the obesity threshold

(obviously there is no upper bound). Then we can search whether stochastic

dominance is observed for values of BMI in excess of BMIL.

An alternative is to place restrictions on the function α(BMI).  This leads us on to the 

second type of stochastic dominance known as second-order stochastic dominance.

We say that distribution )(BMIF second-order stochastically dominates distribution

)(BMIG if and only if, for all monotone non-increasing and convex functions

)(BMI the previous inequality holds i.e.

  )()()()( BMIdGBMIBMIdFBMI 

Once again second-order stochastic dominance can be expressed equivalently as

)()()()( BMIDdttFdttGBMID F

UBMI

LBMI

UBMI

LBMI
G 

so that second-order stochastic dominance is checked, not by comparing the CDFs

themselves, but by comparing the integrals below them.2 When )(BMI is convex,

2 Note that first order dominance necessarily implies second order dominance.
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this implies that second-order dominance holds for obesity measures which are

sensitive to the depth of obesity. We can then employ the Second-Order Dominance

Condition above. Note the limits of the integrals. Because we are not worried about

BMI levels below the lower bound, BMIL, we only calculate the integrals for those

whose BMI exceeds this lower bound up to the highest observed value of BMI, BMIU.

Since first-order stochastic dominance implies second-order stochastic dominance,

this check should only apply when first order dominance is not observed. It is

possible to justify an obesity measure which is sensitive to the depth of obesity by

noting that for many of the conditions listed above for which obesity is a contributory

factor, the risk ratio is increasing with BMI.

We now discuss our data and present stochastic dominance results for 2002 and 2007.

Data and Stochastic Dominance Results

Our data comes from the Survey of Lifestyle, Attitudes and Nutrition in Ireland,

usually known as the Slán (the Irish word for “safe”) survey. The Slan surveys were

carried out in 1998, 2002 and 2007. For our purposes in this paper, the

correspondence between the questions asked in 2002 and 2007 is closest and so it is

these two years which form the basis of our study. The Slan surveys are

comprehensive, nationally representative surveys with sample sizes in 2002 and 2007

of 5992 and 10364 respectively. It is worth pointing out that Slan 2007 was a face-to-

face interview in the respondent’s house, while Slan 2002 was a self-completed postal

survey. Both approaches have their advantages and disadvantages: while interviewers
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can prompt and provide help to respondents in a face-to-face situation, the presence of

the interviewer may affect the response to some questions. In the case of the self-

reported survey there is always the danger than some respondents may not fully

understand the question. Morgan et al (2008) provide greater detail.

Before examining the data for stochastic dominance, we first present summary

statistics for BMI for the two years in question. Note we trim the data of the top and

bottom 0.5% by BMI for fear of very large and very small values reflecting

measurement error. Table 1 provides some information on BMI for 2002 and 2007.

We can see that mean and median BMI have both increased slightly (by less than one

per cent). The overweight rate (percentage of the sample with BMI over 25) has

increased by about two per cent while the obesity rate (percentage of the sample with

BMI over 30) has increased by less than one per cent.

Figure 2 presents kernel densities for BMI in 2002 and 2007, while figure 3 shows the

difference in the densities. The distributions are quite close. 2002 shows somewhat

more mass around the median value of about 25, while 2007 shows more mass in the

26-27 and 34-35 region.

In terms of eye-balling the CDFs there is one slight transformation which we have to

carry out. Because our concern is with the proportion of the population in excess of a

BMI threshold (rather than the proportion below an income threshold as would be the

case in a poverty study) we need to examine the complementary cumulative

distribution function (which we can then transform into an equivalent cumulative

distribution function).
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Thus for any threshold value of BMI, say BMI*, the cumulative distribution of body

mass index gives the probability that the random variable (in this case BMI) takes on

a value less than or equal to BMI* i.e. F(BMI*)=P(BMI≤BMI*). In examining

obesity we are concerned with the complementary CDF i.e.

*)(*)( BMIBMIPBMIFC  . However since it must be the case that

*)(*)( BMIkBMIkPBMIBMIP  , for any constant, k, then analysing the

complementary CDF for BMI is equivalent to analysing the CDF for k-BMI, where it

is convenient to set maxBMIk  , the maximum value of BMI observed in either 2002

or 2007.3

As eye-balling the transformed CDFs can be quite difficult, instead we show the

difference between them for a range of k-BMI from 0 to 25. This corresponds to a

range of actual BMI from the maximum value observed, just less than 45, to 20, and it

seems reasonable to suggest that any threshold of BMI for overweight or obesity is

certain to lie within this interval. Figure 4 shows this difference, along with the 95%

confidence interval. There is a clear crossing (at a value corresponding to BMI of

about 37) and so first order dominance does not hold.4 Obesity (and overweight)

rates were generally lower in 2002 for mild and intermediate degrees of overweight

and obesity, but they were higher for more severe degrees of obesity (i.e. BMI in

excess of about 37).

3 This transformation is necessary as we are drawing these curves using the DASP package of Arrar
and Duclos which does not construct curves for complementary CDFs. I am very grateful for their
permission to use the package.
4 Figure 4 shows the crossing at a value of “transformed” BMI of about 7. Since k is set at a value just
above 44, this implies that since k-BMI=7, then BMI must be about 37.
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What about second-order stochastic dominance? Figure 5 shows the area under the

CDF for k-BMI and once again we do not observe dominance with a crossing at a

level of BMI corresponding to about 35.

Since we do not observe either first or second order dominance between 2002 and

2007 it is not possible to make unambiguous comments regarding the change in

obesity in Ireland over this period. Any comparison of the two years must necessarily

involve the use of a particular obesity index and a particular BMI threshold. However

the use of specific indices does permit the decomposition of such indices in useful

ways, and this is the subject matter of the next section.

Decomposition of Obesity

Obesity typically does not fall randomly across the population. Rates of obesity can

differ according to a number of factors. The three factors which we examine here are

age, gender and education. We apply decompositions for two different measures of

obesity. The first we label BMI0 and it is the standard measure which simply gives

the proportion of the population with BMI below a certain critical level (in this case

we give results for two critical levels, 25 and 30). BMI1 is a measure which takes

account of the depth of obesity. Suppose the critical threshold level of BMI above

which people are obese is given by
*BMI , then the BMI gap for individual i will be

given by
*BMIBMI i  (note the gap is only measured for people who are above the

threshold). The obesity gap measure, which we label BMI1, is then given by the sum

of these gaps expressed as a percentage of total BMI in the community. Thus
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BMI

BMIBMI
i

n

BMIBMI

BMI i

.

)(

1
*

*






where BMI is average BMI for the community (see Jolliffe, 2004 and Madden,

2006).

First of all we note that taking the population as a whole, tables 1 and 2 show slight

increases in both BMI0 and BMI1 between 2002 and 2007 for both the obesity and

overweight thresholds. However, the results broken down by age and gender are

perhaps of more interest.

In terms of the breakdown by age and gender we partition the population into four

groups, taking 45 as the threshold age between young and old. In terms of education

we also use four groups: those with primary school education or less (left school at

around age 12), those with intermediate second level schooling (left school around

15-16), those with complete secondary school education (left school at 17-18) and

those with third level education.

Table 2 gives the breakdown of obesity and overweight by age and gender. There is a

fairly clear age and gender dimension to both. Males have a higher rate of obesity

and overweight than females, and so too do older people relative to younger. Hence

the obesity rate for older males is more than 30% higher than for the population as a

whole. Compared to younger females, older males have almost twice the rate of

obesity. Interestingly, the age gradient becomes less severe for males in 2007,

compared to 2002, yet it becomes more pronounced for females.
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What about measures that take account of the depth of obesity? For males, the age

gradient here is much less severe in the case of BMI in excess of 30. There is also no

clear gender gradient to be observed either for this measure in the case where the BMI

threshold is 30, though such a gradient is observed for the threshold of 25.

We now turn to the gradient by education. Here we see that when using a threshold of

30 there is a clear gradient in BMI0 for 2002, but this gradient is much less sharp in

2007. This reduction in the gradient between 2002 and 2007 can also be observed

when using a threshold of 25. For the most part the reduction in the gradient is caused

by an increase in BMI amongst those with 3rd level education.

When using measures which take account of the depth of obesity there is no real

reduction in the gradient for the threshold of 30, though there is some reduction for

the lower threshold of 25. Once again, these changes mostly arise from an increase in

BMI amongst those with 3rd level education.

The above decompositions are useful in that they show how obesity can differ

according to factors such as age, gender and education. However, these factors in

themselves can be highly correlated and such correlations should be taken into

account. This is carried out via regression analysis in section 6. Before that however

in section 5 we break down the change in obesity between 2002 and 2007 into that

part accounted for by changes in average BMI and that part accounted for by changes

in the shape of the distribution of BMI.

The Shapley Decomposition Over Time
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Changes in obesity over time can arise for one of either two reasons. Either the

average level of BMI in the population rises or else, while average BMI remains

unaffected, the distribution of BMI changes, with greater numbers of people above the

critical threshold. Figure 6 illustrates both these cases. In the left hand diagram the

probability density function for BMI shifts to the right, increasing the mean and

consequently increasing the mass of the distribution to the right of the critical obesity

threshold. In the right hand diagram, the mean remains the same. However, there is a

mean-preserving spread in the distribution and so once again the mass of the

distribution to the right of the critical obesity threshold increases. In most cases, there

will be changes in both the mean and the distribution of BMI and it can be useful to

decompose the total change in BMI into changes arising from the mean and changes

arising from the distribution.

As we have observed already, the measurement of obesity has much in common with

the measurement of poverty, in that both issues are concerned with critical thresholds.

Given this similarity it is hardly surprising that the decomposition issue has been

addressed in the poverty literature. Suppose we characterise our measure of obesity

as *),,( BMILOO  where μ is the average level of BMI, L is the Lorenz curve for

the distribution of BMI and BMI* is the critical obesity threshold (note that the

cumulative distribution function for BMI will be completely characterised by its mean

and Lorenz curve).

If subscripts “0” and “1” refer to the two time periods in question, then the change in

obesity over time 01 OO  can be written as
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*),,(*),,(*)(*)( 0001110101 BMILOBMILOBMIFBMIFOO  

where iF is the cumulative distribution function for period “i”. This can then be

decomposed into growth and redistribution effects denoted by

*),,(*),,( 0001 BMILOBMILO   and *),,(*),,( 0111 BMILOBMILO  

respectively.

However, as is the case with any path dependence type problem, the choice of which

configuration to use as the base period is arbitrary. Here in the growth part we

calculate the marginal effect of the change in mean BMI with the distribution held

constant at the initial configuration. However, we calculate the marginal impact of

redistribution holding mean BMI constant at the final configuration. We could just

vas easily have carried out a decomposition with the base periods changed and there is

no logical reason for preferring one configuration over another. Following the

approach outlined in Shorrocks and Kolenikov and Shorrocks we take the average of

the two effects respectively thus giving a growth effect of

*)],,(*),,([
2

1
*)],,(*),,([

2

1
10110001 BMILOBMILOBMILOBMILO  

and a redistribution effect of

*)],,(*),,([
2

1
*)],,(*),,([

2

1
01110010 BMILOBMILOBMILOBMILO   .

As explained in Shorrocks (1999) these two expressions are the growth and

distribution components for a two-way Shapley decomposition of the change in



16

obesity. The Shapley decomposition arises from the classic co-operative game theory

problem of dividing a pie fairly. The solution is that each player is assigned his

marginal contribution averaged over all possible coalitions of agents. Shorrocks’

interpretation was to consider the various n factors which contribute together to

determine the value of an indicator such as obesity or poverty and then assign to each

factor the average marginal contributions taken over the n! possible ways in which the

factors may be removed in sequence. The decomposition is always exact as the

factors are treated symmetrically.

Figure 7 shows a two-way Shapley decomposition for the change in obesity into a

growth and distribution component. Since we have two factors (n=2, growth and

distribution) we have 2!=2 possible routes. If we also allowed the obesity threshold to

change then we would have n=3 and 3!=6 possible routes.

Table 5 presents results for the Shapley decomposition of obesity for the two

measures of obesity, BMI0 and BMI1.

Dealing first of all with the case of obesity (BMI>30), the actual change in BMI0 over

the period in question was small, an increase of less than one per cent. This change

was down solely to a change in the average level of BMI. In fact, had average BMI

remained constant then changes in the distribution of BMI would in fact have led to a

fall in obesity. Similarly BMI1, which takes account of the depth of obesity, also

showed a very small increase and once again all of this was accounted for by changes

in the average level of BMI.
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For the case of overweight (BMI>25) the change between 2002 and 2007 was greater

in magnitude than for obesity. Once again, the bulk of the change was accounted for

by a change in the average level of BMI. Three quarters of the change in BMI0 was

accounted for by the average level of BMI, while in the case of BMI1 the increase in

the average level accounted for 98 per cent of the change.

Are there any policy implications to be drawn from these decompositions? Most of

the change in obesity is accounted for by a change in the average level of BMI, as

opposed to a change in BMI amongst the overweight/obese. This suggests that

policies to combat obesity should perhaps be targeted at a general audience, rather

than at the more specific group towards the right hand tail of the distribution. But it is

also worth remembering that the overall change in obesity rates is quite modest.

The Dinardo-Fortin-Lemieux Decomposition

The decompositions in sections 4 and 5 looked at the change in obesity according to

the dimensions of age, gender and education and also in terms of a shift in the average

level of BMI versus a change in the shape of the distribution. Section 6 looks at the

decomposition of the change in the distribution of BMI due to certain sets of factors.

Following the seminal paper by DFL we employ a sequential counterfactual approach

to analysing the effect of each set of factors. This involves a re-weighting of the

sampling weights for each individual (for gender, socio-economic characteristics and

self-assessed health) and a rescaling of BMI (reflecting changes in the “returns” to

BMI accounted for by various factors).
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This approach is similar in many ways to the classic Blinder-Oaxaca (BO)

decomposition (Blinder, 1973 and Oaxaca, 1973), except that while the BO

decomposition provides a decomposition evaluated at the mean (which is arguably of

relatively little interest in an obesity study), the DFL procedure provides the

decomposition across the whole of the distribution. In our application we are looking

at the decomposition of the change in the distribution of BMI over time (as opposed

to decomposition by, say, gender). The approach involves the sequential construction

of counterfactual distributions for changes in various sets of factors. The set of

factors we choose to focus on are the socio-demographic attributes of individuals,

their self-assessed health and the “returns”, in terms of obesity, to these factors.

Suppose that we are decomposing the change in BMI between two time periods (2002

and 2007 which we label period “0” and “1” respectively). We estimate the

probability density of BMI in period t, ft(y), using kernel density methods. Thus if

(yt1, …, ytN) is a random sample of N observations with sampling weights (θt1,…, θtN)

and ∑θti=1, the kernel density estimate of ft(y) is











 


N

i

titi
t

b

yy
K

b
yf

1

.)(ˆ


where K is the kernel function and b is the bandwidth. We use the kernel density

facility in STATA with the Epanechnikov kernel and the bandwidth optimally chosen.

We have already seen the kernel density of BMI in 2002 and 2007 in figure 2 while

figure 3 shows the difference between the kernel densities (the density for BMI in
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2002 minus the density for BMI in 2007). We now explain how we go about

constructing the sequence of counterfactuals.

The sequence of counterfactuals involves either a re-weighting of sample weights for

each individual (reflecting changes in socio-demographic attributes and health

outcomes) or a re-scaling of BMI (reflecting different “returns” to BMI). The first

counterfactual we examine is that of socio-demographic attributes. If we believe that

BMI is correlated with certain socio-demographic attributes, then it seems reasonable

that changes in such socio-economic attributes could lead to changes in observed

BMI, without any change in underlying “behaviour”. Thus we estimate how certain

socio-demographic attributes vary between 2002 and 2007. The attributes chosen are

age, gender, education, marital status, principal economic status, and smoking status.

The estimated relationship is then used to adjust the 2002 sampling weights to reflect

the change in attributes between 2002 and 2007. This will give greater weight to

those with attributes more similar to 2007 attributes and less weight to those

household with attributes which are less similar.

Thus the density of BMI in period t is expressed as the integral of the density of BMI

conditional on household demographic attributes, x, and self-assessed health

outcomes, h:






),(),(

),(),;()(

xexh

ttt xhdFhxyfyf

where ),( xh is the domain of individual health outcomes and socio-demographic

attributes and ),( xhFt is the joint distribution of (h, x) for an individual in period t.
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the sequence we are following first analyses the effects of changes in socio-

demographic attributes and then changes in health, conditional on socio-demographic

attributes. Thus we re-write the above expression as






xhh

ttt

xx

t xdFxhdFhxyfyf )()().,;()( .

Thus we construct a counterfactual density allowing the distribution of socio-

demographic attributes to be as observed in 2007 but holding the conditional

distribution of health outcomes and density of BMI to be as in 2002.






xhhxx

X xdFxhdFhxyfyf )()().,;()( 1000






xhh

x

xx

xdFxxhdFhxyf )()()().,;( 000 

where we have replaced )(1 xdF with )()( 0 xdFxx and
)(

)(
)(

0

1

xdF

xdF
xx  is a re-

weighting function which rescales the period 0 density of attributes to obtain the

period 1 density. Using Bayes’ rule, this function can be expressed as

)1(

)0(
.

)0(

)1(

),0(

),1(
)(















tP

tP

xtP

xtP

xtP

xtP
xx

and )1( xtP  is the conditional probability that a household with attributes x is

observed in period 1, while P(t=1) is the unconditional probability that the household

is observed in period 1.
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Thus in order to obtain estimates for the re-weighting function, we first pool

observations for period 0 and period 1 and then estimate the probability that

individual i is observed in period 1, given attributes x using a logit model for the

binary dependent variable.5 Estimates from this model can then be used to predict, for

each individual observed in period 0, the relative probability that it would be observed

in period 1 versus period 0 i.e.
)0(

)1(

xtP

xtP




. We can then adjust this by the ratio of the

unconditional probabilities,
)1(

)0(





tP

tP
, to obtain the estimated re-weight for this

individual, )(ˆ 0xx . The counterfactual density for BMI which takes account of the

changes in attributes is then given by











 


N

i

iixX

b

yy
K

b

x
yf

1

000
0 .

)(ˆ
)(ˆ 

and the estimated marginal effect of the change in the distribution which is explained

by socio-demographic attributes is

).()(ˆ)(ˆ
00 yfyfyf XX 

Figures 8a and 8b provide the counterfactual distribution and the change in

distribution for socio-demographic attributes. From figure 8a it is clear that the two

densities are very close together. However an examination of figure 8b shows that if

the only factor that had changed between 2002 and 2007 was the change in socio-

demographic attributes then the density in the low 20s would have increased, while

that in the low to mid 30s would have decreased. Figure 3 however shows that in

5 Results of this estimation and others used in the calculation of these counterfactuals are available
from the author on request.
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actual fact, the outcome was close to, though not exactly, the mirror image, with

decreases in the low 20s, and increases in the late 20s and mid to late 30s.

This is confirmed by the results in table 7, where the measures of obesity and

overweight for 2002(1) i.e. the first counterfactual, all show small decreases,

compared to the actual measures in 2002 e.g. if the only factor that had changed

between 2002 and 2007 was the change in socio-demographic attributes, then the rate

of obesity would have fallen from 0.133 to 0.127.

We next construct a counterfactual density which permits the distribution of self-

assessed health outcomes to be as in 2007 but the distribution of BMI conditional

upon health to be as in 2002. Thus we would have






xhhxx

HX xdFxhdFhxyfyf )()().,;()( 1100

)()().(),().,;( 000 xdFxxhdFxhhxyf xxh

xhhxx






where we have replaced )(1 xhdF with )(),( 0 xhdFxhxh and
)(

)(
),(

0

1

xhdF

xhdF
xhxh 

is a re-weighting function which rescales the period 0 density of health outcomes

conditional on socio-demographic attributes to obtain the period 1 density. Given

that health is self-assessed on a five-point scale there are five potential outcomes and

we define 1mh if the individual chooses health state m and 0mh otherwise. Thus

the re-weighting function is
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
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where )1( xhP mi  is the probability of health state m in period i, given attributes x.

Thus to estimate the re-weighting function we estimate for 2002 and 2007 ordered

logit models for health states conditional on attributes and obtain predicted

probabilities for each outcome, )1(ˆ ,itmt xhP  . For each household observed in 2002

we can use the predicted value from this model to predict the relative probability of

health outcome mh in 2007 compared to 2002 and calculate


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0,0,0
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Given this value for the estimated re-weight, the counterfactual for individual i which

takes account of changes in health states is estimated by
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The marginal effect of changes in health states is then given by:

).(ˆ)(ˆ)(ˆ
0

,
0

, yfyfyf XXHXH 
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The results of this counterfactual can be seen by examining figures 9a and 9b and

looking at the results for 2002(2) in table 7. These show a further slight fall in all

obesity measures, except for BMI1 when the threshold is 30, where there is a slight

increase. However note that even though BMI1 increases compared to 2002 (1), it is

still lower than for the original 2002 distribution.

The final factor which we wish to take account of is the change in the BMI “return” to

attributes and health states. We construct a counterfactual density allowing the BMI

returns to attributes to be as in 2007, by adjusting each individual’s 2002 BMI by the

predicted change, given their attributes.

Thus we regress BMI on a vector of attributes for 2002 and 2007, tittiti Xy  ˆ .

We then compute the predicted change in returns )ˆˆ(ˆ 010   ii Xy and

ii
R
i yyy ˆˆˆ 00  and obtain the counterfactual density which takes account of these

changes
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and the marginal effect is given by
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Then the total change in BMI between 2002 and 2007 can be decomposed into

explained and unexplained components:
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))(ˆ)(ˆ())(ˆ)(ˆ()(ˆ)(ˆ ,,
010

,,
001 yfyfyfyfyfyf XHRXHR 

where )(ˆ)(ˆ
0

,,
0 yfyf XHR  represents the total change in the distribution explained by

the sets of factors we have examined here and )(ˆ)(ˆ ,,
01 yfyf XHR represents the

change in the distribution which is unexplained.

The result of this counterfactual is more dramatic than the preceding ones. All

measures of obesity and overweight show quite a large increase compared to the

previous counterfactual, 2002 (2), and in most cases they are above the measures for

2002 and 2007, the exception being BMI1 with a threshold of 30. This is reflected in

figures 10a and 10b, where distribution for 2002 lies below that of 2002 (3) for most

values of BMI, except those in excess of about 33. Similarly, figures 11a and 11b

show the comparison between 2002 (3) and 2007, and for the most part the

distribution for 2002 (3) lies above that of 2007, once again the exception being

values of BMI between about 33 and 37.

Conclusions

This paper has provided an overview of the change in obesity (as measured by BMI)

in Ireland from 2002 to 2007. We found that neither first nor second order stochastic

dominance held, thus it is not possible to make unambiguous statements regarding the

change in obesity i.e. statements which are independent of the chosen BMI threshold

for obesity. When the conventional thresholds of 30 and 25 are adopted then there is

a small increase in both obesity and overweight between 2002 and 2007.
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Analysis of obesity by age, gender and education level reveals quite appreciable

differences across these categories. Being male, being older and having lower

education achievement are all associated with higher rates of obesity and overweight.

There is some evidence that the age gradient for males falls somewhat over the period

under review, while that age gradient for females increase. The education gradient

appears to diminish between 2002 and 2007 and this is mainly arises from an increase

in obesity amongst those with third level education.

A Shapley decomposition of the change in obesity over time also reveals that all of

the increase is accounted for by an increase in the average level of BMI, as opposed to

a change in the distribution of BMI towards the right-hand tail. When looking at

overweight, the change in the distribution makes some contribution, but the bulk of

the change once again arises from an increase in average BMI.

Finally, the DFL decomposition across the whole of the distribution suggests that

none of the (admittedly quite small) change in obesity is accounted for by changes in

the characteristics of the population. Rather it is changes in the effect of these

characteristics on BMI (the “returns” to the characteristics) which is the main driving

force.
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Table 1: BMI Summary Statistics, 2002 and 2007

Year Mean Median % above 25 % above 30
2002

(N=5481)
25.39 24.82 47.84 13.32

2007
(N=9646)

25.56 25.04 50.05 14.08

Table 2: Relative Obesity (BMI>30) by Age and Gender

2002 2007
BMI0 BMI1 BMI0 BMI1

Group Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Young
M

0.128 0.962 0.012 0.882 0.128 0.910 0.013 0.090

Old M 0.181 1.356 0.015 1.088 0.184 1.309 0.016 1.094

Young
F

0.107 0.802 0.013 0.919 0.105 0.744 0.012 0.079

Old F 0.133 1.001 0.015 1.103 0.154 1.093 0.018 1.223

Pop 0.133 1.000 0.014 1.000 0.141 1.000 0.015 1.000

Table 3: Relative Overweight (BMI>25) by Age and Gender

2002 2007
BMI0 BMI1 BMI0 BMI1

Group Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Young
M

0.546 1.141 0.767 1.053 0.532 1.063 0.076 0.992

Old M 0.648 1.356 0.096 1.321 0.665 1.328 0.099 1.290

Young
F

0.343 0.716 0.056 0.767 0.354 0.707 0.055 0.723

Old F 0.464 0.971 0.073 1.000 0.500 0.999 0.082 1.066

Pop 0.478 1.000 0.073 1.000 0.501 1.000 0.077 1.000
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Table 4: Relative Obesity (BMI>30) by Education

2002 2007
BMI0 BMI1 BMI0 BMI1

Group Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Primary 0.191 1.429 0.018 1.303 0.172 1.220 0.020 1.351

Inter 0.175 1.310 0.018 1.343 0.176 1.254 0.019 1.289

Leaving 0.131 0.982 0.015 1.106 0.133 0.944 0.013 0.881

3rd

Level
0.082 0.613 0.008 0.597 0.112 0.800 0.011 0.761

Pop 0.133 1.000 0.014 1.000 0.141 1.000 0.015 1.000

Table 5: Relative Overweight (BMI>25) by Education

2002 2007
BMI0 BMI1 BMI0 BMI1

Group Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Rate Relative
Share

Primary 0.570 1.193 0.095 1.305 0.578 1.154 0.094 1.226

Inter 0.561 1.175 0.090 1.240 0.556 1.110 0.090 1.176

Leaving 0.465 0.974 0.074 1.012 0.472 0.942 0.071 0.930

3rd

Level
0.390 0.816 0.052 0.713 0.454 0.907 0.065 0.847

Pop 0.478 1.000 0.073 1.000 0.501 1.000 0.077 1.000

Table 6: Shapley Decomposition for Change in Obesity 2002-2007

Overweight, BMI>25
Measure 2002 2007 Growth (%) Distribution(%)

BMI0 0.478 0.500 76.4 23.6
BMI1 0.073 0.077 98.2 1.8

Obese, BMI>30
Measure 2002 2007 Growth (%) Distribution(%)

BMI0 0.133 0.141 135.5 -35.5
BMI1 0.014 0.015 100.3 -0.3
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Table 7: Sequential Obesity and Overweight

Overweight, BMI>25
Measure 2002 2002 (1) 2002 (2) 2002 (3) 2007

BMI0 0.478 0.473 0.472 0.517 0.500
BMI1 0.073 0.071 0.0705 0.078 0.077

Obese, BMI>30
Measure 2002 2002 (1) 2002 (2) 2002 (3) 2007

BMI0 0.133 0.127 0.126 0.141 0.141
BMI1 0.014 0.012 0.013 0.014 0.015
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Figure 1: Stochastic Dominance Observed
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Figure 2: Stochastic Dominance Not Observed
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Figure 2: Kernel Densities, BMI, 2002 and

2007
0

.0
2

.0
4

.0
6

.0
8

.1

10 20 30 40 50
x

kdensity bmi02 kdensity bmi07

Figure 3: Change in Kernel Distribution between 2002 and 2007
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Figure 4: Difference in Cumulative Distribution Functions for BMI, 2002 and

2007
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Figure 5: Difference in Area under Cumulative Distribution Functions for BMI,

2002 and 2007
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Figure 6: Changes in Mean and Distribution of BMI
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Figure 8a: Counter Factual Distribution – Socio-demographic Attributes
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Figure 8b: Counter Factual Distribution Changes – Socio-demographic
Attributes
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Figure 9a: Counter Factual Distribution – Socio Demographics and Health
States
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Figure 9b: Counter Factual Distribution Changes – Socio Demographics and
Health States
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Figure 10a: Counter Factual Distribution – Socio Demographics, Health States

and BMI returns
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Figure 10b: Counter Factual Distribution Changes – Socio Demographics,

Health States and BMI returns
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