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Abstract 

 

This paper presents an overview of microsimulation as a method to evaluate health 

and health care policies and interventions. After presenting a brief survey of 

microsimulation models and applications we describe the main features of the 

approach and how these are implemented in practice. We pay particular attention to 

the innovative features of dynamic microsimulation as a method of ex-ante policy 

evaluation. The final section describes two leading microsimulation models, POHEM 

and FEM used to simulate lifecycle health trajectories and associated health care costs 

under competing policy scenarios to illustrate the power of microsimulation as a valid 

and relevant tool for policy evaluation.  
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1. Introduction 

 

Establishing the effectiveness of health policies is central to understanding their value 

in improving health and reducing inequalities in health. However, there exists a 

substantial gap between the evidence base and the formulation of health policies, 

particularly in fields such as public health (Wanless, 2004; Allin et al., 2007) where 

methodological and practical challenges often restrict the ability to undertake robust 

policy evaluation (Petticrew et al., 2004). Accounting for issues such as population 

heterogeneity, multiple outcomes, spillovers and externalities and the capacity to 

capture the long-run effects of an intervention pose substantial challenges for the 

identification of the effects of a policy that hamper traditional methods for policy 

evaluation.  

 

The literature on methods for policy evaluation is dominated by ex-post techniques 

which by definition are used to evaluate the impact of interventions and programmes 

following their implementation. In order to measure a treatment effect, commonly 

employed techniques such as matching, instrumental variables, control functions, 

regression discontinuity designs and difference-in-differences require the availability 

of data on individuals in a control and treated group and often both before and after 

the implementation of the policy under scrutiny. A fundamental requirement of all ex-

post evaluation techniques is however that the policy has been implemented. In 

contrast, ex-ante policy evaluation methods, such as microsimulation (Bourguignon 

and Spadaro, 2006) and structural modelling (Todd and Wolpin, 2006a; Wolpin, 2007) 

attempt to overcome the requirement to collect data post-implementation by 

simulating the response. The simulated response under the policy can then be 

compared to the simulated response assuming either no change or a competing policy 

to evaluate the impact under alternative relevant scenarios. The flexibility afforded by 

the simulation approach broadens the scope of the evaluation problem beyond the 

identification of quantities such as an average treatment effect when assessing the 

impact of an intervention on a specific outcome of interest. 

 

The literature has identified three main advantages of ex-ante policy evaluation 

techniques over ex-post methods (Todd and Wolpin, 2006b). First, ex-ante evaluation 

has the ability to predict the potential impact of a series of policies as well as the 
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impact of a specific policy under different scenarios. Second, an ex-ante appraisal can 

identify ineffective programmes before they are rolled-out and hence avoid the 

potentially high cost of implementation and subsequent withdrawal. Third, by 

providing evidence on the likely impacts of a policy, ex-ante evaluation can 

complement and inform subsequent ex-post evaluation of the same programme. For 

these reasons ex-ante evaluation offers an important tool to inform the design of 

policies, their implementation and subsequent refinement.  

 

Microsimulation is an established method for the ex-ante evaluation of public policies 

(Creedy and Duncan, 2002; Creedy and Kalb, 2005; Spadaro, 2005; Bourguignon and 

Spadaro, 2006). The application of these techniques has, however, largely focused on 

simulating tax-benefit and pension systems and extensions to the evaluation of health 

and health-related policies is still limited (Spielauer, 2007). Microsimulation 

techniques simulate individual behavioural responses at a micro-level of policies yet 

to be implemented. The method attempts to mimic a natural experiment with the 

major difference that instead of outcomes being observed following a policy shock, 

they are simulated or imputed on the basis of a set of assumptions about the 

behavioural reactions of individuals following changes in the economic environment 

brought about by the introduction of a policy. Accordingly, a fundamental 

consideration is the quality of the model used to predict behavioural responses. One of 

the main advantages offered by the approach is the ability to account for the widest 

heterogeneity possible within the population of interest together with a focus of 

analysis at an individual level allowing the identification of both the mean and 

distributional impact of a reform. Moreover, dynamic microsimulation techniques are 

capable of measuring the effects of a policy across a number of time-horizons 

allowing for both short-run and long-run effects to be assessed.      

 

The aim of this paper is to present a review of microsimulation methods for the ex-

ante evaluation of health and health care policies. The following section describes the 

fundamentals of the approach using a taxonomy of models covering arithmetic and 

behavioural and static and dynamic microsimulation. We pay particular attention to 

the use of dynamic microsimulation models as an innovative method for the 

evaluation of policy interventions and discuss the implementation of this method in 

practical situations. Section 3 presents a brief review of existing microsimulation 
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models which incorporate a health component.  This is complemented with a more 

detailed overview of two of the most comprehensive microsimulation models 

involving health, Population Health Model (POHEM) and the Future Elderly Model 

(FEM).  These models illustrate well the scope and use of microsimulation in 

evaluating health and health related policies.  Section 5 concludes.  

 

2. Fundamentals of microsimulation  

 

2.1 Origin and current use 

 

Microsimulation was first introduced in the seminal work of Orcutt (1957; 1960). In 

his pioneering paper “A new type of socioeconomic system” (1957), Orcutt identified 

the need for models that could provide better long-term predictions about the effects 

of alternative governmental actions. In order to facilitate and improve model 

predictions, he underlined the necessity to correctly characterise the behaviour and 

interactions of the elemental decision-making units (individuals, households or firms) 

within the socioeconomic system represented. Further, in describing the mechanics of 

this new type of approach, he suggested the recursive and discrete-time structure that 

still represents the benchmark for the majority of current dynamic microsimulation 

models. Despite its heritage, however, the method has gained popularity only recently 

in accordance with increasing computing power and the availability of micro-data.      

  

Microsimulation is regarded as a powerful tool for the analysis of the impact of public 

policies and has become a widely accepted instrument to shape and support 

government policy making. Prominent examples of microsimulation models 

employed by government departments to simulate the impact of policies include  

STINMOD (Australia), CBOLT, GEMINI and PENSIM (USA) and IGOTM (UK). 

STINMOD (Static Incomes Model) is a microsimulation model of Australia’s income 

tax and transfer system developed by NATSEM (the Australian National Center for 

Social and Economic Modelling).1  This model is currently used by a number of 

Australian government departments to analyse the distributional impact of different 

                                                 
1 This is a very partial list of existing government-used microsimulation models. For a comprehensive 
overview of microsimulation models and their users, see the website of the International 
Microsimulation Association, http://www.microsimulation.org/.  



 5

fiscal and income support programmes.2 The Congressional Budget Office Long-

Term (CBOLT) dynamic microsimulation model is used by the U.S. Budget Office to 

analyse the distributional effects of the American Social Security programme and 

other federal policies. GEMINI and PENSIM are two dynamic microsimulation 

models built and maintained by the Policy Simulation Group (U.S. Department of 

Labor) employed mainly to analyse the effects of different social security and 

retirement policies. Among other institutions, the U.S. Government Accountability 

Office (GAO) has used these models since 2001 to produce pension and social 

security reports.3 Finally, the Inter Government Tax-Benefit model (IGOTM) is a 

static microsimulation model that projects income and population distributions using 

data from a variety of U.K. national surveys. IGOTM is currently employed by HM 

Treasury, HM Revenue and Customs and by the Office for National Statistics to 

provide policy advice on the impact of tax-benefit reforms on UK households.4  

 

For the purpose of policy evaluation, microsimulation aims to simulate changes in 

individual behaviour following the introduction of a policy. At their core, 

microsimulation models consist of two main components: a micro-dataset and a 

model that informs behavioural change under both current (or a default) and 

counterfactual policy scenarios. Although microsimulation models differ widely due 

to the structure and characteristics of the model used to represent individual behaviour 

(e.g. whether based on a behavioural structural model and a dynamic or static 

framework), the key feature embedded in all microsimulation models is the ability to 

generate individual-level data under different policy scenarios. For example, 

behavioural microsimulation models of labour supply, used to evaluate the impact of 

fiscal policies on individuals’ employment transitions, incorporate arithmetical tax-

benefit models that produce net incomes for different tax-benefit regimes. In contrast, 

dynamic microsimulation models project population samples over time, modelling life 

course events (such as household formation and dissolution, education, health and 

labour market status, etc.) under various policy rules.  

                                                 
2 For a detailed description of this model, see NATSEM’s STINMOD page at 
http://www.canberra.edu.au/centres/natsem/research-models/projects_and_models/stinmod    
3 For more information on the U.S. based Policy Simulation Group (a research group based at the U.S. 
Department of Labor), their sponsors, models as well as their users, see 
http://www.polsim.com/index.html.    
4 See e-business strategy, HM Treasury, October 2000 (p.30). Web-link: 
http://archive.treasury.gov.uk/pdf/2000/ebusiness050101.pdf     
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A number of authors have proposed a useful taxonomy of microsimulation models 

which broadly consist of arithmetical versus behavioural models and static versus 

dynamic models and the reader is referred to these for further information (Anderson, 

1997; Klevmarken, 1997; O’Donoghue, 2001; Zaidi and Rake, 2001; Bourguignon 

and Spadaro, 2006). In the next section, we follow this classification to highlight and 

illustrate the main features of microsimulation models encountered in the applied 

literature.  

 

2.2 Arithmetical versus behavioural models 

 

Arithmetical microsimulation  

Arithmetical microsimulation models (sometimes referred to as “micro-accounting 

models”, Cogneau et al., 2003) ignore individual’s behavioural responses to the policy 

under scrutiny. In the case of a tax-benefit model, arithmetical microsimulation 

simply simulates the change in real disposable income of individuals, following the 

introduction of a tax reform under the assumption that individual behaviour is 

unchanged (i.e. individual behaviour is exogenous to the tax-benefit system). 

Although based on this restrictive assumption, arithmetical microsimulation models 

are useful in illuminating the first-round effects of a reform and identifying the 

gainers and losers together with their characteristics. This will provide an 

approximation of the impact of the reform on individuals’ welfare. Information at the 

individual level can be aggregated and compared between policy-relevant social 

groups and analysed using social welfare indicators such as inequality and poverty 

indices (Atkinson et al., 2002). Further, Bourguignon and Spadaro (2006) show that 

the arithmetic evaluation approach, when used with the purpose of measuring changes 

in individual and social welfare and under certain conditions (when a reform causes 

marginal changes only to individuals’ budget constraints and individuals are 

optimising exclusively on the basis of their budget constraint) is consistent with the 

presence of behavioural responses. Arithmetical models have been used to examine 

indirect taxes and tax reforms both in developed and developing countries (Creedy, 

1999; Sahn, 2003); to estimate the incidence of public spending in education and 

health (Demery, 2003) and to test and compare the effects of fiscal polices in different 

countries of the European Union (Atkinson et al., 1998, 2002; Callan and Sutherland, 

1997; De Lauthower, 1996). A number of governmental and research institutions 
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currently use arithmetical microsimulation models to estimate the budgetary and 

distributional impacts of a range of hypothetical and actual policy changes (within the 

UK these include, the HM Treasury Inter-Governmental Tax Model, IGOTM, the 

Pension Policy Simulation, PPS, model of the Department for Work and Pensions and 

the tax-benefit model of the Institute for Fiscal Studies, TAXBEN).      

 

Behavioural microsimulation 

In contrast to arithmetical models, behavioural microsimulation accounts for the 

behavioural response of agents to a policy reform. This means that changes to 

institutional, market or individual characteristics affect directly the behaviour of the 

micro-units within the model. A distinctive characteristic of such models is that the 

behavioural responses are grounded on economic theory and commonly involve the 

estimation of structural econometric models. Tax-benefit models that incorporate 

labour supply responses are typical examples of behavioural microsimulation models 

(Creedy and Duncan, 2002). For such models, changes in the tax-benefit system 

directly affect an individual’s budget constraint which in turn may lead to a change in 

labour supplied. The purpose of these models is to provide an exact prediction of the 

change in labour supply under alternative tax-benefit scenarios, and the characteristics 

of the individuals impacted by the policy. To illustrate the characteristics of a 

behavioural microsimulation model we use labour supply as an example.   

 

In order to illustrate the mechanics of a representative behavioural microsimulation 

model of labour supply, we follow broadly Creedy and Duncan (2002) and 

Bourguignon and Spadaro (2006). For a standard continuous model of labour supply, 

an individual i maximises her own utility U(.) subject to a budget constraint that 

includes the tax-benefit system t(.). According to this general framework, individuals 

derive utility from consumption, ic , and leisure, iL , defined in terms of the difference 

between an individual’s time endowment iT  and the level of hours worked iH , 

i i iL T H= −  . The optimisation problem can be defined as:  

 

 ( , ; , , ) . . ( , , ; ; )i i i i i i i i i i i i iw tMax U c L X s t c I H H w H I Xβ ε γ+ +≤                                   (1) 
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where iX  represent individual socio-demographic characteristics, β  is a common 

preference parameter and iε , in the simplest stochastic utility structure, is an 

idiosyncratic term that represents the optimising error.5 In the budget constraint, iI  is 

the (exogenous) household non-labour income, iw is the wage rate and t(.) represents 

the tax-benefit system. t(.) depends on labour supply iH , labour income, i iw H , 

household non-labour income together with individual socio-demographic 

characteristics. The termγ  represents the parameters of the tax-benefit system (i.e. the 

various taxes and transfers). Through this framework it is possible to simulate 

individuals’ employment responses to alternative tax-benefit regimes by simply 

modifying the set of parameters of the tax-benefit system ( γ ) and comparing the 

estimated levels of labour supply provided by individuals before and after the change.  

 

In this partial equilibrium setting, the change in labour supply is thus defined by the 

following difference:    

 

ˆ ˆˆ ˆ( , ; ; , ; ) ( , ; ; , ; )R R
i i i i i i i i i iH H F w I X F w I Xβ ε γ β ε γ− = −                                               (2) 

 

where R
iH  and iH  are the level of hours worked derived from the labour supply 

functions estimated for the reformed and baseline tax-benefit system, respectively. 

The change in disposable income can be computed accordingly: 

 

( ) ( , , ; ; ) ( , , ; ; )R R R R R
i i i i i i i i i i i i i i iC C w H H t H w H I X t H w H I Xγ γ− = − + −                    (3) 

 

Given the difficulties related to the estimation of this type of continuous model in the 

presence of non-linearity and non-convexities in complex tax-benefit schedules, the 

literature has tented to favour a discrete-choice approach to behavioural 

microsimulation modelling of labour supply (Callan and Van Soest, 1996; Bingley 

and Walker, 1997; Keane and Moffitt, 1997; Duncan and Harris, 2002; Andrén, 2003; 

                                                 
5  More sophisticated models distinguish between an optimizing error and random preference 
heterogeneity. In this type of model, optimising errors are simply regarded as errors in perception of 
the alternative utilities or as unobserved alternative-specific utility factors whereas random preference 
heterogeneity is intended to reflect random preferences derived from unobserved individual 
characteristics. For a brief discussion, see Brewer et al., 2005.      
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Brewer et al., 2006; Labeaga et al., 2008). Under this approach, an individuals’ labour 

supply is approximated through a discrete-choice variable that can assume only a 

finite number of values within a set of hours worked. Each hour band corresponds to a 

given level of utility as defined by the budget constraint. While this method resolves 

part of the difficulties related to nonlinear tax schedules, rounding errors in the 

definition of hour levels can be introduced and it is good practice to undertake 

sensitivity analysis (Duncan and Harris, 2002).     

 

In their most general representation, discrete-choice microsimulation models of labour 

supply can be defined as follows: 

 

   ( , ; ; , ) ( , ; ; , )   j j j j k k k k
i j i i i i i i i i i iH N if U f w c X U f w c X for k jβ ε β ε= = ≥ = ≠            (4) 

 

jN  is the number of hours worked corresponding to the jth alternative among the 

finite set of discrete hours choices; j
iU  is the level of utility provided by alternative j 

and j
ic is the alternative-specific income defined by the following budget constraint:     

 

( , , ; ; )j
i i i j j i j i iw t Nc I N w N I X γ+ +=                                                                             (5) 

 

Although different functional forms have been proposed to define individual 

preferences f(.), a direct quadratic utility function (i.e. usually containing additive 

linear and quadratic terms for income and hours worked) has gained wide popularity 

in the empirical literature and represents the benchmark for this type of model (Keane 

and Moffitt, 1998; Blundell et al., 2000). For estimation, the idiosyncratic term j
iε  is 

often assumed to follow a Type I Extreme Value distribution. This leads to a 

conditional logit model, a model that nests the standard multinomial logit model. An 

alternative empirical specification that further accounts for work specific or 

institutional constraints in discrete labour supply models is the Dogit model (Gaundry 

and Dagenais, 1979). This model includes and parameterises what is termed the 

degree of “captivity” for each discrete outcome within the set of hours choices. The 

captivity parameter represents an hour band specific employment constraint that 

facilitates the modelling of employment responses to be extended beyond pure 
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preferences. Notwithstanding its flexibility, few empirical studies have adopted the 

Dogit model in the context of behavioural microsimulation modelling of labour 

supply (Harris and Duncan, 2003).   

 

Reviews of applications of behavioural microsimulation models of labour supply can 

be found in Creedy and Duncan (2002) and in Creedy and Kalb (2005). Although 

behavioural microsimulation models have the advantage of being grounded in 

economic theory, they are usually policy-specific and thus require the estimation of a 

particular behavioural model that fits the policy to be evaluated. As a consequence, 

they are often not generalisable to the evaluation of other policies.  

 

2.3 Static versus dynamic models 

 

Static microsimulation models do not incorporate a time element in the analysis. The 

behavioural model of labour supply described in the previous section can be 

considered an example of a static microsimulation model as it considers an 

individual’s employment response to a policy in the current period. In contrast 

dynamic models adopt a life-cycle perspective and project the population structure 

through time. This consists of the creation of a synthetic population through the 

simulation of individuals’ life trajectories using what are termed static or dynamic 

ageing techniques. Static ageing produces projections of the population over time by 

simply re-weighting parts of the sample according to the future expected 

characteristics of the population with weights usually set using official population 

projections. The underlying demographic and socioeconomic characteristics of 

individuals remain constant over time with changes to the weight attached to each 

individual to produce the synthetic future population. In contrast, dynamic ageing is 

based on the creation of transition probabilities to update individual demographic and 

economic characteristics over time. Accordingly, the demographic and socioeconomic 

profile of the synthetic population is based on the assumptions implicit in the 

underlying transition probabilities. While static ageing simply brings a population 

sample into line with external estimates at a specific point in time, dynamic ageing is 

concerned with the underlying economic and social processes which generate changes 

within the population (Zaidi and Rake, 2001).  
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Dynamic ageing can be represented in discrete or continuous time and typically 

incorporates life-course events such as demographic changes (i.e. fertility, marriage 

formation and dissolution, mortality), educational attainment, labour market 

transitions and, more rarely, the evolution of individual health status (O’Donoghue, 

2001). Microsimulation models based on ageing techniques incorporate Monte Carlo 

simulation methods to generate a stochastic process that determines individual 

transition probabilities. These are used to update the characteristics of individuals 

over time. The implementation of the Monte Carlo simulation will depend on whether 

the model is assumed to operate in discrete or continuous time. This is discussed in 

more details below.  

 

2.3.1 Discrete-time dynamic microsimulation models 

 

Markov chain models and Monte Carlo simulation methods 

Discrete-time dynamic ageing is usually based on a first order Markov process. In the 

simplest representation of a first order Markov process, for any individual 

demographic or socioeconomic event E an individual transition probability from state 

ke  at time t to state je at time t + 1, depends only on their characteristics at time t: 

 

1( | )kj t j t kP P E e E e+= = =                                                                                             (6) 

   

The resulting transition matrix includes all possible transition probabilities between 

the set of states at time t and the set of states at t+1 and can be described as follows: 

 

11 12 1 1

21 22 2 2

1 2

1 2

 

 

j n

j n

m n
k k kj kn

m m mj mn

p p p p

p p p p

P
p p p p

p p p p

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K K

K K

M M O M O M

K K

M M O M O M

K K

                                                                 (7) 
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where the set of transitions from t to t + 1 is given by the m rows and the n columns of 

the matrix. Accordingly, the k-th row, 1 2   ...   ...  k k kj knp p p p , is a vector that contains 

the probabilities of all possible transitions from state ke  into any other state within the 

set of events at time t + 1 (Mazzaferro and Morciano, 2008). The resulting matrix, P, 

is a square positive matrix with the same number of states at t and t + 1. Hence, 

0 1,  ,kjp k j≤ ≤ ∀  and
1

1   k 1,..
n

kj
j

p for m
=

= =∑ .  

 

The occurrence of a transition between two states is established using Monte Carlo 

simulation. For the ith observation and for each state, a random number r is drawn 

from a uniform distribution in the interval [0,1] at every time interval t, ijtr . A 

transition occurs if the generated random number is less than or equal to the 

probability of the event to occur: ijt ijtr P≤ . If the random draw from the distribution 

exceeds the probability, ijt ijtr P> , the individual remains in the state of origin.  

 

There exist a variety of discrete-time dynamic microsimulation models built for a 

variety of purposes and using data specific to a wide range of countries. A leading 

example of discrete-time dynamic microsimulation modelling is CORSIM (Cornell 

Simulation Model). CORSIM (Strategic Forecasting, 2002) models a range of 

demographic events such as birth, death, marriage and divorce, immigration and 

emigration together with levels of education, work and earning patters and the 

accumulation of assets and debts using annual discrete-time simulations. CORSIM 

was used as a template by the Office of Chief Actuary (OCA) of the Canadian 

Government for the development of DYNACAN (Dussault, 2000), a dynamic 

microsimulation of the Canadian population, as well as by the Swedish Spatial 

Modelling Centre for the construction of SVERIGE, a spatial dynamic 

microsimulation model for Sweden. Comprehensive surveys of discrete-time dynamic 

microsimulation models can be found in O’Donoghue (2001), Zaidi and Rake, (2001) 

and Cassells et al. (2006). 
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An example for health 

We illustrate the implementation of Monte Carlo simulation to compute transitions 

using health states as an example. Several methods have been proposed to estimate 

transition probabilities in discrete-state panel data Markov chain models (Singer and 

Spilerman, 1974; Tuma and Hannan, 1984; Laditka and Wolf, 1998) and for our 

purposes, we follow the approach proposed by Laditka and Wolf (1998) who consider 

a transition process between four states: three non absorbing states of functional 

health limitations and a fourth absorbing state, death. The non-absorbing states are 

unimpaired (or active), being moderately impaired (having one or two impairments in 

activities of daily living, ADL) and being severely impaired (having three to five 

ADL limitations). Accordingly, we have a multinomial variable of health limitation 

status, L that can assume four values: U (unimpaired), M (moderately impaired), S 

(severely impaired)   and D (dead). Transition probabilities between two consecutive 

periods of time, t and t+1, can be expressed as:  

 

1( | ; )kj t t tP P L j L k X+= = =                                                                                          (8) 

 

For each individual the probability of being in a particular state in the next time 

period (t+1) depends on the state in the current period (t) together with current period 

socioeconomic characteristics, tX  (e.g. age, ethnicity, education, income, marital 

status, etc.). The transition probabilities can be arranged in a 4 x 4 matrix as follows: 

 

UU UM US UD

MU MM MS MD

SU SM SS SD

DU DM DS DD

p p p p
p  p p p

P
p p p p
p  p p p

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

                                                                                 (9) 

 

where 0DU DM DSp p p= = =  and 1DDp = , due to the absorbing nature of death. To 

populate the remaining 12 transition probabilities, we estimate multinomial logit 

models with covariates representing individual socioeconomic characteristics and 

health limitation status. A separate model is estimated for each row of the transition 

matrix. Again, Monte Carlo simulation methods are used to establish the actual 

incidence of transitions between different health states in consecutive periods of times 
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by comparing the predicted probability for any transition, p, with a random number, r, 

drawn from a uniform distribution ~ [0,1]U U . The transition occurs if r p≤ , 

otherwise the individual remains in their current health state.  

 

Implementation of a typical discrete-time dynamic microsimulation model 

Discrete-time dynamic microsimulation models are typically structured on a modular 

basis where events are usually represented as a set of univariate processes that follow 

a hierarchical order. This structure is represented in Figure 1. The figure shows the 

starting point of a dynamic microsimulation model, the baseline dataset, the modules 

used to simulate individual events (in this stylised example, demographic, health and 

labour market modules) and the outcome produced by the simulation; here the 

difference in the trajectories between a baseline scenario and an alternative under 

evaluation.  

 

(Figure 1 about here) 

 

A fundamental component of any dynamic microsimulation model is its baseline 

dataset. This is usually composed of a main source, based on individual records taken 

from survey or administrative data, augmented with information imported from 

additional sources, using imputation or matching techniques. The rationale behind the 

use of multiple sources of data is often to fill information gaps in the primary data 

source or simply to integrate external information. Ultimately, the essential 

requirement for a baseline dataset is for it to be representative of the population 

relevant for the policy being simulated (Martini and Trivellato, 1997).  

 

In a discrete-time setting, all individuals at a particular time period t are at risk of 

experiencing a series of events. The occurrence and timing of each event are 

established according to the Markov chain Monte Carlo rules outlined earlier. 

Depending on the focus of the model, modules and events may differ. However, the 

majority of discrete-time dynamic microsimulation models include demographic 

events (such as birth, mortality, household formation and dissolution and more rarely 

immigration), education and labour market-related events (e.g. modules that “attach” 

a degree to each individual and subsequently consider transitions into and out of as 
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well as within the labour market) and less commonly health events, usually in the 

form of a stylised health status (for example, a binary measure of individual health 

status, being in good health or ill-health). Richer dynamic models might also contain 

modules that compute labour earnings, non-labour income, expenditures as well as 

reproducing the tax and social security systems of a specific country.6 The baseline 

dataset modified by the transitions incurred by individuals at the end of a time period t 

becomes the input dataset for the following time period, t + 1. This is repeated until 

the entire dynamic simulation cycle is complete (i.e. until the last time period 

considered is reached).  

 

An essential feature of a typical discrete-time dynamic microsimulation model is the 

hierarchical nature of the events represented. The sequence of events within each time 

period is established a priori by the model builder. Hence, the sequence of causal 

relationships between key events within an individual’s life is pre-determined. 

Although this modelling strategy allows the researcher to control the consequence of 

changes within the chain of events, ignoring the potentially numerous endogeneity 

issues could seriously hamper the reliability of the model’s results.           

 

2.3.2 Continuous-time dynamic microsimulation models 

 

Dynamic microsimulation can be implemented in continuous-time using duration 

models. In this framework, the variable of interest is the time to occurrence of an 

event (in this case, the time to a transition between an origin state and a destination 

state). Within this setting, a central mechanism that governs the timing of events is the 

concept of the inverse distribution function or quantile function. While a distribution 

function transforms a real number into a probability, the quantile function translates a 

probability into a real number (Willekens, 2006, 2009). In continuous-time dynamic 

microsimulation models, the quantile function is used to transform the probability of a 

transition from one state to another into a real number that represents the time to an 

event.    

 
                                                 
6 One of the most comprehensive discrete-time dynamic microsimulation models is the Australian 
Population and Policy Simulator (APPSIM) that is currently under development at NATSEM, 
University of Canberra. For a brief overview of the APPSIM simulation cycle, see 
http://www.canberra.edu.au/centres/natsem/research-models/projects_and_models/appsim  
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In continuous-time duration models, the time to an event T can be considered a 

random variable with the following cumulative distribution function (cdf): 

 

( ) Pr( )F t T t= ≤                                                                                                           (10) 

 

The cdf represents the probability that the duration spell length is less than t in the 

interval from 0 to t (i.e. the probability that the transition between two states occurs in 

the period between 0 and t). The probability that the duration equals or exceeds t is 

defined by the survivor function: 

 

( ) Pr( ) 1 ( )S t T t F t= > = −                                                                                            (11) 

 

The concentration of events along the time axis is given by the density function that is 

the slope of the survivor function expressed as follows: 

 

( ) ( )( ) F t S tf t
t t

∂ ∂
= = −

∂ ∂
                                                                                               (12)    

 

The instantaneous rate of leaving a state conditional on survival to time t is given by 

the hazard function that can be expressed by: 

 

0
lim

( ) ( ) 1 ( ) ( )( )
1 ( ) 1 ( ) ( )t

t

t

F t F t f t f th t
F t F t S t∆ →

+ ∆ −
= ⋅ = =

∆ − −
                                              (13) 

  

The cumulative hazard function (or integrated hazard function) can be obtained by 

integrating the hazard rate at each instant in time: 

 

0

( ) ( )
t

H t h u du= ∫                                                                                                           (14) 

 

The timing of the transition for an individual i is given by ( )iG r  where ir  is  a random 

value drawn from a uniform distribution in the interval [0,1] and G is the inverse 

distribution function of T, i.e. 1( )G F t−= . That is, the inverse distribution function or 
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quantile function is used to map the realisation of the random draw into a real number 

t which indicates the timing of the transition. Hence, in the context of continuous-time 

dynamic microsimulation, the decision rule that is used to set the timing of an event 

entails two stages. First, a random number ir  is drawn from a uniform 

distribution ~ [0,1]U U . Second, a quantile function of the probability 

distribution ( )F t  is used to convert this number ir  into a real value of t.7  

 

An example: simulating the time to transitions   

As an example, we consider the simulation of the time to transition between different 

states produced using a Cox proportional hazard model, a widely used duration model 

(Bender et al., 2005). The Cox proportional hazard model can be defined through its 

hazard function: 

 
'

0( / ) exp( )h t X h Xφ=                                                                                                  (15) 

 

where t is time, X is a vector containing a set of covariates that define a series of 

individual socioeconomic characteristics, φ  is a vector of regression coefficients and 

0h  is the baseline hazard function (i.e. the hazard function in the absence of covariates, 

X=0). The survival function of the Cox proportional hazard model can be written as 

follows: 

 

 '
0( / ) exp[ ( )exp( )]S t x H t Xφ= −                                                                                 (16) 

 

where 0H is the cumulative baseline hazard function. The distribution function of this 

model is: 

 
'

0( / ) 1 exp[ ( )exp( )]F t X H t Xφ= − −                                                                            (17) 

 

                                                 
7 In the majority of applications, the distribution ( )F t  is assumed to be either exponential, Gompertz or 
Weibull. If the time to a transition event follows an exponential distribution, then transitions are 
assumed to occur at a constant rate. In case of a Gompertz distribution, the transition rate changes 
exponentially with duration while with a Weibull distribution the transition rate varies with duration 
following a power function of duration.  
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Let r be a random number drawn from a uniform distribution ~ [0,1]U U . Then, the 

simulated time to transition T is produced using the inverse or quantile function of the 

Cox proportional hazard model that takes the following form:8  

 
1 1 '

0( / ) [ log( ) exp( )]F t X T H r Xφ− −= = − −                                                                   (18) 

 

Accordingly, the simulated time to transition depends on a constant transition rate and 

a set of covariates. It should be noted that the Cox hazard model is not restricted to  

the exponential distribution and that a set of alternative survival time distributions can 

be used to generate simulated times to transition using Cox hazard models (for an 

overview, see Bender et al. 2005).   

 

The individual life-cycle in continuous-time dynamic microsimulation modelling  

In continuous time dynamic microsimulation the life-cycle of an individual can be 

modelled in two alternative ways (Willekens, 2009). One possibility is to simulate the 

entire life-cycle of an individual until the event death before starting the simulation of 

the life-cycle of another individual. For each individual separate time to transitions 

are simulated for competing events (e.g. demographic transitions, labour market 

transitions, transitions between different health states, etc.). The first state transition to 

occur is established by choosing the shortest time to transition.  

 

An alternative is to employ discrete-time duration analysis and model segments of an 

individual life-cycle. The procedure consists of breaking down the continuous time 

frame into a series of discrete spells and considering the simulation of a set of events 

(transitions) within these spells. The length of the spells can vary according to the 

specific need of the modeller but most applications use spell lengths of one year 

(Willekens, 2009). In this framework, transitions from one state to another occur by 

comparing the simulated time to transition for each specific event with the length of 

the time spell. For example, if we consider spells of the length of n years and a 

simulated time to transition, t, the transition occurs during the first spell n if the 

simulated time to transitions is less than n, (t < n).  This framework also accounts for 

repeatable events (i.e. events that can occur more than once such as child birth, labour 
                                                 
8 It should be highlighted that in equation (17), 0H can be inverted if 0 ( ) 0h t >  for all t.  
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market and health transitions). Assuming that an event is repeatable and its first 

occurrence is at 1t  if 1t < n, the event occurs a second time during the same spell if a 

second draw of a random number from the uniform distribution ~ [0,1]U U  generates 

a simulated time to transition 2t  that is less than or equal to n - 1t  ( 2 1t n t≤ − ). As a 

result, the event occurs at time 1t + 2t .9     

   

Modelling multiple transitions in continuous-time dynamic microsimulation 

The majority of continuous-time dynamic microsimulation models aim to model 

multiple transitions among a number of states. This translates into extending the 

framework presented above into a multiple hazard setting (Cameron and Trivedi, 

2005). In this context, the basic competing risks model (CRM) offers a suitable way of 

modelling the time to transition between one state of origin and one of a series of 

competing destination states.10 Competing risks models assume that a latent duration, 

jt , exists for each possible destination state (or risk) j (1,….,m). In the absence of 

other risk factors that might cause the end of the spell to occur sooner, jt  can be 

interpreted as the spell duration for each possible destination j. In this setting, the 

observed duration T is the minimum (or shortest) duration jt :  

 

1min( ,...., ) min( ), 0m j jT t t t    t= = >                                                                           (19) 

 

And the corresponding simulated destination state, r, is: 

 

(1,... )
arg min( )j
j m

r t
∈

=                                                                                                             (20) 

  

The distribution of jt can be modelled through its hazard function, jh , that defines the 

hazard rate of the jth type of failure (or transition into the destination state j). In the 

case of independent risks, the hazard function can be written as: 

 

                                                 
9 For an example, see Willekens (2009).  
10 For a fuller explanation of competing risks models, see Chapter 19 pp.642-648 of Cameron and 
Trivedi (2005) and Mealli and Pudney (1996). In this section, we broadly follow these expositions.  



 20

0

[ | , ]
( | ) lim

t

j j t j j
j j j

t

P t T t T t X
h t X

∆ →

≤ ≤ + ∆ ≥
=

∆
                                                        (21) 

   

where jX  is a destination-specific vector of exogenous covariates. Provided that the 

event transition into destination state j has not already occurred, the hazard rate is the 

product of the rate of transition in the interval t∆  and the probability of transiting into 

destination j.   

 

Willekens (2009) highlights two approaches to model time to transition and 

destination states in multiple state continuous-time dynamic microsimulation. The 

first method simulates the time to transitions for every possible destination state. The 

shortest time to transition determines the actual time to event to that destination. This 

method is applied in two models developed at Statistics Canada, LifePaths, a dynamic 

microsimulation model of Canadian individuals and households, and POHEM 

(Population Health Model), a dynamic microsimulation of diseases and risk factors 

within the Canadian population. 11 An alternative method employs two random draws, 

one to define the time to transition and the other to determine the destination state. 

The time to transition is simulated drawing a random number from an exponential 

distribution while the destination state is simulated using a draw from a uniform 

distribution in a fashion similar to that described earlier.  

 

2.4 Validation 

 

Predictions from dynamic microsimulation models must be considered credible in 

order to be accepted and used by both modellers and policy-makers. The credibility of 

a dynamic microsimulation model is based on its capacity to reproduce observed data 

or known benchmarks such as official population projections. Accordingly, an 

important aspect of dynamic microsimulation modelling is the validation of results 

produced by the simulation exercise. Interestingly, the applied literature has devoted 

little attention to validation procedures and the quantification of uncertainty around 

model predictions (Wolf, 2001; Klevmarken, 2002). Moreover, among practitioners 
                                                 
11 For an overview of LifePaths, see http://www.statcan.gc.ca/cgi-bin/af-
fdr.cgi?l=eng&loc=http://www.statcan.gc.ca/microsimulation/pdf/lifepaths-overview-vuedensemble-
eng.pdf&keng=310  
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there is currently no apparent consensus on what constitutes best practice. In the 

majority of applications, discrepancies between simulation outputs and some external 

benchmark are often resolved using alignment techniques. In general, alignment 

consists of adjustment of the simulation output in order to reflect the expected 

proportion of certain events in a population. Alignment methods applied to dynamic 

microsimulation have significantly evolved in the past few years and vary widely 

(Morrison, 2006). In the case of a hierarchical or recursive model such as the one 

depicted in Figure 1 of section 2.3.1, a “piece-meal” validation procedure can be used 

(Klevmarken, 2002) where validation is performed separately for each sub-model. A 

comprehensive list of alignment methods can be found in Morrison (2006). For an 

illustration of the various validation methods applied to two different dynamic 

microsimulation models, DYNACAN and APPSIM, readers should refer to Morrison 

(2008) and Kelly and Percival (2009), respectively.    

 

Pudney and Sutherland (1994) and Klevmarken (1998) identify three sources of 

uncertainty around the predictions produced by microsimulation models. These are 

classic sampling error, Monte Carlo errors and parameter uncertainty. Sampling error 

is simply the error linked to the use of a sample rather than the entire population to 

build the initial or base dataset. Monte Carlo errors are associated with the use of a 

particular set of random draws in the stochastic process that generates individual 

trajectories. Klevemarken (1998) suggests dealing with Monte Carlo variation by 

taking a high number of random draws and further proposes the use of bootstrapping 

techniques to account for parameter uncertainty. 

 

3. Dynamic microsimulation and health 

 

Existing dynamic microsimulation models have been extensively used to project 

populations over time, to design and evaluate public policies and to investigate 

income inequality and its distribution. Although a number of dynamic 

microsimulation models include health-related components, health is rarely the central 

focus of the analysis. Following O’Donoghue’s (2001) classification between multi-

purposes versus special-purpose microsimulation models, we can distinguish between 

dynamic microsimulation models that are not specifically designed to represent 
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health-related aspects and models explicitly centred on health and health related 

policies.  

 

3.1 Multi-purposes models  

 

Within the multi-purposes dynamic microsimulation models, health-related aspects 

are often included in a fairly rudimentary way. Models account for health, usually 

defined through disability and mainly used to inform social security benefits, 

institutionalisation, or to determine the need for health care and, in some cases, to 

project health care expenditure and usage.   

 

DYNAMOD, the Dynamic Microsimulation Model of the Australian population (King 

et al., 1999) and CAPP_DYN, the Italian dynamic microsimulation model developed 

by the Centre for Analysis of Public Policies (Mazzaferro and Morciano, 2008), 

include disability as a proxy for individual health status. INAHSIM, the Integrated 

Analytical Model for Household Simulation for the Japanese population (Inagaki, 

2008) and SAGE (Simulating Social Policy in an Ageing Population), a dynamic 

microsimulation model for England (Evandrou et al., 2001) use health dichotomised 

into two categories: “good health” and “ill-health”.12  DYNASIM3 (the third version of 

the Dynamic Simulation of Income model for the US) includes individual health 

measured by the number of limitations on activities of daily life (ADLs) as well as by 

limitations on instrumental activities of daily living (IADLs). It also includes events 

such as the onset and recovery of disability and institutionalisation (Favreault and 

Smith, 2004). MOSART, the dynamic microsimulation model for Norway, includes a 

number of health events: moving in or out of old age care institutions, rehabilitation, 

disability and public disability pensions (Fredrisken, 2003). Further aspects of health 

are also included in the Cornell Dynamic Population Microsimulation model 

(CORSIM) for the US, including risk factors (smoking, alcohol and sugar 

consumption, diabetes), disability status, institutionalisation as well as disability 

insurance and dental conditions, services and expenditures (Strategic Forecasting, 

2002). SESIM (Bolin et al., 2007), the dynamic microsimulation model of the Swedish 
                                                 
12 The Economic and Social Research Council (ESRC) Research Group for Simulating Social Policy in 
an Ageing Society (SAGE) was established in November 1999 with funding from the ESRC. It was 
jointly located within the Social Policy Department at LSE, the Institute of Gerontology at King's 
College London and the School of Social Science at the University of Southampton.  
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Ministry of Finance, and APPSIM (Lymer, 2009), the Australian Population and 

Policy Simulator, focus on the consequences of ageing and model health status, health 

care expenditure and health service usage.13 The HARDING model for Australia, a 

cohort dynamic microsimulation model, also models health service usage as well as 

health expenditure (Harding et al., 2002). However, it does not model individual 

health status by itself.   

 

3.2 Models focused on health 

 

A limited but growing number of dynamic microsimulation models are centred on 

health. Among these models, the aspects of health considered and the methods used 

vary widely (Spielauer, 2007). A number of studies attempt to project and estimate 

long-term health care costs (Baldini et al., 2007), the costs of disability (Van 

Sonsbeek and Gradus, 2006) and the distributional effects of the pharmaceutical 

benefits scheme (Abello et al., 2008). The following section focuses on the 

description of two models, the Population Health Model (POHEM) and the Future 

Elderly Model (FEM) which represent leading examples of dynamic microsimulation 

models dedicated to health and health care expenditure.    

 

3.2.1 Population Health Model 

 

POHEM (Population Health Model) is a continuous-time dynamic microsimulation 

model designed to represent the lifecycle dynamics of the Canadian population.14 The 

model focuses on the evolution and interactions of a set of specific diseases and risk 

factors. POHEM also includes individual-level data on health care costs and 

utilisation together with a measure of health-related quality of life, the Health Utility 

Index Mark 3 (HUI3) (Grootendorst, 2000). Initially developed by Statistics Canada 

                                                 
13 The health module of the APPSIM model is currently under construction. The information on its 
main features is drawn from Lymer (2009).  
14 A general overview of POHEM can be found in the POHEM page at the Statistics Canada website 
(http://www.statcan.gc.ca/microsimulation/pohem/pohem-eng.htm). The information contained in this 
section on structure, data and mechanics of POHEM was obtained combining a variety of sources: 
Evans et al. (1997), Berthelot et al. (2000), Will et al. (2001), Kopec et al. (2009), the LifePaths 
microsimulation model overview (http://www.statcan.gc.ca/microsimulation/pdf/lifepaths-overview-
vuedensemble-eng.pdf ) and a series of presentations on POHEM that are freely available at the 
website of the International Microsimulation Association (IMA) 
(http://www.microsimulation.org/IMA/Ottawa_2009.htm).        
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as a sub-model of the microsimulation model Lifepaths, POHEM integrates data from 

different sources on heart disease, diabetes, osteoarthritis, different types of cancer 

(lung, breast and colorectal cancer) and risk factors such as smoking, body mass index, 

cholesterol, blood pressure and mortality. Starting from this comprehensive baseline 

dataset, the model employs continuous-time dynamic microsimulation techniques to 

age the initial population forward in time and to model the onset and evolution of 

disease, co-morbidities and the influence of risk factors.  

 

The baseline dataset: integrating different sources 

The baseline dataset of POHEM combines data drawn from a multiplicity of sources. 

These include the Canadian Community Health Service (CCHS), the Statistics 

Canada’s census projections, the National Population Health Survey (NPHS), the 

Canadian Heart Health Survey (CHHS), the Health Person Oriented Information 

(HPOI), the Registered Persons Database (RPDB) and the British Columbia Linked 

Hospital Database (BCLHD).15 Each source of data was employed for a specific 

purpose. The CCHS is a cross sectional survey started in 2000-2001 with an initial 

sample of 131,535 individuals, representative of the Canadian household population 

aged 12 and over. The survey was used to define the initial population that is 

projected forward in time by the simulation model. Statistics Canada’s census 

projections were employed to inform the projections of new births and immigrants in 

the simulation. Data on Body Mass Index and cigarette consumption were integrated 

using information drawn form the NPHS, a longitudinal survey started in 1994-1995 

with an initial sample of 17,276 Canadian individuals. Blood pressure, total 

cholesterol and high density lipid count were modelled using data contained in the 

Canadian Heart Health Survey (CHHS), a cross-sectional survey of 23,129 

individuals conducted between 1986 and 1992. Statistics Canada’s HPOI includes 

hospital morbidity records drawn from the Canadian Institute for Health Information’s 

(CIHI) general records and was used both to improve the quality of the morbidity files 

and to derive rates of incidence of acute myocardial infarction. The RPDB dataset 

links the CIHI’s morbidity records with the vital statics for Ontario from 1988 to 2002 

and was used to model survival times following different types of acute myocardial 

interventions. Finally, data on visits to health professionals and hospital admissions 
                                                 
15 This list of datasets includes only the main sources of data used in POHEM and is not meant to be 
comprehensive.   
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covered by the Medical Services Plan of British Columbia were included in the 

baseline data of the BCLHD.    

 

Modelling approach: continuous-time dynamic microsimulation 

In order to model the lifecycle dynamics of diseases and risk factors, POHEM makes 

use of continuous-time dynamic microsimulation modelling techniques. 

Microsimulation is employed to model the onset, progression and cessation of disease 

as well as the ageing process of the population. The time to incidence of each disease 

is established according to the general methodology depicted in section 2.3. In this 

case, random draws generated through Monte Carlo simulations are converted into 

time to transitions using the inverse function of piecewise Weibull proportional 

hazards models. Co-morbidities are modelled as multiple hazards where the shortest 

time to transition determines the first transition to occur. POHEM is organised on a 

modular basis and contains a sub-model for each disease and risk factor. Below, we 

provide further details for each sub-model.  

 

Disease-specific sub-models 

POHEM contains four disease sub-models: a heart diseases model, a diabetes model, 

an osteoarthritis model and a cancers model.16 The heart disease sub-model simulates 

the incidence of acute myocardial infarction (AMI) using data on socioeconomic 

characteristics and risk factors from various sources (the Canadian Community Health 

Service, the National Population Health Survey and The Canadian Heart Health 

Survey). The Framingham risk incidence function (Wilson et al., 1998) is used to 

predict the incidence of AMI according to individual sociodemographic 

characteristics such as age, gender, region of residence and risk factors such as total 

cholesterol, blood pressure, smoking and body weight. Once the initial prevalence of 

risk factors is established, the model projects individuals through time and produces 

projections for episodes of acute myocardial infarction for each individual until death. 

Data produced from this sub-model are subsequently used to inform the other sub-

models of POHEM.  
                                                 
16 The structure of the model is here illustrated in a simplified way. For more details on the main 
components of POHEM, the different sub-modules and their state of development see the “Overall 
person life flow” scheme contained in any of the POHEM-related presentations given at the second 
General Conference of the International Microsimulation Association (IMA) 
(http://www.microsimulation.org/IMA/Ottawa_2009.htm). Part of the overall POHEM structure is also 
illustrated in Kopec et al., 2009.            
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The diabetes sub-module is based on the Diabetes Population Risk Tool (DPORT), a 

diabetes risk incidence model developed using data from the National Population 

Health Survey, the Ontario Diabetes Database and the state of Ontario mortality rates. 

This model produces diabetes types II incidence rates according to a series of 

socioeconomic determinants (age, gender, education, income, ethnicity, geographical 

area) and risk factors (alcohol, smoking, blood pressure, obesity, physical activity). 

The sub-model also produces incidence rates of different diseases resulting from type 

II diabetes such as coronary heart disease, stroke, diabetic retinopathy, kidney 

diseases, etc. The incidence rates produced by the diabetes model are employed in the 

other sub-models.  

 

The osteoarthritis model measures the prevalence and incidence of osteoarthritis using 

data from the Canadian Community Health Service and the National Health 

Population Survey (Kopec et al., 2009). This model includes the possibility of 

modelling changes in health-related quality of life using the Health Utility Index Mark 

3(HUI3). Finally, the cancers sub-model produces the incidence and progression of 

lung, breast and colorectal cancers.  

 

Risk factors sub-models  

POHEM includes three risk factor sub-models: smoking, the evolution of body mass 

index (BMI) and blood-related risk factors (total cholesterol, high density lipid count 

(HDL) and blood pressure). Within the smoking sub-model, smoking status (being a 

regular smoker or former smoker who quit within the last year or alternatively being a 

non-smoker) and transitions between smoking states are modelled using data from 

National Population Health Survey (NPHS). Transitions are based on a fourth-order 

Markov process and are conditional on age, gender and previous smoking status. The 

evolution of individual BMI is informed by a series of linear regressions of self-

reported BMI estimated on data drawn from the NPHS. The set of covariates used for 

the BMI regression models include age, gender, region of residence, income quartile, 

education and previous BMI. The blood-related risk factors sub-model estimates joint 

probabilities of changing total cholesterol levels (among low, low-medium, medium, 

medium-high and high quantity of total cholesterol) and blood pressure states 

(optimal, normal, high-normal, hypertensive stage I, Hypertensive stage II-IV). These 

probabilities are derived using data from the Canadian Heart Health Survey.  
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Outputs 

POHEM can be used to evaluate the effects of alternative health programmes. To date, 

the model has been used mainly to evaluate the costs-effectiveness of a number of 

alternative interventions. Among the various applications, Evans et al. (1997) use 

PHOEM to evaluate the cost-effectiveness of different combined therapies on patients 

with non-small-cell lung cancer (NSCLC). Berthelot et al. (2000) employ the model 

to evaluate the cost-effectiveness of different chemotherapeutic treatments on patients 

with NSCLC. Will et al. (2001) use POHEM to analyse both the impact of reduced 

length of hospital stay following breast cancer surgery and the cost-effectiveness of 

the provision of preventive therapies for women at risk of developing breast cancer. 

Further, Kopec et al. (2009) employ POHEM to model and quantify the incidence of 

osteoarthritis and its effect on health-related quality of life. More generally, the model 

can be used to evaluate and project the long-run effects of interventions concerned 

with any of the diseases or risk factors included in the model.    

 

3.2.2 Future elderly model 

 

The Future Elderly Model (FEM) is a demographic and economic microsimulation 

model developed at RAND (Goldman et al., 2004). It focuses on predicting future 

health care expenditures and the health status of a population of older Americans 

drawn from the Medicare Current Beneficiary Survey (MCBS). The model consists of 

three main components: a model for health care costs, a model of health status 

transitions and a model that predicts health characteristics of new Medicare enrolees 

(termed the “rejuvenation” model). FEM is used for evaluating what-if scenarios of a 

variety of health care interventions.  

 

Data 

FEM makes use of individual records drawn from the MCBS (1992-1998), a 

nationally representative dataset of Medicare beneficiaries composed of individuals 

who are either over 65, disabled or institutionalised. Originally developed as a 

longitudinal survey, the first MCBS sample was collected in 1992 and included 

10,584 individuals. Since 1996, the MCBS became a rotating panel and new samples 

of around 10,000 individuals were introduced each year until the end of the survey in 

1998. The MCBS contains self-reported information on height, weight, general health 
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status, a set of specific health conditions (different types of cancers, heart disease, 

Alzheimer, stroke, diabetes, hypertension, lung-related conditions, arthritis), measures 

of physical limitations in performing Activities of Daily Living (ADL) and 

Instrumental Activities of Daily Living (IADL). The survey also includes variables on 

health care utilisation and expenditures obtained through self-reported information 

and the Medicare service use records.    

 

Model structure 

The Future Elderly Model comprises three main sub-modules. The first sub-module   

produces individual trajectories for a number of health conditions and disability status. 

A second sub-module (the rejuvenation module) ensures that the data remains 

representative of the population aged 65 years or over. A third sub-module projects 

future Medicare and total health care expenditures based on the demographic and 

health characteristics of the population.  

 

Health transitions sub-module 

In the first sub-module, transitions into mortality, cancers (breast, prostate, uterus, 

colon, bladder, lung, kidney, throat, head, brain), cardiovascular disease (angina 

pectoris, myocardial infarction), neurological disorder, diabetes, hypertension, ADL 

and facility residence (i.e. entry into a nursing home) are modelled using piecewise 

Gompertz proportional hazard models. Covariates include socio-demographic 

characteristics (age, gender, ethnicity, and education), co-morbidities and risk factors 

(smoking and obesity). Individual transition probabilities obtained from these models 

are compared with random numbers extracted from a uniform distribution [0,1]. 

Health transitions occur whenever the transition probabilities exceed the 

corresponding random draws. In FEM, all health conditions are treated as absorbing 

(i.e. permanent) states.    

 

Rejuvenation sub-module 

The second sub-module is designed to predict the health and disability status of the 

entering cohorts of Medicare patients between the years 2001 and 2030 using data on 

chronic disease from the National Health Interview Survey (NHIS) and information 

on cause-specific mortality profiles from the Vital Statistics of the United States. In 

this module, the prediction of the health status of the future cohorts entails three main 
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steps. First, age-specific prevalence rates are obtained for each chronic disease 

considered (heart disease, hypertension, cerebrovascular disease, Alzheimer, cancer, 

diabetes, chronic obstructive pulmonary disease) and disability status using data from 

the NHIS. Second, age-incidence trajectories are created combining information on 

successive disease prevalence and disease-specific death rates from the US Vital 

Statistics. Third, age-specific prevalence rates and disease-specific trajectories 

generated in the previous two steps are used to predict and adjust the health status of 

the incoming Medicare sample.17   

  

Health expenditure sub-module 

The health expenditure module aims to identify the determinants of health care 

expenditures among elderly Americans. In this module, Medicare reimbursements and 

total healthcare expenditures are predicted using OLS cost regression models. 

Explanatory variables include socio-demographic characteristics (age, gender, 

ethnicity, education, geographical area of residence), health measures (self-reported 

health, ADL, self-reported diseases such as cancer, heart disease, diabetes and 

neurological conditions as well as interactions with ADL categories and disease 

conditions), mortality, obesity, smoking and nursing home residency.         

 

Scenarios modelling 

The FEM simulates a set of potential health care scenarios identified by a technical 

expert panel (TEP). 18  These simulated scenarios include potential breakthrough 

technologies in areas such as disease prevention, early detection and improved 

treatments of certain diseases but also changes in the health care system and 

individuals’ lifestyle. In order to evaluate the effectiveness of these health 

interventions, the model compares diseases prevalence rates and related costs across 

the baseline and simulated scenarios. Among the interventions that FEM is designed 

to model are the possibility of treating cancers using telomerise inhibitors19 , the 

introduction of cancer vaccines and of new non-invasive diagnostic imaging 

                                                 
17 For a detailed description of the statistical models used in each of these phases, see Goldman et al. 
(2004), Chapter 7, pp. 72-83.   
18 The panel was formed by social scientists and experts on cardiovascular diseases, biology of aging 
and cancer and neurological diseases. For a full list of members of this panel, see Goldman et al., 
(2004), Appendix B, p. 194, and Appendix C, pp.202-203.     
19 Telomerase inhibitors are molecules that prevent the expression of telomerase, an enzyme that 
allows cancer cells to reproduce.  
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technologies to improve the detection of cardiovascular diseases, and diabetes 

prevention. Simulated scenarios also comprise changes in education (such as an 

increase in educational attainment of new Medicare enrolees), changes in the 

composition of the population (e.g. a rise in the Hispanic population) and lifestyle 

changes (decrease in smoking prevalence and obesity rates).            

 

4. Conclusions 

 

This paper has two core objectives. The first is to present an overview of 

microsimulation methods and applications that are relevant for the purpose of health 

policy evaluation. The second is to promote the use of dynamic microsimulation as a 

tool for the ex-ante evaluation of health policies, and particularly in the field of public 

health interventions where evaluations are often challenging and costly. Dynamic 

microsimulation offers a number of important advantages over more standard 

methods of ex-post policy evaluation. First, by simulating data under alternative 

scenarios, dynamic microsimulation allows for the evaluation of outcomes of interest 

prior to actual implementation of a policy. Second, by projecting individual 

socioeconomic and health trajectories over multiple periods of time, dynamic 

microsimulation techniques readily incorporate both heterogeneity in estimated 

treatment effects together with the long-run effects of treatment. Finally, dynamic 

microsimulation can additionally be used to indentify better externalities and 

spillovers in treatment.  

 

For the purpose of evaluating public health interventions, the main advantage in the 

use of dynamic microsimulation lies in the possibility of simulating the likely impact 

of alterative interventions and the capacity to evaluate the efficacy of a given   

intervention for different future health scenarios. This provides the opportunity to test 

the effectiveness of different policies as well as to assess the efficacy of different 

versions of the same policy, for example a phased implementation of a policy. 

Through the repetition and variation of the assessment exercise, microsimulation 

further allows for testing the robustness of the results produced by the simulation 

itself. Given the wealth of information offered by these methods, dynamic 

microsimulation should be considered an important tool for the evaluation and 

refinement of health policies.    
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 It is important to underline that the output of any microsimulation model relies on a 

particular set of assumptions regarding the behaviour of the micro-units represented.  

These assumptions need to be credible for the outputs from a microsimulation 

exercise to have validity. Further, while estimates of behavioural microsimulation 

models have the advantage of being grounded on economic theory tend to be policy-

specific and difficult to extend to alternative contexts. Dynamic microsimulation 

models that project the characteristics of a population over time usually include the 

simulation of a series of interacting micro-processes such as demographic, labour 

market and health dynamics. The way in which these processes interact with each 

other represents the core of a dynamic microsimulation model. These interactions are 

however rarely justified using structural models. That is, dynamic microsimulation 

models often include only very limited behavioural components. Accordingly, one of 

the challenges facing the future development of dynamic microsimulation model is 

the incorporation of credible structural microeconomic models capable of taking into 

account the various behavioural components of the simulation exercise.  
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Appendix – Tables and figures 

Figure 1: Structure of a typical discrete-time dynamic microsimulation model∗ 

 
                                                 
∗ This graph is based on Graph 1 in Martini and Trivellato (1997). 

BASELINE DATAPrimary 
microdata 

Auxiliary 
microdata 

Base scenario at time t Alternative scenario at time t 

Demographic module Demographic module 

Health module Health module 

Labour market module Labour market module 

Base scenario at time t+1  

Demographic module 

Health module 

Labour market module 

Alternative scenario at time t+1  

Demographic module 

Health module  

Labour market module 

Base scenario at time t+n  Alternative scenario at time t+n 

Demographic module 

Health module 

Labour market module 

Demographic module 

Health module 

Labour market module 

SIMULATION OUTCOME: 
 

Difference between scenarios at t+n 
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