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Abstract

This paper presents an overview of microsimulation as a method to evaluate health
and health care policies and interventions. After presenting a brief survey of
microsimulation models and applications we describe the main features of the
approach and how these are implemented in practice. We pay particular attention to
the innovative features of dynamic microsimulation as a method of ex-ante policy
evaluation. The final section describes two leading microsimulation models, POHEM
and FEM used to simulate lifecycle health trajectories and associated health care costs
under competing policy scenarios to illustrate the power of microsimulation as a valid

and relevant tool for policy evaluation.
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1. Introduction

Establishing the effectiveness of health policies is central to understanding their value
in improving health and reducing inequalities in health. However, there exists a
substantial gap between the evidence base and the formulation of health policies,
particularly in fields such as public health (Wanless, 2004; Allin et al., 2007) where
methodological and practical challenges often restrict the ability to undertake robust
policy evaluation (Petticrew et al., 2004). Accounting for issues such as population
heterogeneity, multiple outcomes, spillovers and externalities and the capacity to
capture the long-run effects of an intervention pose substantial challenges for the
identification of the effects of a policy that hamper traditional methods for policy

evaluation.

The literature on methods for policy evaluation is dominated by ex-post techniques
which by definition are used to evaluate the impact of interventions and programmes
following their implementation. In order to measure a treatment effect, commonly
employed techniques such as matching, instrumental variables, control functions,
regression discontinuity designs and difference-in-differences require the availability
of data on individuals in a control and treated group and often both before and after
the implementation of the policy under scrutiny. A fundamental requirement of all ex-
post evaluation techniques is however that the policy has been implemented. In
contrast, ex-ante policy evaluation methods, such as microsimulation (Bourguignon
and Spadaro, 2006) and structural modelling (Todd and Wolpin, 2006a; Wolpin, 2007)
attempt to overcome the requirement to collect data post-implementation by
simulating the response. The simulated response under the policy can then be
compared to the simulated response assuming either no change or a competing policy
to evaluate the impact under alternative relevant scenarios. The flexibility afforded by
the simulation approach broadens the scope of the evaluation problem beyond the
identification of quantities such as an average treatment effect when assessing the

impact of an intervention on a specific outcome of interest.

The literature has identified three main advantages of ex-ante policy evaluation
techniques over ex-post methods (Todd and Wolpin, 2006b). First, ex-ante evaluation

has the ability to predict the potential impact of a series of policies as well as the



impact of a specific policy under different scenarios. Second, an ex-ante appraisal can
identify ineffective programmes before they are rolled-out and hence avoid the
potentially high cost of implementation and subsequent withdrawal. Third, by
providing evidence on the likely impacts of a policy, ex-ante evaluation can
complement and inform subsequent ex-post evaluation of the same programme. For
these reasons ex-ante evaluation offers an important tool to inform the design of

policies, their implementation and subsequent refinement.

Microsimulation is an established method for the ex-ante evaluation of public policies
(Creedy and Duncan, 2002; Creedy and Kalb, 2005; Spadaro, 2005; Bourguignon and
Spadaro, 2006). The application of these techniques has, however, largely focused on
simulating tax-benefit and pension systems and extensions to the evaluation of health
and health-related policies is still limited (Spielauer, 2007). Microsimulation
techniques simulate individual behavioural responses at a micro-level of policies yet
to be implemented. The method attempts to mimic a natural experiment with the
major difference that instead of outcomes being observed following a policy shock,
they are simulated or imputed on the basis of a set of assumptions about the
behavioural reactions of individuals following changes in the economic environment
brought about by the introduction of a policy. Accordingly, a fundamental
consideration is the quality of the model used to predict behavioural responses. One of
the main advantages offered by the approach is the ability to account for the widest
heterogeneity possible within the population of interest together with a focus of
analysis at an individual level allowing the identification of both the mean and
distributional impact of a reform. Moreover, dynamic microsimulation techniques are
capable of measuring the effects of a policy across a number of time-horizons

allowing for both short-run and long-run effects to be assessed.

The aim of this paper is to present a review of microsimulation methods for the ex-
ante evaluation of health and health care policies. The following section describes the
fundamentals of the approach using a taxonomy of models covering arithmetic and
behavioural and static and dynamic microsimulation. We pay particular attention to
the use of dynamic microsimulation models as an innovative method for the
evaluation of policy interventions and discuss the implementation of this method in

practical situations. Section 3 presents a brief review of existing microsimulation



models which incorporate a health component. This is complemented with a more
detailed overview of two of the most comprehensive microsimulation models
involving health, Population Health Model (POHEM) and the Future Elderly Model
(FEM). These models illustrate well the scope and use of microsimulation in

evaluating health and health related policies. Section 5 concludes.

2. Fundamentals of microsimulation

2.1 Origin and current use

Microsimulation was first introduced in the seminal work of Orcutt (1957; 1960). In
his pioneering paper “A new type of socioeconomic system” (1957), Orcutt identified
the need for models that could provide better long-term predictions about the effects
of alternative governmental actions. In order to facilitate and improve model
predictions, he underlined the necessity to correctly characterise the behaviour and
interactions of the elemental decision-making units (individuals, households or firms)
within the socioeconomic system represented. Further, in describing the mechanics of
this new type of approach, he suggested the recursive and discrete-time structure that
still represents the benchmark for the majority of current dynamic microsimulation
models. Despite its heritage, however, the method has gained popularity only recently

in accordance with increasing computing power and the availability of micro-data.

Microsimulation is regarded as a powerful tool for the analysis of the impact of public
policies and has become a widely accepted instrument to shape and support
government policy making. Prominent examples of microsimulation models
employed by government departments to simulate the impact of policies include
STINMOD (Australia), CBOLT, GEMINI and PENSIM (USA) and IGOTM (UK).
STINMOD (Static Incomes Model) is a microsimulation model of Australia’s income
tax and transfer system developed by NATSEM (the Australian National Center for
Social and Economic Modelling).! This model is currently used by a number of
Australian government departments to analyse the distributional impact of different

! This is a very partial list of existing government-used microsimulation models. For a comprehensive
overview of microsimulation models and their users, see the website of the International
Microsimulation Association, http://www.microsimulation.org/.




fiscal and income support programmes.? The Congressional Budget Office Long-
Term (CBOLT) dynamic microsimulation model is used by the U.S. Budget Office to
analyse the distributional effects of the American Social Security programme and
other federal policies. GEMINI and PENSIM are two dynamic microsimulation
models built and maintained by the Policy Simulation Group (U.S. Department of
Labor) employed mainly to analyse the effects of different social security and
retirement policies. Among other institutions, the U.S. Government Accountability
Office (GAO) has used these models since 2001 to produce pension and social
security reports.® Finally, the Inter Government Tax-Benefit model (IGOTM) is a
static microsimulation model that projects income and population distributions using
data from a variety of U.K. national surveys. IGOTM is currently employed by HM
Treasury, HM Revenue and Customs and by the Office for National Statistics to

provide policy advice on the impact of tax-benefit reforms on UK households.”

For the purpose of policy evaluation, microsimulation aims to simulate changes in
individual behaviour following the introduction of a policy. At their core,
microsimulation models consist of two main components: a micro-dataset and a
model that informs behavioural change under both current (or a default) and
counterfactual policy scenarios. Although microsimulation models differ widely due
to the structure and characteristics of the model used to represent individual behaviour
(e.g. whether based on a behavioural structural model and a dynamic or static
framework), the key feature embedded in all microsimulation models is the ability to
generate individual-level data under different policy scenarios. For example,
behavioural microsimulation models of labour supply, used to evaluate the impact of
fiscal policies on individuals’ employment transitions, incorporate arithmetical tax-
benefit models that produce net incomes for different tax-benefit regimes. In contrast,
dynamic microsimulation models project population samples over time, modelling life
course events (such as household formation and dissolution, education, health and

labour market status, etc.) under various policy rules.

2 For a detailed description of this model, see NATSEM’s STINMOD page at
http://www.canberra.edu.au/centres/natsem/research-models/projects_and_models/stinmod

® For more information on the U.S. based Policy Simulation Group (a research group based at the U.S.
Department of Labor), their sponsors, models as well as their users, see
http://www.polsim.com/index.html.

* See e-business strategy, HM Treasury, October 2000 (p.30). Web-link:
http://archive.treasury.gov.uk/pdf/2000/ebusiness050101.pdf




A number of authors have proposed a useful taxonomy of microsimulation models
which broadly consist of arithmetical versus behavioural models and static versus
dynamic models and the reader is referred to these for further information (Anderson,
1997; Klevmarken, 1997; O’Donoghue, 2001; Zaidi and Rake, 2001; Bourguignon
and Spadaro, 2006). In the next section, we follow this classification to highlight and
illustrate the main features of microsimulation models encountered in the applied

literature.

2.2 Arithmetical versus behavioural models

Arithmetical microsimulation

Arithmetical microsimulation models (sometimes referred to as “micro-accounting
models”, Cogneau et al., 2003) ignore individual’s behavioural responses to the policy
under scrutiny. In the case of a tax-benefit model, arithmetical microsimulation
simply simulates the change in real disposable income of individuals, following the
introduction of a tax reform under the assumption that individual behaviour is
unchanged (i.e. individual behaviour is exogenous to the tax-benefit system).
Although based on this restrictive assumption, arithmetical microsimulation models
are useful in illuminating the first-round effects of a reform and identifying the
gainers and losers together with their characteristics. This will provide an
approximation of the impact of the reform on individuals’ welfare. Information at the
individual level can be aggregated and compared between policy-relevant social
groups and analysed using social welfare indicators such as inequality and poverty
indices (Atkinson et al., 2002). Further, Bourguignon and Spadaro (2006) show that
the arithmetic evaluation approach, when used with the purpose of measuring changes
in individual and social welfare and under certain conditions (when a reform causes
marginal changes only to individuals’ budget constraints and individuals are
optimising exclusively on the basis of their budget constraint) is consistent with the
presence of behavioural responses. Arithmetical models have been used to examine
indirect taxes and tax reforms both in developed and developing countries (Creedy,
1999; Sahn, 2003); to estimate the incidence of public spending in education and
health (Demery, 2003) and to test and compare the effects of fiscal polices in different
countries of the European Union (Atkinson et al., 1998, 2002; Callan and Sutherland,
1997; De Lauthower, 1996). A number of governmental and research institutions



currently use arithmetical microsimulation models to estimate the budgetary and
distributional impacts of a range of hypothetical and actual policy changes (within the
UK these include, the HM Treasury Inter-Governmental Tax Model, IGOTM, the
Pension Policy Simulation, PPS, model of the Department for Work and Pensions and
the tax-benefit model of the Institute for Fiscal Studies, TAXBEN).

Behavioural microsimulation

In contrast to arithmetical models, behavioural microsimulation accounts for the
behavioural response of agents to a policy reform. This means that changes to
institutional, market or individual characteristics affect directly the behaviour of the
micro-units within the model. A distinctive characteristic of such models is that the
behavioural responses are grounded on economic theory and commonly involve the
estimation of structural econometric models. Tax-benefit models that incorporate
labour supply responses are typical examples of behavioural microsimulation models
(Creedy and Duncan, 2002). For such models, changes in the tax-benefit system
directly affect an individual’s budget constraint which in turn may lead to a change in
labour supplied. The purpose of these models is to provide an exact prediction of the
change in labour supply under alternative tax-benefit scenarios, and the characteristics
of the individuals impacted by the policy. To illustrate the characteristics of a

behavioural microsimulation model we use labour supply as an example.

In order to illustrate the mechanics of a representative behavioural microsimulation
model of labour supply, we follow broadly Creedy and Duncan (2002) and
Bourguignon and Spadaro (2006). For a standard continuous model of labour supply,
an individual i maximises her own utility U(.) subject to a budget constraint that
includes the tax-benefit system t(.). According to this general framework, individuals

derive utility from consumption, ¢;, and leisure, L;, defined in terms of the difference

between an individual’s time endowment T, and the level of hours worked H;,

L; =T, —H, . The optimisation problem can be defined as:

Max U (c;, Li; X;, B,&) st. ¢ < I +wH, +t(H;, wiH;, 1;; X5 7) (1)



where X; represent individual socio-demographic characteristics, £ is a common

preference parameter and & , in the simplest stochastic utility structure, is an

i
idiosyncratic term that represents the optimising error. In the budget constraint, I, is
the (exogenous) household non-labour income, w; is the wage rate and t(.) represents
the tax-benefit system. t(.) depends on labour supply H;, labour income, w,H; ,
household non-labour income together with individual socio-demographic
characteristics. The term y represents the parameters of the tax-benefit system (i.e. the

various taxes and transfers). Through this framework it is possible to simulate
individuals’ employment responses to alternative tax-benefit regimes by simply

modifying the set of parameters of the tax-benefit system () and comparing the

estimated levels of labour supply provided by individuals before and after the change.

In this partial equilibrium setting, the change in labour supply is thus defined by the

following difference:
HE = H = FW, 15 X 8. 8070 - FW, 13 X B.87) (2)

where H and H. are the level of hours worked derived from the labour supply

functions estimated for the reformed and baseline tax-benefit system, respectively.

The change in disposable income can be computed accordingly:

CF—Ci =i (X —H) +t(H wiHE 1 X5 %) —t(Hy wiH 1 X5 7) 3)
Given the difficulties related to the estimation of this type of continuous model in the
presence of non-linearity and non-convexities in complex tax-benefit schedules, the
literature has tented to favour a discrete-choice approach to behavioural
microsimulation modelling of labour supply (Callan and Van Soest, 1996; Bingley
and Walker, 1997; Keane and Moffitt, 1997; Duncan and Harris, 2002; Andrén, 2003;

® More sophisticated models distinguish between an optimizing error and random preference
heterogeneity. In this type of model, optimising errors are simply regarded as errors in perception of
the alternative utilities or as unobserved alternative-specific utility factors whereas random preference
heterogeneity is intended to reflect random preferences derived from unobserved individual
characteristics. For a brief discussion, see Brewer et al., 2005.



Brewer et al., 2006; Labeaga et al., 2008). Under this approach, an individuals’ labour
supply is approximated through a discrete-choice variable that can assume only a
finite number of values within a set of hours worked. Each hour band corresponds to a
given level of utility as defined by the budget constraint. While this method resolves
part of the difficulties related to nonlinear tax schedules, rounding errors in the
definition of hour levels can be introduced and it is good practice to undertake

sensitivity analysis (Duncan and Harris, 2002).

In their most general representation, discrete-choice microsimulation models of labour

supply can be defined as follows:

N; is the number of hours worked corresponding to the jth alternative among the
finite set of discrete hours choices; Uij is the level of utility provided by alternative j

and cij is the alternative-specific income defined by the following budget constraint:

Although different functional forms have been proposed to define individual
preferences f(.), a direct quadratic utility function (i.e. usually containing additive
linear and quadratic terms for income and hours worked) has gained wide popularity

in the empirical literature and represents the benchmark for this type of model (Keane
and Moffitt, 1998; Blundell et al., 2000). For estimation, the idiosyncratic term gij §

often assumed to follow a Type | Extreme Value distribution. This leads to a
conditional logit model, a model that nests the standard multinomial logit model. An
alternative empirical specification that further accounts for work specific or
institutional constraints in discrete labour supply models is the Dogit model (Gaundry
and Dagenais, 1979). This model includes and parameterises what is termed the
degree of “captivity” for each discrete outcome within the set of hours choices. The
captivity parameter represents an hour band specific employment constraint that

facilitates the modelling of employment responses to be extended beyond pure



preferences. Notwithstanding its flexibility, few empirical studies have adopted the
Dogit model in the context of behavioural microsimulation modelling of labour

supply (Harris and Duncan, 2003).

Reviews of applications of behavioural microsimulation models of labour supply can
be found in Creedy and Duncan (2002) and in Creedy and Kalb (2005). Although
behavioural microsimulation models have the advantage of being grounded in
economic theory, they are usually policy-specific and thus require the estimation of a
particular behavioural model that fits the policy to be evaluated. As a consequence,
they are often not generalisable to the evaluation of other policies.

2.3 Static versus dynamic models

Static microsimulation models do not incorporate a time element in the analysis. The
behavioural model of labour supply described in the previous section can be
considered an example of a static microsimulation model as it considers an
individual’s employment response to a policy in the current period. In contrast
dynamic models adopt a life-cycle perspective and project the population structure
through time. This consists of the creation of a synthetic population through the
simulation of individuals’ life trajectories using what are termed static or dynamic
ageing techniques. Static ageing produces projections of the population over time by
simply re-weighting parts of the sample according to the future expected
characteristics of the population with weights usually set using official population
projections. The underlying demographic and socioeconomic characteristics of
individuals remain constant over time with changes to the weight attached to each
individual to produce the synthetic future population. In contrast, dynamic ageing is
based on the creation of transition probabilities to update individual demographic and
economic characteristics over time. Accordingly, the demographic and socioeconomic
profile of the synthetic population is based on the assumptions implicit in the
underlying transition probabilities. While static ageing simply brings a population
sample into line with external estimates at a specific point in time, dynamic ageing is
concerned with the underlying economic and social processes which generate changes
within the population (Zaidi and Rake, 2001).

10



Dynamic ageing can be represented in discrete or continuous time and typically
incorporates life-course events such as demographic changes (i.e. fertility, marriage
formation and dissolution, mortality), educational attainment, labour market
transitions and, more rarely, the evolution of individual health status (O’Donoghue,
2001). Microsimulation models based on ageing techniques incorporate Monte Carlo
simulation methods to generate a stochastic process that determines individual
transition probabilities. These are used to update the characteristics of individuals
over time. The implementation of the Monte Carlo simulation will depend on whether
the model is assumed to operate in discrete or continuous time. This is discussed in

more details below.
2.3.1 Discrete-time dynamic microsimulation models

Markov chain models and Monte Carlo simulation methods

Discrete-time dynamic ageing is usually based on a first order Markov process. In the
simplest representation of a first order Markov process, for any individual
demographic or socioeconomic event E an individual transition probability from state

e, attime tto state e;attime t + 1, depends only on their characteristics at time t:

i =P(E..=¢j|E =¢) (6)

The resulting transition matrix includes all possible transition probabilities between

the set of states at time t and the set of states at t+1 and can be described as follows:

Pi P o By oo Pip

Por P oo P2y - Pop
P _ : : o DR @)
o Pr Px2 -o- P - Prn

pml pm2 ce pmj o pmn

11



where the set of transitions fromt to t + 1 is given by the m rows and the n columns of

the matrix. Accordingly, the k-th row, p,; Py, - Py - Py IS @ vector that contains

the probabilities of all possible transitions from state e, into any other state within the

set of events at time t + 1 (Mazzaferro and Morciano, 2008). The resulting matrix, P,
IS a square positive matrix with the same number of states at t and t + 1. Hence,

n
0<py <L vk, j and) p, =1 for k=1,.m.
i1

The occurrence of a transition between two states is established using Monte Carlo
simulation. For the ith observation and for each state, a random number r is drawn

from a uniform distribution in the interval [0,1] at every time interval t, r; . A

transition occurs if the generated random number is less than or equal to the

probability of the event to occur: r,, <P. . If the random draw from the distribution

ijt = Fjt -

exceeds the probability, r; > Py,

the individual remains in the state of origin.

There exist a variety of discrete-time dynamic microsimulation models built for a
variety of purposes and using data specific to a wide range of countries. A leading
example of discrete-time dynamic microsimulation modelling is CORSIM (Cornell
Simulation Model). CORSIM (Strategic Forecasting, 2002) models a range of
demographic events such as birth, death, marriage and divorce, immigration and
emigration together with levels of education, work and earning patters and the
accumulation of assets and debts using annual discrete-time simulations. CORSIM
was used as a template by the Office of Chief Actuary (OCA) of the Canadian
Government for the development of DYNACAN (Dussault, 2000), a dynamic
microsimulation of the Canadian population, as well as by the Swedish Spatial
Modelling Centre for the construction of SVERIGE, a spatial dynamic
microsimulation model for Sweden. Comprehensive surveys of discrete-time dynamic
microsimulation models can be found in O’Donoghue (2001), Zaidi and Rake, (2001)
and Cassells et al. (2006).

12



An example for health

We illustrate the implementation of Monte Carlo simulation to compute transitions
using health states as an example. Several methods have been proposed to estimate
transition probabilities in discrete-state panel data Markov chain models (Singer and
Spilerman, 1974; Tuma and Hannan, 1984; Laditka and Wolf, 1998) and for our
purposes, we follow the approach proposed by Laditka and Wolf (1998) who consider
a transition process between four states: three non absorbing states of functional
health limitations and a fourth absorbing state, death. The non-absorbing states are
unimpaired (or active), being moderately impaired (having one or two impairments in
activities of daily living, ADL) and being severely impaired (having three to five
ADL limitations). Accordingly, we have a multinomial variable of health limitation
status, L that can assume four values: U (unimpaired), M (moderately impaired), S
(severely impaired) and D (dead). Transition probabilities between two consecutive
periods of time, t and t+1, can be expressed as:

Ri =Pl =JlL =k Xy) (8)

For each individual the probability of being in a particular state in the next time
period (t+1) depends on the state in the current period (t) together with current period

socioeconomic characteristics, X, (e.g. age, ethnicity, education, income, marital

status, etc.). The transition probabilities can be arranged in a 4 x 4 matrix as follows:

Pou Pum  Pus Pup
p_ Pvu  Pum  Pms  Pwp )
Psu Psm  Pss  Psp

Pou Pom Pps  Pop

where ppy = Ppw = Pps =0 and ppp =1, due to the absorbing nature of death. To

populate the remaining 12 transition probabilities, we estimate multinomial logit
models with covariates representing individual socioeconomic characteristics and
health limitation status. A separate model is estimated for each row of the transition
matrix. Again, Monte Carlo simulation methods are used to establish the actual
incidence of transitions between different health states in consecutive periods of times

13



by comparing the predicted probability for any transition, p, with a random number, r,

drawn from a uniform distribution U ~UJ[0,1] . The transition occurs if r<p,

otherwise the individual remains in their current health state.

Implementation of a typical discrete-time dynamic microsimulation model

Discrete-time dynamic microsimulation models are typically structured on a modular
basis where events are usually represented as a set of univariate processes that follow
a hierarchical order. This structure is represented in Figure 1. The figure shows the
starting point of a dynamic microsimulation model, the baseline dataset, the modules
used to simulate individual events (in this stylised example, demographic, health and
labour market modules) and the outcome produced by the simulation; here the
difference in the trajectories between a baseline scenario and an alternative under

evaluation.

(Figure 1 about here)

A fundamental component of any dynamic microsimulation model is its baseline
dataset. This is usually composed of a main source, based on individual records taken
from survey or administrative data, augmented with information imported from
additional sources, using imputation or matching techniques. The rationale behind the
use of multiple sources of data is often to fill information gaps in the primary data
source or simply to integrate external information. Ultimately, the essential
requirement for a baseline dataset is for it to be representative of the population
relevant for the policy being simulated (Martini and Trivellato, 1997).

In a discrete-time setting, all individuals at a particular time period t are at risk of
experiencing a series of events. The occurrence and timing of each event are
established according to the Markov chain Monte Carlo rules outlined earlier.
Depending on the focus of the model, modules and events may differ. However, the
majority of discrete-time dynamic microsimulation models include demographic
events (such as birth, mortality, household formation and dissolution and more rarely
immigration), education and labour market-related events (e.g. modules that “attach”

a degree to each individual and subsequently consider transitions into and out of as

14



well as within the labour market) and less commonly health events, usually in the
form of a stylised health status (for example, a binary measure of individual health
status, being in good health or ill-health). Richer dynamic models might also contain
modules that compute labour earnings, non-labour income, expenditures as well as
reproducing the tax and social security systems of a specific country.® The baseline
dataset modified by the transitions incurred by individuals at the end of a time period t
becomes the input dataset for the following time period, t + 1. This is repeated until
the entire dynamic simulation cycle is complete (i.e. until the last time period

considered is reached).

An essential feature of a typical discrete-time dynamic microsimulation model is the
hierarchical nature of the events represented. The sequence of events within each time
period is established a priori by the model builder. Hence, the sequence of causal
relationships between key events within an individual’s life is pre-determined.
Although this modelling strategy allows the researcher to control the consequence of
changes within the chain of events, ignoring the potentially numerous endogeneity

issues could seriously hamper the reliability of the model’s results.

2.3.2 Continuous-time dynamic microsimulation models

Dynamic microsimulation can be implemented in continuous-time using duration
models. In this framework, the variable of interest is the time to occurrence of an
event (in this case, the time to a transition between an origin state and a destination
state). Within this setting, a central mechanism that governs the timing of events is the
concept of the inverse distribution function or quantile function. While a distribution
function transforms a real number into a probability, the quantile function translates a
probability into a real number (Willekens, 2006, 2009). In continuous-time dynamic
microsimulation models, the quantile function is used to transform the probability of a
transition from one state to another into a real number that represents the time to an

event.

® One of the most comprehensive discrete-time dynamic microsimulation models is the Australian
Population and Policy Simulator (APPSIM) that is currently under development at NATSEM,
University of Canberra. For a brief overview of the APPSIM simulation cycle, see
http://www.canberra.edu.au/centres/natsem/research-models/projects_and_models/appsim

15



In continuous-time duration models, the time to an event T can be considered a

random variable with the following cumulative distribution function (cdf):
F(t) =Pr(T <t) (10)

The cdf represents the probability that the duration spell length is less than t in the
interval from O to t (i.e. the probability that the transition between two states occurs in
the period between 0 and t). The probability that the duration equals or exceeds t is

defined by the survivor function:
S(t)=Pr(T >t)=1-F(t) (12)

The concentration of events along the time axis is given by the density function that is

the slope of the survivor function expressed as follows:

OF(t) _ a5(t)

== ot

(12)

The instantaneous rate of leaving a state conditional on survival to time t is given by

the hazard function that can be expressed by:

mF(t+At)—F(t)' 1 f@)  f()

- - (13)
5o A, 1-F@) 1-F@) S()

h(t) = |

The cumulative hazard function (or integrated hazard function) can be obtained by

integrating the hazard rate at each instant in time:
t

H(t) = j h(u)du (14)
0

The timing of the transition for an individual i is given by G(r;) where r; is arandom
value drawn from a uniform distribution in the interval [0,1] and G is the inverse

distribution function of T, i.e. G = F*(t). That is, the inverse distribution function or

16



quantile function is used to map the realisation of the random draw into a real number
t which indicates the timing of the transition. Hence, in the context of continuous-time
dynamic microsimulation, the decision rule that is used to set the timing of an event

entails two stages. First, a random number r, is drawn from a uniform
distribution U ~UJ[0,1] . Second, a quantile function of the probability

distribution F (t) is used to convert this numberr; into a real value of t.

An example: simulating the time to transitions

As an example, we consider the simulation of the time to transition between different
states produced using a Cox proportional hazard model, a widely used duration model
(Bender et al., 2005). The Cox proportional hazard model can be defined through its

hazard function:

h(t/ X)=h,exp(¢ X) (15)

where t is time, X is a vector containing a set of covariates that define a series of

individual socioeconomic characteristics, ¢ is a vector of regression coefficients and
h, is the baseline hazard function (i.e. the hazard function in the absence of covariates,

X=0). The survival function of the Cox proportional hazard model can be written as

follows:

S(t/x) = exp[~Ho(t)exp(¢ X)] (16)

where H, is the cumulative baseline hazard function. The distribution function of this

model is:

F(t/ X)=1—exp[-H,(t)exp(¢ X)] (17)

" In the majority of applications, the distribution F(t) is assumed to be either exponential, Gompertz or
Weibull. If the time to a transition event follows an exponential distribution, then transitions are
assumed to occur at a constant rate. In case of a Gompertz distribution, the transition rate changes
exponentially with duration while with a Weibull distribution the transition rate varies with duration
following a power function of duration.
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Let r be a random number drawn from a uniform distributionU ~UJ0,1]. Then, the

simulated time to transition T is produced using the inverse or quantile function of the
Cox proportional hazard model that takes the following form:®

FH(t/ X)=T = Hy'[-log(r)exp(-¢ X)] (18)

Accordingly, the simulated time to transition depends on a constant transition rate and
a set of covariates. It should be noted that the Cox hazard model is not restricted to
the exponential distribution and that a set of alternative survival time distributions can
be used to generate simulated times to transition using Cox hazard models (for an
overview, see Bender et al. 2005).

The individual life-cycle in continuous-time dynamic microsimulation modelling

In continuous time dynamic microsimulation the life-cycle of an individual can be
modelled in two alternative ways (Willekens, 2009). One possibility is to simulate the
entire life-cycle of an individual until the event death before starting the simulation of
the life-cycle of another individual. For each individual separate time to transitions
are simulated for competing events (e.g. demographic transitions, labour market
transitions, transitions between different health states, etc.). The first state transition to

occur is established by choosing the shortest time to transition.

An alternative is to employ discrete-time duration analysis and model segments of an
individual life-cycle. The procedure consists of breaking down the continuous time
frame into a series of discrete spells and considering the simulation of a set of events
(transitions) within these spells. The length of the spells can vary according to the
specific need of the modeller but most applications use spell lengths of one year
(Willekens, 2009). In this framework, transitions from one state to another occur by
comparing the simulated time to transition for each specific event with the length of
the time spell. For example, if we consider spells of the length of n years and a
simulated time to transition, t, the transition occurs during the first spell n if the
simulated time to transitions is less than n, (t < n). This framework also accounts for

repeatable events (i.e. events that can occur more than once such as child birth, labour

® It should be highlighted that in equation (17), H, can be inverted if hy(t) > 0 for all t.
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market and health transitions). Assuming that an event is repeatable and its first
occurrence is at t; if t; < n, the event occurs a second time during the same spell if a
second draw of a random number from the uniform distribution U ~U[0,1] generates

a simulated time to transition t, that is less than or equal ton - t; (t,<n-t). As a

result, the event occurs at time t, +t,.°

Modelling multiple transitions in continuous-time dynamic microsimulation

The majority of continuous-time dynamic microsimulation models aim to model
multiple transitions among a number of states. This translates into extending the
framework presented above into a multiple hazard setting (Cameron and Trivedi,
2005). In this context, the basic competing risks model (CRM) offers a suitable way of
modelling the time to transition between one state of origin and one of a series of
competing destination states.* Competing risks models assume that a latent duration,

t;, exists for each possible destination state (or risk) j (1,....,m). In the absence of
other risk factors that might cause the end of the spell to occur sooner, t; can be

interpreted as the spell duration for each possible destination j. In this setting, the

observed duration T is the minimum (or shortest) duration t;:

T =min(t,,....,t,) =min(t;), t;>0 (19)

And the corresponding simulated destination state, r, is:

r=argmin(t;) (20)
je(,..m)

The distribution of t; can be modelled through its hazard function, h;, that defines the

hazard rate of the jth type of failure (or transition into the destination state j). In the

case of independent risks, the hazard function can be written as:

° For an example, see Willekens (2009).
% For a fuller explanation of competing risks models, see Chapter 19 pp.642-648 of Cameron and
Trivedi (2005) and Mealli and Pudney (1996). In this section, we broadly follow these expositions.
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PIt, <T <t; +4A [T 2t;, X;]
At

hy ;1 %;5) = lim, (21)

where X; is a destination-specific vector of exogenous covariates. Provided that the

event transition into destination state j has not already occurred, the hazard rate is the

product of the rate of transition in the interval A, and the probability of transiting into

destination j.

Willekens (2009) highlights two approaches to model time to transition and
destination states in multiple state continuous-time dynamic microsimulation. The
first method simulates the time to transitions for every possible destination state. The
shortest time to transition determines the actual time to event to that destination. This
method is applied in two models developed at Statistics Canada, LifePaths, a dynamic
microsimulation model of Canadian individuals and households, and POHEM
(Population Health Model), a dynamic microsimulation of diseases and risk factors
within the Canadian population. '* An alternative method employs two random draws,
one to define the time to transition and the other to determine the destination state.
The time to transition is simulated drawing a random number from an exponential
distribution while the destination state is simulated using a draw from a uniform

distribution in a fashion similar to that described earlier.
2.4 Validation

Predictions from dynamic microsimulation models must be considered credible in
order to be accepted and used by both modellers and policy-makers. The credibility of
a dynamic microsimulation model is based on its capacity to reproduce observed data
or known benchmarks such as official population projections. Accordingly, an
important aspect of dynamic microsimulation modelling is the validation of results
produced by the simulation exercise. Interestingly, the applied literature has devoted
little attention to validation procedures and the quantification of uncertainty around

model predictions (Wolf, 2001; Klevmarken, 2002). Moreover, among practitioners

11 For an overview of LifePaths, see http://www.statcan.gc.ca/cgi-bin/af-
fdr.cqgi?l=eng&loc=http://www.statcan.gc.ca/microsimulation/pdf/lifepaths-overview-vuedensemble-
eng.pdf&keng=310
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there is currently no apparent consensus on what constitutes best practice. In the
majority of applications, discrepancies between simulation outputs and some external
benchmark are often resolved using alignment techniques. In general, alignment
consists of adjustment of the simulation output in order to reflect the expected
proportion of certain events in a population. Alignment methods applied to dynamic
microsimulation have significantly evolved in the past few years and vary widely
(Morrison, 2006). In the case of a hierarchical or recursive model such as the one
depicted in Figure 1 of section 2.3.1, a “piece-meal” validation procedure can be used
(Klevmarken, 2002) where validation is performed separately for each sub-model. A
comprehensive list of alignment methods can be found in Morrison (2006). For an
illustration of the various validation methods applied to two different dynamic
microsimulation models, DYNACAN and APPSIM, readers should refer to Morrison
(2008) and Kelly and Percival (2009), respectively.

Pudney and Sutherland (1994) and Klevmarken (1998) identify three sources of
uncertainty around the predictions produced by microsimulation models. These are
classic sampling error, Monte Carlo errors and parameter uncertainty. Sampling error
is simply the error linked to the use of a sample rather than the entire population to
build the initial or base dataset. Monte Carlo errors are associated with the use of a
particular set of random draws in the stochastic process that generates individual
trajectories. Klevemarken (1998) suggests dealing with Monte Carlo variation by
taking a high number of random draws and further proposes the use of bootstrapping

techniques to account for parameter uncertainty.

3. Dynamic microsimulation and health

Existing dynamic microsimulation models have been extensively used to project
populations over time, to design and evaluate public policies and to investigate
income inequality and its distribution. Although a number of dynamic
microsimulation models include health-related components, health is rarely the central
focus of the analysis. Following O’Donoghue’s (2001) classification between multi-
purposes versus special-purpose microsimulation models, we can distinguish between

dynamic microsimulation models that are not specifically designed to represent
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health-related aspects and models explicitly centred on health and health related

policies.

3.1 Multi-purposes models

Within the multi-purposes dynamic microsimulation models, health-related aspects
are often included in a fairly rudimentary way. Models account for health, usually
defined through disability and mainly used to inform social security benefits,
institutionalisation, or to determine the need for health care and, in some cases, to
project health care expenditure and usage.

DYNAMOD, the Dynamic Microsimulation Model of the Australian population (King
et al., 1999) and CAPP_DYN, the Italian dynamic microsimulation model developed
by the Centre for Analysis of Public Policies (Mazzaferro and Morciano, 2008),
include disability as a proxy for individual health status. INAHSIM, the Integrated
Analytical Model for Household Simulation for the Japanese population (Inagaki,
2008) and SAGE (Simulating Social Policy in an Ageing Population), a dynamic
microsimulation model for England (Evandrou et al., 2001) use health dichotomised
into two categories: “good health” and “ill-health”.**> DYNASIM3 (the third version of
the Dynamic Simulation of Income model for the US) includes individual health
measured by the number of limitations on activities of daily life (ADLSs) as well as by
limitations on instrumental activities of daily living (IADLS). It also includes events
such as the onset and recovery of disability and institutionalisation (Favreault and
Smith, 2004). MOSART, the dynamic microsimulation model for Norway, includes a
number of health events: moving in or out of old age care institutions, rehabilitation,
disability and public disability pensions (Fredrisken, 2003). Further aspects of health
are also included in the Cornell Dynamic Population Microsimulation model
(CORSIM) for the US, including risk factors (smoking, alcohol and sugar
consumption, diabetes), disability status, institutionalisation as well as disability
insurance and dental conditions, services and expenditures (Strategic Forecasting,
2002). SESIM (Bolin et al., 2007), the dynamic microsimulation model of the Swedish

12 The Economic and Social Research Council (ESRC) Research Group for Simulating Social Policy in
an Ageing Society (SAGE) was established in November 1999 with funding from the ESRC. It was
jointly located within the Social Policy Department at LSE, the Institute of Gerontology at King's
College London and the School of Social Science at the University of Southampton.
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Ministry of Finance, and APPSIM (Lymer, 2009), the Australian Population and
Policy Simulator, focus on the consequences of ageing and model health status, health
care expenditure and health service usage.’* The HARDING model for Australia, a
cohort dynamic microsimulation model, also models health service usage as well as
health expenditure (Harding et al., 2002). However, it does not model individual
health status by itself.

3.2 Models focused on health

A limited but growing number of dynamic microsimulation models are centred on
health. Among these models, the aspects of health considered and the methods used
vary widely (Spielauer, 2007). A number of studies attempt to project and estimate
long-term health care costs (Baldini et al., 2007), the costs of disability (Van
Sonsbeek and Gradus, 2006) and the distributional effects of the pharmaceutical
benefits scheme (Abello et al., 2008). The following section focuses on the
description of two models, the Population Health Model (POHEM) and the Future
Elderly Model (FEM) which represent leading examples of dynamic microsimulation
models dedicated to health and health care expenditure.

3.2.1 Population Health Model

POHEM (Population Health Model) is a continuous-time dynamic microsimulation
model designed to represent the lifecycle dynamics of the Canadian population.** The
model focuses on the evolution and interactions of a set of specific diseases and risk
factors. POHEM also includes individual-level data on health care costs and
utilisation together with a measure of health-related quality of life, the Health Utility
Index Mark 3 (HUI3) (Grootendorst, 2000). Initially developed by Statistics Canada

3 The health module of the APPSIM model is currently under construction. The information on its
main features is drawn from Lymer (2009).

1 A general overview of POHEM can be found in the POHEM page at the Statistics Canada website
(http://www.statcan.gc.ca/microsimulation/pohem/pohem-eng.htm). The information contained in this
section on structure, data and mechanics of POHEM was obtained combining a variety of sources:
Evans et al. (1997), Berthelot et al. (2000), Will et al. (2001), Kopec et al. (2009), the LifePaths
microsimulation model overview (http://www.statcan.gc.ca/microsimulation/pdf/lifepaths-overview-
vuedensemble-eng.pdf ) and a series of presentations on POHEM that are freely available at the
website of the International Microsimulation Association (IMA)
(http://www.microsimulation.org/IMA/Ottawa_2009.htm).
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as a sub-model of the microsimulation model Lifepaths, POHEM integrates data from
different sources on heart disease, diabetes, osteoarthritis, different types of cancer
(lung, breast and colorectal cancer) and risk factors such as smoking, body mass index,
cholesterol, blood pressure and mortality. Starting from this comprehensive baseline
dataset, the model employs continuous-time dynamic microsimulation techniques to
age the initial population forward in time and to model the onset and evolution of

disease, co-morbidities and the influence of risk factors.

The baseline dataset: integrating different sources

The baseline dataset of POHEM combines data drawn from a multiplicity of sources.
These include the Canadian Community Health Service (CCHS), the Statistics
Canada’s census projections, the National Population Health Survey (NPHS), the
Canadian Heart Health Survey (CHHS), the Health Person Oriented Information
(HPOI), the Registered Persons Database (RPDB) and the British Columbia Linked
Hospital Database (BCLHD).™ Each source of data was employed for a specific
purpose. The CCHS is a cross sectional survey started in 2000-2001 with an initial
sample of 131,535 individuals, representative of the Canadian household population
aged 12 and over. The survey was used to define the initial population that is
projected forward in time by the simulation model. Statistics Canada’s census
projections were employed to inform the projections of new births and immigrants in
the simulation. Data on Body Mass Index and cigarette consumption were integrated
using information drawn form the NPHS, a longitudinal survey started in 1994-1995
with an initial sample of 17,276 Canadian individuals. Blood pressure, total
cholesterol and high density lipid count were modelled using data contained in the
Canadian Heart Health Survey (CHHS), a cross-sectional survey of 23,129
individuals conducted between 1986 and 1992. Statistics Canada’s HPOI includes
hospital morbidity records drawn from the Canadian Institute for Health Information’s
(CIHI) general records and was used both to improve the quality of the morbidity files
and to derive rates of incidence of acute myocardial infarction. The RPDB dataset
links the CIHI’s morbidity records with the vital statics for Ontario from 1988 to 2002
and was used to model survival times following different types of acute myocardial

interventions. Finally, data on visits to health professionals and hospital admissions

> This list of datasets includes only the main sources of data used in POHEM and is not meant to be
comprehensive.
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covered by the Medical Services Plan of British Columbia were included in the
baseline data of the BCLHD.

Modelling approach: continuous-time dynamic microsimulation

In order to model the lifecycle dynamics of diseases and risk factors, POHEM makes
use of continuous-time dynamic microsimulation modelling techniques.
Microsimulation is employed to model the onset, progression and cessation of disease
as well as the ageing process of the population. The time to incidence of each disease
is established according to the general methodology depicted in section 2.3. In this
case, random draws generated through Monte Carlo simulations are converted into
time to transitions using the inverse function of piecewise Weibull proportional
hazards models. Co-morbidities are modelled as multiple hazards where the shortest
time to transition determines the first transition to occur. POHEM is organised on a
modular basis and contains a sub-model for each disease and risk factor. Below, we

provide further details for each sub-model.

Disease-specific sub-models

POHEM contains four disease sub-models: a heart diseases model, a diabetes model,
an osteoarthritis model and a cancers model.'® The heart disease sub-model simulates
the incidence of acute myocardial infarction (AMI) using data on socioeconomic
characteristics and risk factors from various sources (the Canadian Community Health
Service, the National Population Health Survey and The Canadian Heart Health
Survey). The Framingham risk incidence function (Wilson et al., 1998) is used to
predict the incidence of AMI according to individual sociodemographic
characteristics such as age, gender, region of residence and risk factors such as total
cholesterol, blood pressure, smoking and body weight. Once the initial prevalence of
risk factors is established, the model projects individuals through time and produces
projections for episodes of acute myocardial infarction for each individual until death.
Data produced from this sub-model are subsequently used to inform the other sub-
models of POHEM.

'8 The structure of the model is here illustrated in a simplified way. For more details on the main
components of POHEM, the different sub-modules and their state of development see the “Overall
person life flow” scheme contained in any of the POHEM-related presentations given at the second
General Conference  of  the International Microsimulation ~ Association (IMA)
(http://www.microsimulation.org/IMA/Ottawa_2009.htm). Part of the overall POHEM structure is also
illustrated in Kopec et al., 2009.
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The diabetes sub-module is based on the Diabetes Population Risk Tool (DPORT), a
diabetes risk incidence model developed using data from the National Population
Health Survey, the Ontario Diabetes Database and the state of Ontario mortality rates.
This model produces diabetes types Il incidence rates according to a series of
socioeconomic determinants (age, gender, education, income, ethnicity, geographical
area) and risk factors (alcohol, smoking, blood pressure, obesity, physical activity).
The sub-model also produces incidence rates of different diseases resulting from type
Il diabetes such as coronary heart disease, stroke, diabetic retinopathy, kidney
diseases, etc. The incidence rates produced by the diabetes model are employed in the
other sub-models.

The osteoarthritis model measures the prevalence and incidence of osteoarthritis using
data from the Canadian Community Health Service and the National Health
Population Survey (Kopec et al., 2009). This model includes the possibility of
modelling changes in health-related quality of life using the Health Utility Index Mark
3(HUI3). Finally, the cancers sub-model produces the incidence and progression of

lung, breast and colorectal cancers.

Risk factors sub-models

POHEM includes three risk factor sub-models: smoking, the evolution of body mass
index (BMI) and blood-related risk factors (total cholesterol, high density lipid count
(HDL) and blood pressure). Within the smoking sub-model, smoking status (being a
regular smoker or former smoker who quit within the last year or alternatively being a
non-smoker) and transitions between smoking states are modelled using data from
National Population Health Survey (NPHS). Transitions are based on a fourth-order
Markov process and are conditional on age, gender and previous smoking status. The
evolution of individual BMI is informed by a series of linear regressions of self-
reported BMI estimated on data drawn from the NPHS. The set of covariates used for
the BMI regression models include age, gender, region of residence, income quartile,
education and previous BMI. The blood-related risk factors sub-model estimates joint
probabilities of changing total cholesterol levels (among low, low-medium, medium,
medium-high and high quantity of total cholesterol) and blood pressure states
(optimal, normal, high-normal, hypertensive stage I, Hypertensive stage 11-1V). These

probabilities are derived using data from the Canadian Heart Health Survey.

26



Outputs

POHEM can be used to evaluate the effects of alternative health programmes. To date,
the model has been used mainly to evaluate the costs-effectiveness of a number of
alternative interventions. Among the various applications, Evans et al. (1997) use
PHOEM to evaluate the cost-effectiveness of different combined therapies on patients
with non-small-cell lung cancer (NSCLC). Berthelot et al. (2000) employ the model
to evaluate the cost-effectiveness of different chemotherapeutic treatments on patients
with NSCLC. Will et al. (2001) use POHEM to analyse both the impact of reduced
length of hospital stay following breast cancer surgery and the cost-effectiveness of
the provision of preventive therapies for women at risk of developing breast cancer.
Further, Kopec et al. (2009) employ POHEM to model and quantify the incidence of
osteoarthritis and its effect on health-related quality of life. More generally, the model
can be used to evaluate and project the long-run effects of interventions concerned
with any of the diseases or risk factors included in the model.

3.2.2 Future elderly model

The Future Elderly Model (FEM) is a demographic and economic microsimulation
model developed at RAND (Goldman et al., 2004). It focuses on predicting future
health care expenditures and the health status of a population of older Americans
drawn from the Medicare Current Beneficiary Survey (MCBS). The model consists of
three main components: a model for health care costs, a model of health status
transitions and a model that predicts health characteristics of new Medicare enrolees
(termed the “rejuvenation” model). FEM is used for evaluating what-if scenarios of a

variety of health care interventions.

Data

FEM makes use of individual records drawn from the MCBS (1992-1998), a
nationally representative dataset of Medicare beneficiaries composed of individuals
who are either over 65, disabled or institutionalised. Originally developed as a
longitudinal survey, the first MCBS sample was collected in 1992 and included
10,584 individuals. Since 1996, the MCBS became a rotating panel and new samples
of around 10,000 individuals were introduced each year until the end of the survey in

1998. The MCBS contains self-reported information on height, weight, general health
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status, a set of specific health conditions (different types of cancers, heart disease,
Alzheimer, stroke, diabetes, hypertension, lung-related conditions, arthritis), measures
of physical limitations in performing Activities of Daily Living (ADL) and
Instrumental Activities of Daily Living (IADL). The survey also includes variables on
health care utilisation and expenditures obtained through self-reported information
and the Medicare service use records.

Model structure

The Future Elderly Model comprises three main sub-modules. The first sub-module
produces individual trajectories for a number of health conditions and disability status.
A second sub-module (the rejuvenation module) ensures that the data remains
representative of the population aged 65 years or over. A third sub-module projects
future Medicare and total health care expenditures based on the demographic and
health characteristics of the population.

Health transitions sub-module

In the first sub-module, transitions into mortality, cancers (breast, prostate, uterus,
colon, bladder, lung, kidney, throat, head, brain), cardiovascular disease (angina
pectoris, myocardial infarction), neurological disorder, diabetes, hypertension, ADL
and facility residence (i.e. entry into a nursing home) are modelled using piecewise
Gompertz proportional hazard models. Covariates include socio-demographic
characteristics (age, gender, ethnicity, and education), co-morbidities and risk factors
(smoking and obesity). Individual transition probabilities obtained from these models
are compared with random numbers extracted from a uniform distribution [0,1].
Health transitions occur whenever the transition probabilities exceed the
corresponding random draws. In FEM, all health conditions are treated as absorbing
(i.e. permanent) states.

Rejuvenation sub-module

The second sub-module is designed to predict the health and disability status of the
entering cohorts of Medicare patients between the years 2001 and 2030 using data on
chronic disease from the National Health Interview Survey (NHIS) and information
on cause-specific mortality profiles from the Vital Statistics of the United States. In

this module, the prediction of the health status of the future cohorts entails three main
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steps. First, age-specific prevalence rates are obtained for each chronic disease
considered (heart disease, hypertension, cerebrovascular disease, Alzheimer, cancer,
diabetes, chronic obstructive pulmonary disease) and disability status using data from
the NHIS. Second, age-incidence trajectories are created combining information on
successive disease prevalence and disease-specific death rates from the US Vital
Statistics. Third, age-specific prevalence rates and disease-specific trajectories
generated in the previous two steps are used to predict and adjust the health status of

the incoming Medicare sample.*’

Health expenditure sub-module

The health expenditure module aims to identify the determinants of health care
expenditures among elderly Americans. In this module, Medicare reimbursements and
total healthcare expenditures are predicted using OLS cost regression models.
Explanatory variables include socio-demographic characteristics (age, gender,
ethnicity, education, geographical area of residence), health measures (self-reported
health, ADL, self-reported diseases such as cancer, heart disease, diabetes and
neurological conditions as well as interactions with ADL categories and disease
conditions), mortality, obesity, smoking and nursing home residency.

Scenarios modelling

The FEM simulates a set of potential health care scenarios identified by a technical
expert panel (TEP).'® These simulated scenarios include potential breakthrough
technologies in areas such as disease prevention, early detection and improved
treatments of certain diseases but also changes in the health care system and
individuals’ lifestyle. In order to evaluate the effectiveness of these health
interventions, the model compares diseases prevalence rates and related costs across
the baseline and simulated scenarios. Among the interventions that FEM is designed
to model are the possibility of treating cancers using telomerise inhibitors®, the

introduction of cancer vaccines and of new non-invasive diagnostic imaging

" For a detailed description of the statistical models used in each of these phases, see Goldman et al.
(2004), Chapter 7, pp. 72-83.
¥ The panel was formed by social scientists and experts on cardiovascular diseases, biology of aging
and cancer and neurological diseases. For a full list of members of this panel, see Goldman et al.,
(2004), Appendix B, p. 194, and Appendix C, pp.202-203.

Telomerase inhibitors are molecules that prevent the expression of telomerase, an enzyme that
allows cancer cells to reproduce.
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technologies to improve the detection of cardiovascular diseases, and diabetes
prevention. Simulated scenarios also comprise changes in education (such as an
increase in educational attainment of new Medicare enrolees), changes in the
composition of the population (e.g. a rise in the Hispanic population) and lifestyle

changes (decrease in smoking prevalence and obesity rates).

4. Conclusions

This paper has two core objectives. The first is to present an overview of
microsimulation methods and applications that are relevant for the purpose of health
policy evaluation. The second is to promote the use of dynamic microsimulation as a
tool for the ex-ante evaluation of health policies, and particularly in the field of public
health interventions where evaluations are often challenging and costly. Dynamic
microsimulation offers a number of important advantages over more standard
methods of ex-post policy evaluation. First, by simulating data under alternative
scenarios, dynamic microsimulation allows for the evaluation of outcomes of interest
prior to actual implementation of a policy. Second, by projecting individual
socioeconomic and health trajectories over multiple periods of time, dynamic
microsimulation techniques readily incorporate both heterogeneity in estimated
treatment effects together with the long-run effects of treatment. Finally, dynamic
microsimulation can additionally be used to indentify better externalities and

spillovers in treatment.

For the purpose of evaluating public health interventions, the main advantage in the
use of dynamic microsimulation lies in the possibility of simulating the likely impact
of alterative interventions and the capacity to evaluate the efficacy of a given
intervention for different future health scenarios. This provides the opportunity to test
the effectiveness of different policies as well as to assess the efficacy of different
versions of the same policy, for example a phased implementation of a policy.
Through the repetition and variation of the assessment exercise, microsimulation
further allows for testing the robustness of the results produced by the simulation
itself. Given the wealth of information offered by these methods, dynamic
microsimulation should be considered an important tool for the evaluation and

refinement of health policies.
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It is important to underline that the output of any microsimulation model relies on a
particular set of assumptions regarding the behaviour of the micro-units represented.
These assumptions need to be credible for the outputs from a microsimulation
exercise to have validity. Further, while estimates of behavioural microsimulation
models have the advantage of being grounded on economic theory tend to be policy-
specific and difficult to extend to alternative contexts. Dynamic microsimulation
models that project the characteristics of a population over time usually include the
simulation of a series of interacting micro-processes such as demographic, labour
market and health dynamics. The way in which these processes interact with each
other represents the core of a dynamic microsimulation model. These interactions are
however rarely justified using structural models. That is, dynamic microsimulation
models often include only very limited behavioural components. Accordingly, one of
the challenges facing the future development of dynamic microsimulation model is
the incorporation of credible structural microeconomic models capable of taking into

account the various behavioural components of the simulation exercise.
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Appendix — Tables and figures

Figure 1: Structure of a typical discrete-time dynamic microsimulation model”
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